
Quantifying the effects of increasing user choice

in MAP-Elites applied to a Workforce Scheduling

and Routing Problem

Abstract. Quality-diversity algorithms such as MAP-Elites provide a
means of supporting the users when finding and choosing solutions to a
problem by returning a set of solutions which are diverse according to set
of user-defined features. The number of solutions that can potentially be
returned by MAP-Elites is controlled by a parameter that discretises the
user-defined features into ‘bins’. For a fixed evaluation budget, increasing
the number of bins increases user-choice, but at the same time, can lead
to a reduction in overall quality of solutions while vice-versa, decreasing
the number of bins can lead to higher-quality solutions at the expense
of reducing choice. The goal of this paper it to explicitly quantify this
trade-off, through a study of the application of Map-Elites to a Work-
force Scheduling and Routing problem, using a large realistic instances
based in London and Edinburgh. We note that for the problems under
consideration 30 bins or above maximises coverage (and therefore choice
to the end user), whilst fewer bins maximises performance.
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1 Introduction and Motivation

The Workforce Scheduling and Routing Problem (WSRP) is a commonly en-
countered real-world problem in which there is a requirement to allocate tasks to
individuals within a workforce, and to provide an optimised routing-plan between
allocated tasks. Typical domains in which these problems arise include health-
care (e.g scheduling home-visits from care-workers) and maintenance scheduling
(e.g. scheduling service-engineers to jobs). As with many real-world problems,
the ability to provide an end-user with a set of potential solutions is of great
importance, enabling them to select between alternatives with respect to specific
company priorities or objectives.

One approach to generating a set of potential solutions is to use a quality-
diversity algorithm [10] which returns a set of diverse but high fitness solutions.
In previous work, we applied one such algorithm, MAP-Elites1, to the WSRP in
order to generate multiple solutions that were diverse with respect to a set of four
user-defined features (CO2 produced, car use, travel cost and staff cost). This
enabled a planner to see how the WSRP solution could be tailored to specific
requirements, for example examining the effects of implementing a policy that
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increased public transport usage, and noting the effects on other objectives such
as financial cost or emissions.

The MAP-Elites algorithm requires the user to define n features (in this case
CO2 produced, car use, travel cost and staff cost) of interest which are mapped
to an n-dimensional grid. The grid is discretised according to a user-defined pa-
rameter d which controls the number of bins, i.e. discrete cells, on each axis of the
grid. The maximum number of cells and therefore solutions that can be obtained
is therefore dn. Given a fixed evaluation budget, then increasing d is very likely
to lead to a reduction in solution quality given that the algorithm is forced to
maintain solutions across a larger space, with a consequent reduction in selection
pressure. For the end-user, this introduces a trade-off between selecting a grid at
one end of the spectrum that provides a large number of lower-quality solutions
and at the other, a grid providing a small number of high-quality solutions. The
goal of this paper is to quantify this trade-off, by conducting a thorough empirical
investigation of the influence of the number of bins (d) on the quality of solutions
produced and the coverage obtained when solving instances of the WSRP given
a fixed optimisation budget.

2 Background and Previous Work

The WSRP was defined in [2] as a scenario that involves the scheduling and rout-
ing of personnel in order to perform activities at different locations. Although
similar to vehicle routing problems, the focus of the WSRP is on individuals
rather than vehicles. For a comprehensive introduction to the WSRP and an
overview of the latest developments, the reader is directed towards [3], [1] and
[6]. A number of previous researchers have examined the scheduling and routing
of workforces, including home care scheduling[11], security personnel scheduling
[8] and technician scheduling [4]. A attempt to model the WSRP as a bi/multi-
objective problem can be found in [1], the authors use cost and patient con-
venience as the twin objectives. The solution cost is the travel cost and staff
overtime costs, patient convenience is defined as to whether the member of staff
allocated is preferred, moderately preferred or not preferred, with penalties allo-
cated as appropriate. The results presented show a strong relationship between
convenience and cost; the more convenient a solution the higher the cost is likely
to be.

