
Quantifying the Effects of Refactorings on Bad Smells

Cleiton Tavares1(Mastering), Mariza A. S. Bigonha1(Advisor),
Eduardo Figueiredo1(Co-advisor)

1 Master’s degree in Computer Science
Graduate Progam in Computer Science

Department of Computer Science – Federal University of Minas Gerais (UFMG)
Belo Horizonte – MG – Brazil

Entry date: August 2018 - Proposal: May 2019 - Expected date: First Semester of 2021

{cleiton.silva,mariza,figueiredo}@dcc.ufmg.br

Abstract. Refactoring aims to remove bad smells and increase software main-
tainability by improving the software structure without changing its behavior.
Even with the existence of tools to assist refactoring, many developers do not
trust in their solutions, claiming that some studies show that refactoring may
even introduce new bad smells into the source code. However, we do not find
a complete catalog that states when this may occur. To investigate this subject
deeply, the goal of this dissertation is to evaluate the effects of refactoring on the
detection of bad smells. Specifically, we want to know if and what refactoring
removes bad smells or introduces them. To achieve our goal, we plan to conduct
empirical studies to provide a catalog showing these situations.

Keywords: Bad Smell, Refactoring, Impacts of Refactoring

Related CBSoft symposia: SBES

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

100



1. Introduction
Bad smell is a code structure that we may resolve through refactoring. The purpose of
code refactoring is to remove bad smells in the code by modifying its internal structure
to improve code maintenance [Fowler et al. 1999]. Therefore, we may establish a direct
relationship between refactoring and bad smell.

Several studies show different strategies for the refactoring application. Some
studies focus on quality metrics [Kataoka et al. 2002, Moser et al. 2006], others present
opportunities for refactoring motivated by the detection of bad smells and anti-patterns
[Boussaa et al. 2013, Kessentini et al. 2010, Moha et al. 2009], while others describe that
refactoring may solve the bad smells present in the source code [Fokaefs et al. 2011,
Tsantalis and Chatzigeorgiou 2009]. However, studies also show that the refactoring
process often does not solve them [Bavota et al. 2015, Cedrim et al. 2017]. A possi-
ble strategy that may help make the refactoring process more effective in solving the
identified bad smells is to consider the existence of their relationship. However, we
must refactor in a disciplined way to not introduce new bad smells in the source code
[Mkaouer et al. 2016, Pietrzak and Walter 2006]. As a direct example, Pietrzak and Wal-
ter (2006) found out that a Move Method applied to a Lazy Class may result in a new bad
smell, Feature Envy. The fact that Move Method transfers the envious method may reduce
the responsibility of a class.

A software system is in the process of constant change and evolution. These
changes may become complex over time if there is no quality in the software system’s
structure. However, as noted, the number of bad smells removed effectively by the refac-
toring process is still deficient, and even worse than that, it may not only remove bad
smells but also introduce them. This fact may indicate why developers are less and less
concerned with solving problems in a software system’s internal structure. Thus, it is es-
sential to understand how bad smells may behave in the context of their identification and
then take practical actions to maintain or improve the software system’s structural quality.

This dissertation aims to address these problems by conducting empirical stud-
ies to investigate the effect of refactoring on the resolution of bad smells in software
systems. Specifically, using some bad smells proposed by Fowler, we want to inves-
tigate if and what refactoring operations remove or introduce them. One of our most
important contributions would be a catalog reporting the refactorings’ effects on the bad
smells chosen. Our preliminary results show that an exemplar refactoring tool, JDeodor-
ant [Fokaefs et al. 2011], introduces many bad smells after applying automated refactor-
ing.

2. Background and Related Work
Bad smell is evidence of problems in the code structure that may be resolved via refactor-
ing. Fowler (1999) proposed one of the complete lists containing 22 bad smells; besides
that, he describes how we may identify them and what refactoring strategies we may apply
in their solution. Feature Envy is an example of a bad smell that occurs when a function
in one module spends more time communicating with functions or data inside another
module than it does within its module.

Refactoring is a process of improving the software system’s internal structure
without changing the code’s external behavior. One of the most well-known and complete

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

101



catalogs presents a list of 72 refactorings [Fowler et al. 1999]. Extract Class is an example
of refactoring, which consists of splitting a class that is too big to understand with many
methods and quite a lot of data to create a new class. We may perform this refactoring
when (1) the data subset and the methods’ subset seem to go together, and (2) some data
subset usually change together or are mainly dependent on each other.