Quality-Diversity algorithms (QD) [10] produce a large array of high-quality
solutions with respect to a set of user-defined features. Although a number of QD
algorithms now exist, including Novelty-Search with Local Competition [7], and
MAP-ELites [9], here we focus only on the latter given its prevalence in the lit-
erature. The Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) was
first introduced by Mouret et al [9] and provides a mechanism for illuminating
search spaces by creating an archive of high-performing solutions mapped onto
solution characteristics defined by the user. The majority of applications of il-
lumination algorithms have been to design problems [9,15]. The basic approach
has been extended by surrogate-assistance to reduce the computation time as-
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sociated with real-world evaluations [?] and more recently by including a user in
an evolutionary loop to focus search on particular regions of the feature-space
of interest [5]. There are very few applications of QD algorithms apparent in the
combinatorial optimisation domain; to the best of our knowledge, we were the
first to show that MAP-Elites could be successfully applied to the combinatorial
optimisation using the WSRP problem as an example[13] this paper investigated
its use in producing multiple solutions to instances modelled using real data from
Edinburgh and London, with four dimensions of user interest. The discretisation
parameter d was arbitrarily chosen to give 160,000 cells in this work however,
motivating the need for further exploration.

3 Methodology

3.1 WSRP Problem Description

The WSRP considered is defined as follows. An organisation has to service a set
of clients, who each require a single visit. Each visit v must be allocated to an
employee, such that all client visits are made by an employee. Each visit v is lo-
cated at gv, where g represents an actual UK post-code, and has a visit length dv
and a time-window in which it must commence {ev, lv}. Visits are grouped into
journeys, where each journey is allocated to an employee and contains a subset
Vj of the V visits, starting and ending at a central office. In this formulation an
unlimited number of employees are available.

Two modes of travel are available to employees, private transport (car) or
public-transport, encouraging more sustainable travel, each journey is carried
out using one of these modes for the entire journey. The overall goal of our
WSRP is to minimise the total distance travelled across all journeys completed
, discussions with end-users [14] highlights four characteristics of solutions that
are of interest:

– Emissions incurred by all employees on their journeys
– Employee Cost the cost (based on £/hour) of paying the workforce for the

duration of the journeys and visits
– Travel Cost the cost of all of the travel activities undertaken by the work-

force
– The % of Employees using car travel for their journeys

We use a problem-representation described in [14]. The genotype defines
a permutation of all v required visits, this is divided into individual feasible
journeys using a decoder. For each visit, the genotype also includes an additional
gene that denotes the preferred mode of transport to be used for the visit (public
or private).

The decoder converts the genome into a set of employee journeys by exam-
ining each visit in order. Initially, the first visit in the genotype is allocated to
the first journey. The travel mode(car or public transport) associated with this
visit in the genome is then allocated to that journey. The travel mode associated
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with the first visit is then adopted for the entire journey (regardless of the infor-
mation associated with a visit in the genome). The decoder then examines the
next visit in the permutation this is added to the current journey if it is feasible.
Feasibility requires that the employee arrives from the previous visit using the
mode of transport allocated to the journey within the time window associated
with the visit. Subsequent visits are added using the journey mode until a hard
constraint is violated, at which point the current journey is completed and a new
journey initiated.

3.2 Problem Instances

We use a set of problem instances based upon the city of London, divided into two
problem sets, termed Lon (60 visits) and BLon (110 visits). These instances were
first introduced in [14] and also used later in [13]. For each of the problem sets, 5
instances are produced in which the duration of each visit is fixed to 30 minutes.
Visits are randomly allocated to one of t time-windows, where t ∈ {1, 2, 4, 8}. For
= 1, the time-window has a duration of 8 hours, for t = 2, the time-windows are
“9am-1pm” and “1pm-5pm” etc. These instances are labelled using the scheme
<set>- numTimeWindows, i.e. Lon-1 refers to an instance in the London with
one time-window and Blon-2 refers to an instance of the BigLondon problem
with 2 time windows. The ’rnd’ instance (e.g. BLon-rnd) represents a randomly
chosen mixture of time windows based on 1,2,4 and 8 hours.

When a journey is undertaken by car,the distance and time is calculated
according to the real road-network using the GraphHopper library2. This relies
on Open StreetMap data3. Car emissions are calculated as 140 g/km based upon
values presented in [12]. For journeys by public-transport, data is read from the
Transport for London (TfL) API4 which provides information including times,
modes and routes of travel by bus and train. Public transport emissions factors
are based upon those published by TfL [12].

3.3 MAP-Elites

The implementation of MAP-Elites used in this paper was used previously by
[13] and was taken directly from [9]. The algorithm commences with an empty,
N-dimensional map in which {solutions X and their performances P } can be
placed. An initialisation method generates G random-solutions which are placed
in the archive (map); subsequent solutions are generated from elites stored in
the archive. Following the random selection of a solution (or solutions) from the
archive, the RandomVariation() method applies either crossover followed by mu-
tation, or just mutation, depending on the experiment. All operators utilised are
borrowed from the authors’ previous work on these problems[?]. The mutation
operator moves a randomly selected entry in the chromosome to a randomly

2 https://graphhopper.com/
3 https://openstreetmap.org/
4 https://api.tfl.gov.uk/
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selected point in the tour. The crossover operator selects a random section of
the tour from parent-1 and copies it to the new solution. The missing elements
in the child are copied from parent-2 in the order that they appear in parent-2.
For each solution x′, a feature-descriptor b is obtained by discretising the four
features of interest associated with the solution. The upper and lower bounds
required for discretisation are taken as the maximum and minimum values ob-
served within these data sets in [14]. A new solution is placed in the cell in the
archive corresponding to b if its fitness p (calculated as total distance travelled)
is better than the current solution stored, or the cell is currently empty.

Algorithm 1 MAP-Elites Algorithm, taken directly from [9]

procedure Map-elites Algorithm

(P ← ∅,X ← ∅)
for iter = 1→ I do

if iter < G then
x′ ← randomSolution()

else
x′ ← randomSelection(X )
x′ ← randomVariation(X )

end if
b′ ← featureDescriptor(x’)
p′ ← performance(x’)
if P(b′) = ∅ or P(b′) < p′ then
P(b′)← p′

X (b′)← x′

end if
end for
return feature-performance map(P and X )

end procedure

3.4 Experimental Set up

We vary the number of bins (d) from 5 to 50 in steps of 5 (see table 1). The
number of cells is therefore cells = dn where n is the number of dimensions
within the problem. Note that the range for each feature axis remains constant
regardless of the number of bins that it is discretised into.

MAP-Elites was executed on each problem instance 10 times for each bin
configuration. The function evaluation budget is fixed at 5,000,000 evaluations
all experiments. We use the coverage metric to measure the area of the feature-
space covered by a single run of the algorithm, i.e. the number of cells filled. For
a single run x of algorithm y, coverage = noOfCellsF illed/CMax where CMax

is the total number of cells filled by combining all of the solutions produced to
the problem under consideration.
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Bins (d) Cells Bins (d) Cells
5 625 30 810000
10 10000 35 1500625
15 50625 40 2560000
20 160000 45 4100625
25 390625 50 6250000

Table 1: Numbers of cells in each map. The number of cells may be calculated
as cells = dn

4 Results

4.1 The Effects of Bin Quantity on Fitness

The average, maximum and minimum fitness values found for each problem in-
stance are given in table 3: entries in the table are of the format <avg>(min/max)
over the 10 runs undertaken on each problem instance. It is clear that as the
number of bins increases the average and best fitness decreases. The drop off in
performance is relatively consistent as evidenced by table 4: the increase in aver-
age fitness is in the range of 23 - 34 % and increases as the problems become more
constrained (e.g. with smaller time windows). The relationship between perfor-
mance (as evidenced by the lowest fitness found over 10 runs) and the number
of bins is shown in figure 5. Correlation coefficients of R = 0.8943 for the Lon
data and R = 0.9619 for the BLon data indicate a strong positive relationship
between the best solution found and the number of bins.