The literature presents several works discussing different approaches
available to the refactoring operation [Cedrim et al. 2017, Bavota et al. 2015,
Du Bois and Mens 2003, Fontana and Spinelli 2011]. For example, Bavota et al.
(2015) mined the evolution history of three Java open-source projects to investigate
whether refactoring activities occur on quality metrics or in bad smells, suggesting a
need for refactoring operations. According to their results, quality metrics usually do not
show a clear relationship with refactoring; 42% of refactoring operations are performed
on code entities affected by code smells, and only 7% of the performed operations
remove the code smells. Different from this work, we intend to use a larger number of
Java systems. Furthermore, we aim not only to identify the code entities affected by
refactoring but also to present which bad smells have been removed and introduced by
refactoring.

Cedrim et al. (2017) analyze how 16,566 refactorings distributed in ten different
types affect the density of 13 types of code smells in the version histories of 23 projects.
Their results reveal that 79.4% of the refactorings touched smelly elements, 57% did not
reduce their occurrences, 9.7% of refactorings removed smells, and 33.3% induced new
ones. They also characterized and quantified that 30% of the Move Method and Pull Up
Method induced God Class’s emergence, and the Extract Superclass in 68% of the cases
create Speculative Generality. Unlike this study, we focused only on the investigation
of the effects of refactorings on Fowler’s bad smells. Besides detecting refactorings that
have been carried out in the source code, we intend to apply refactorings using tools to
incorporate different manual or automated refactoring strategies. Finally, as one of the
results, we will provide a catalog showing which bad smells we may remove and which
ones, if they exist, we may introduce by refactoring.

3. Research Agenda

The goal of this project is to identify the effects of the refactoring operation on bad smells.
These effects will be measured by detecting bad smells in an original version of the system
and after applying a specific refactoring operation. After performing the detections of bad
smells in both versions, original and refactored, we will perform the comparative analysis
results and find the refactoring’s effects. Figure 1 exhibits the diagram of steps planned to
conduct the complete research. We divide our project into three stages: Literature Review,
Empirical Study, and Comparative Analysis. Each stage may be finished, in progress, or
not started yet. To discuss the process planned to conduct each stage and its progress in
this section’s remainder, we will use only the step number under parenthesis inside each
stage, referring to Figure 1.

Literature Review. In this stage, we conducted a literature review to identify
what the literature already discussed on three subjects: bad smell tools, refactoring
tools, and the theoretical relationship between bad smells and refactoring. To find the
refactoring tools presented in the literature, we conducted a Study Mapping in Step 1.2

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

102



Figure 1. Diagram of steps to conduct

and identified 44 refactoring tools proposed from 2013 up to 2017 [Tavares et al. 2018].
For the bad smell tools, Step 1.3, we used studies already presented in the literature
[Sobrinho et al. 2018, Fernandes et al. 2016]. To identify the relationship between Bad
Smells and Refactoring discussed in the literature, we conducted a Systematic Literature
Review in Step 1.1 and identified 20 papers that showed the direct relationship between 31
different refactorings and 16 bad smells [Tavares et al. 2020b]. Surprisingly, we identified
relationships not discussed in the Fowler’s catalog. Finally, we highlighted the refactor-
ing strategies that we may perform to eliminate bad smells. We have done all the steps,
therefore, finishing this stage.

Empirical Study. In this stage, we are planning to conduct two studies, as shown
in Figure 1. In the first study, Step 2.1, we performed a refactoring strategy in an auto-
mated way and evaluated their effects. Initially, we defined the systems, the bad smells,
and refactoring tools we will use. After that, we selected a specific system in their original
version and detected all bad smells present in the source code. After the detections on the
original version, we applied the refactoring strategy. Finally, we detected the bad smells
again; but now in the refactored version. Furthermore, we performed a comparative anal-
ysis with both bad smell detections and detected the automated refactoring effects. Step
2.1 is composed of eight systems, five bad smells tools, and one refactoring tool. To com-
pose a complete database, we intend to extend Step 2.1 to more tools and systems. In the
second study, Step 2.2, we plan to conduct a similar study of the first one. Unlike Step
2.1, we want to use tools to detect refactoring already applied in in this new study’s source
code. To conduct it, we will evaluate two versions of a system, detect the bad smells and
refactorings between them. We did not start the second study yet.