4.2 The Effects of Bin Quantity on Coverage

Figures 3 and 4 show the average levels of coverage achieved. The reader is
reminded that coverage measures the proportion of the cells in the archive that
contain a solution. We notice in both figures that the highest coverage is obtained
with 25-30 bins, with the average coverage dropping before that. When looking
for a relationship between coverage and the number of bins (d) we find that a
correlation coefficient of R = 0.5314 and R = 0.291 for BLon and Lon. This
suggests that the relationship between Bins and Coverage is not strong. We
do note that for BLon less coverage is achieved with smaller values of d. The
differing problem instances show different levels of coverage, but follow the same
overall trends in the case of BLon. It is worth noting that when a small number
of bins are used the coverage can drop as low as 50% (Blon): this translates to
user-choice being limited to very few solution. At a discretisation level of 5 bins,
this results in 312 solutions; this is in stark contrast to using e.g. 25 bins which
gives a potential of 390625 solutions of which 80% are covered (albeit at lower
quality). The best/worst coverage scores (averaged over 10 runs) for each value
of d may be seen in figures 1 and 2. The larger datasets (Blon) show a more
consistent performance in relation to d with the values of 30 or over giving the
best coverage. The smaller dataset (Lon) gives a less consistent performance,
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generally smaller values of d produce less coverage, but there is not a value
of d which differentiates consistently between best and worst performances. In
order to confirm that there is a significant difference between the best and worst
performance we apply a t-test to the coverage values obtained from the individual
runs (table 2), we note that a significant difference is obtained in every case, and
in 6 cases the difference is classed as extremely significant.

Fig. 1: The best/worst average coverage obtained for the BLon datasets. The
worst is consistently obtained with 5-10 bins, the best coverage is obtained with
≥ 30 bins.

Fig. 2: The best/worst average coverage obtained for the Lon datasets. The least
coverage is obtained with 5bins, except for Lon4 the best coverage is obtained
with bins ranging from 20 to 50.
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Dataset P value Classification Dataset P value Classification
Lon1 0.0393 S BLon1 0.0001 E
Lon2 0.0003 E Blon2 <0.0001 E
Lon4 <0.0001 E Blon4 <0.0001 E
Lon8 <0.0001 E Blon8 0.0022 V

Table 2: The t-test results for the best/worst coverage (see figures 1 and
2) based on the coverage obtained on each individual run. The t-tests were
carried out using (https://www.graphpad.com/), the classifications based on
https://www.graphpad.com are ’S’ - significant, ’E’ - extremely significant and
’V’ very significant.

4.3 Effects of Bin Quantity on Other Solution Characteristics

A visual indication of the solutions found is shown in figures 6 and 7 which
examine results achieved from the BLon-rnd dataset. The figures chart the results
obtained with differing numbers of bin: note that each row represents the final
result of a specific run. We note that although the number of cells increases, the
shape of the filled in area, largely remains the same. The resolution of the heat
map increases, but the image remains largely unaltered. Those areas which are
not filled in on the 5 bin heat maps are largely the same as those not filled in on
the 50 bin heat maps. The lightest cells (green) represent those solutions with
the least distance cost and we see largely the same distribution of colours.

5 Conclusions

In this paper we set out to quantify the trade-off between user choice (coverage)
and solution quality, by varying the number of bins (d). In this case user choice
is based upon the size of the map which is determined by the number of bins.