Comparative Analysis. To finish the Comparative Analysis, Stage 3, we need the
results produced by Stage 2 to assess the effects of refactoring operation on bad smells,
detecting them before and after the applied refactoring. With these detections, we will
conduct a comparative analysis and consequently detect the bad smells that tend to be
solved or introduced by refactoring. In the first study of Stage 3, Step 3.1, we conducted
the comparative analysis, and surprisingly, we identified that the automated refactoring
operation might introduce bad smells in the source code. By extending the database of

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

103



this step based on the extension of Step 2.1, we hope to build a complete base to support
our findings. With both studies of Stage 2, we hope to be able to cover possible ways
of applying refactoring, whether manual or automatic. The first study, Step 2.1, focuses
only on refactorings applied as an automatic way, and the second one, Step 2.2, may
detect refactoring performed in both manual and automatic ways. We believe that with
the results provided by these studies, we will be able to generalize all types of refactorings
that may be applied.

Furthermore, with our results, we intend to provide a complete catalog with all
effects of the refactoring operation on bad smells found in these empirical evaluations.
The comparative analysis of Step 3.1 is in progress, remaining the database extension.
The second study, Step 3.2, and the merge of results provided by both studies, Step 3.3,
have not started yet.

4. Preliminary Results
We have already published a paper as a mapping study to detect refactoring tools dis-
cussed in the literature [Tavares et al. 2018]. We identified 44 refactoring tools, which
we characterized and summarized some of their features. We found 37 that offer support
for Java language, 17 of the tools found are plugins, 4 are prototypes, and 21 refactoring
tools already offer their operations to be performed in an automated way. Finally, we
identified that the refactoring tools offer excellent support for refactoring strategies of the
type Move, Rename, Pull Up, Extract, and Clone.

In 2020, we have a second paper accepted in an IberoAmerica conference. This
paper presents a Systematic Literature Review about the relationship between bad smells
and refactorings [Tavares et al. 2020b]. We found 20 different papers that show the direct
relationship between 31 refactoring types and 16 bad smells proposed by Fowler. We also
found seven tools that apply refactoring after detecting bad smells. We identified that the
most discussed relationship in the literature is between Move Method and Feature Envy. It
also revealed that there are different refactoring strategies than those discussed by Fowler
to address bad smells. The literature addresses the most strategies defined in Fowler’s
book, and shows that most refactoring tools do not detect bad smells.

Finally, as our last result, we have a paper accepted, presenting our empirical study
about the effects of the automated refactoring operation [Tavares et al. 2020a]. To conduct
this research, we selected a sample of Qualitas Corpus systems [Tempero et al. 2010]. We
applied two refactorings and measured their effect on ten different bad smells detected by
five different tools. We observed that the two types of refactorings generate a decrease, in-
crease, and neutral variations in the number of bad smells. Unlike Fowler’s definition, we
surprisingly found that decreasing cases was the lowest compared to the others. Replace
Refactoring was the one presenting the lowest decrease case (0.75%) while Move Method
showed the highest decrease (13.53%). To better help developers, we investigated which
bad smells tend to be introduced and removed by refactoring. For instance, the systems
analyzed by Move Method refactoring removed 85.71% Feature Envy.

5. Conclusion
With our preliminary results, we achieved different contributions. First, it shows a cata-
log of refactoring tools recently published in the literature [Tavares et al. 2018]. Second,

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

104



identifying some tools that refactor through the identification of Fowler’s bad smells, the
relationship between bad smells and refactoring discussed in the literature, and a con-
trast between the literature and Fowler’s catalog [Tavares et al. 2020b]. Moreover, in the
last work submitted, our contributions were a comparative study that prioritizes detections
performed by five bad smell tools, a catalog that presents which bad smells are introduced
or solved by the refactoring operation, results of an evaluation exhibiting the effect of the
refactoring operation on detecting bad smells.

Finally, with the completion of this master project, we expect to contribute to the
software engineering community in the following ways:

• provide evidence to confirm or deny the findings discussed in the literature
• understand what the effects of refactoring operation cause on bad smells
• provide a catalog showing which bad smells tend to be introduced and removed

by the refactoring strategy.

Besides that, we expect that the contributions mentioned assist developers in dif-
ferent ways, for instance:

• developers who want to apply refactoring strategies, automatically or manually,
will be better informed of which bad smells may be introduced or removed by the
refactoring operation
• assist developers in taking care and performing the most efficient and robust refac-

toring tools to not introduce new bad smells in the source code.