Table 4 shows a decrease in the performance of the algorithm (measured as
best and average fitness) as the number of bins (d) increases. When the average
fitness value across all cells is considered, increases of between 23% and 35% are
noted. The average increase in the lowest (best) fitness obtained, rises to between
32% and 38% when the best solution is considered. These statistics represent a
decline in performance as the number of cells increases, the correlations shown
in figure 5 confirm that there exists a relationship between the fitness of the
solutions found by the algorithm and the number of bins (d). Table 3 confirms
that the lowest fitness and lowest average fitness’s are found with low values of d,
across all of the problem instances examined in this study/ The user is advised
to choose a low value of d if their priority is to find low fitness solutions.
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Avg Best
5 50 % increase 5 50 % Increase

lon-1 343.17 450.32 23.79% 169.72 264.4 35.81%

lon-2 316.14 450.24 29.78% 189.68 292.77 35.21%

lon-4 289.52 433.86 33.27% 201.27 307.19 34.48%

lon-8 267.03 409.79 34.84% 209.85 307.17 31.68%

lon-rnd 302.87 456.55 33.66% 202.48 313.57 35.43%

blon-1 908.88 1179.35 22.93% 576.88 874.86 34.06%

blon-2 843.4 1168.4 27.82% 595.33 919.96 35.29%

blon-4 812.18 1132.02 28.25% 593.46 903.2 34.29%

blon-8 739.43 1069.19 30.84% 575.02 893.62 35.65%

blon-rnd 772.14 1141.09 32.33% 560.96 906.73 38.13%

Table 4: The increase in average and best fitness between the lowest and highest
number of bins (d) used.

Figures 8 and 9 provide a visual representation of typical sets solutions pre-
sented to the user. We can see that when d = 5 there are far fewer solutions
and far fewer opportunities for trading off between objectives. When d = 50

(figure 9) we note the dramatic increase in solutions and the potential to to find
trade-offs.

The increase in the quantity of solutions found (Table 5) represents an in-
crease in the choice available to users selecting a solution. Figures 3 and 4 show
that the the numbers in table 1 represent less than 80% of the solutions that
could be found.

In summary we demonstrate the implications of altering the value of d within
a MAP-Elites algorithm. Reducing d is likely to result in the production of MAPS
containing solutions with lower fitness values, but limiting the choice available
to the user. Increasing d will result in increased choice, but with lower overall
and average fitness.

5 10 15 20 25 30 35 40 45 50

lon-1 69 432 1450 3344 6360 10328 15524 21129 28759 38252

lon-2 84 1080 4640 12374 25013 42039 65781 89835 118815 153787

lon-4 122 1501 6926 19325 38961 65684 101561 140768 185533 236537

lon-8 106 1490 6979 19144 39533 67495 103840 145798 194424 248200

lon-rnd 120 1552 6878 18749 37590 62441 95737 131973 175174 222401

blon-1 56 362 1271 3263 6258 11038 17539 24545 33898 44642

blon-2 54 565 2549 7180 15470 28173 44827 64970 88276 112549

blon-4 68 752 3305 9376 20473 35916 56615 81887 109628 141184

blon-8 72 859 3821 10993 22940 41354 63907 92374 123681 157905

blon-rnd 84 888 4113 11478 24330 42021 65049 92556 122091 156211

Table 5: Average number of solutions produced for each problem instance.
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Fig. 3: The coverage achieved using with BLon datasets, each data point repre-
sents the average coverage over 10 runs.

Fig. 4: The coverage achieved using with Lon datasets, each data point represents
the average coverage over 10 runs.
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Fig. 5: Best fitness achieved (over 10 runs) plotted against the number of bins.
The correlation coefficients obtained were R = 0.8943 and R = 0.9619 for the
Lon and BLon data.
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Fig. 7: Heat maps showing the solutions contained within the map. Each row
contains a heat map for each pair of dimensions.
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Fig. 8: A parallel coordinates plot showing the solutions found for a run with the
BLon-rnd data set with d = 5.

Fig. 9: A parallel coordinates plot showing the solutions found for a run with the
BLon-rnd data set with d = 50.
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