References
Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., and Palomba, F. (2015). An ex-

perimental investigation on the innate relationship between quality and refactoring.
Journal of Systems and Software, pages 1–14.

Boussaa, M., Kessentini, W., Kessentini, M., Bechikh, S., and Chikha, S. B. (2013).
Competitive coevolutionary code-smells detection. In International Symposium on
Search Based Software Engineering, pages 50–65.

Cedrim, D., Garcia, A., Mongiovi, M., Gheyi, R., Sousa, L., de Mello, R., Fonseca,
B., Ribeiro, M., and Chávez, A. (2017). Understanding the impact of refactoring on
smells: A longitudinal study of 23 software projects. In Proceedings of the 11th Joint
Meeting on Foundations of Software Engineering, pages 465–475.

Du Bois, B. and Mens, T. (2003). Describing the impact of refactoring on internal program
quality. In International Workshop on Evolution of Large-scale Industrial Software
Applications, pages 37–48.

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and Figueiredo, E. (2016). A review-based
comparative study of bad smell detection tools. In 20th International Conference on
Evaluation and Assessment in Software Engineering, pages 1–12.

Fokaefs, M., Tsantalis, N., Stroulia, E., and Chatzigeorgiou, A. (2011). Jdeodorant: iden-
tification and application of extract class refactorings. In 33rd International Confer-
ence on Software Engineering (ICSE), pages 1037–1039.

Fontana, F. A. and Spinelli, S. (2011). Impact of refactoring on quality code evaluation.
In Proceedings of the 4th Workshop on Refactoring Tools, pages 37–40.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

105



Fowler, M., Beck, K., Brant, J., and Opdyke, W. (1999). Refactoring: Improving the
Design of Existing Code. Addison-Wesley.

Kataoka, Y., Imai, T., Andou, H., and Fukaya, T. (2002). A quantitative evaluation of
maintainability enhancement by refactoring. In International Conference on Software
Maintenance, pages 576–585.

Kessentini, M., Vaucher, S., and Sahraoui, H. (2010). Deviance from perfection is a
better criterion than closeness to evil when identifying risky code. In Proceedings of
the IEEE/ACM Int. Conference on Automated Software Engineering, pages 113–122.

Mkaouer, M. W., Kessentini, M., Bechikh, S., Cinnéide, M. Ó., and Deb, K. (2016). On
the use of many quality attributes for software refactoring: a many-objective search-
based software engineering approach. Empirical Soft. Eng., pages 2503–2545.

Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur, A.-F. (2009). Decor: A method
for the specification and detection of code and design smells. IEEE Transactions on
Software Engineering, pages 20–36.

Moser, R., Sillitti, A., Abrahamsson, P., and Succi, G. (2006). Does refactoring improve
reusability? In International Conference on Software Reuse, pages 287–297.

Pietrzak, B. and Walter, B. (2006). Leveraging code smell detection with inter-smell
relations. In International Conference on Extreme Programming and Agile Processes
in Software Engineering, pages 75–84.

Sobrinho, E. V., De Lucia, A., and Maia, M. (2018). A systematic literature review on
bad smells—5 w’s: which, when, what, who, where. IEEE Transactions on Software
Engineering.

Tavares, C., Bigonha, M., and Figueiredo, E. (Accepted in 2020a). Analyzing the impact
of refactoring on bad smells. In Proceedings of the XXXIV Brazilian Symposium on
Software Engineering (SBES).

Tavares, C. S., Ferreira, F., and Figueiredo, E. (2018). A systematic mapping of literature
on software refactoring tools. In Proceedings of the XIV Brazilian Symposium on
Information Systems, page 11.

Tavares, C. S., Santana, A., Figueiredo, E., and Bigonha, M. A. S. (Accepted in 2020b).
Revisiting the bad smell and refactoring relationship: A systematic literature review.
In Experimental Software Engineering (ESELAW).

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., and Noble,
J. (2010). Qualitas corpus: A curated collection of java code for empirical studies. In
Asia Pacific Software Engineering Conference (APSEC), pages 336–345.

Tsantalis, N. and Chatzigeorgiou, A. (2009). Identification of move method refactoring
opportunities. IEEE Transactions on Software Engineering, pages 347–367.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

106


