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Abstract 

Background: The UK was the first country to start national COVID-19 vaccination 

programmes, initially administering doses 3-weeks apart. However, early evidence of high 

vaccine effectiveness after the first dose and the emergence of the Alpha variant prompted 

the UK to extend the interval between doses to 12-weeks. In this study, we quantify the 

impact of delaying the second vaccine dose on the epidemic in England. 

Methods: We used a previously described model of SARS-CoV-2 transmission and 

calibrated the model to English surveillance data including hospital admissions, hospital 

occupancy, seroprevalence data, and population-level PCR testing data using a Bayesian 

evidence synthesis framework. We modelled and compared the epidemic trajectory 

assuming that vaccine doses were administered 3-weeks apart against the real vaccine roll-

out schedule. We estimated and compared the resulting number of daily infections, hospital 

admissions, and deaths. A range of scenarios spanning a range of vaccine effectiveness 

and waning assumptions were investigated. 

Findings:  We estimate that delaying the interval between the first and second COVID-19 

vaccine doses from 3- to 12-weeks prevented an average 64,000 COVID-19 hospital 

admissions and 9,400 deaths between 8th December 2020 and 13th September 2021. 

Similarly, we estimate that the 3-week strategy would have resulted in more infections and 

deaths compared to the 12-week strategy. Across all sensitivity analyses the 3-week 

strategy resulted in a greater number of hospital admissions. 
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Interpretation: England’s delayed second dose vaccination strategy was informed by early 

real-world vaccine effectiveness data and a careful assessment of the trade-offs in the 

context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly 

providing partial vaccine-induced protection to a larger proportion of the population was 

successful in reducing the burden of COVID-19 hospitalisations and deaths. There is benefit 

in carefully considering and adapting guidelines in light of new emerging evidence and the 

population in question.  

Funding: National Institute for Health Research, UK Medical Research Council, Jameel 

Institute, Wellcome Trust, and UK Foreign, Commonwealth and Development Office, 

National Health and Medical Research Council. 

 

Research in Context 

Evidence before this study 

We searched PubMed up to 10th June 2022, with no language restrictions using the following 

search terms: (COVID-19) AND (vaccin*) AND (dose OR dosing) AND (delay OR interval) 

AND (quant* OR assess* OR impact). We found 14 studies that explored the impact of 

different vaccine dosing intervals. However, the majority were prospective assessments of 

optimal vaccination strategies, exploring different trade-offs between vaccine mode of action, 

vaccine effectiveness, coverage, and availability. Only two studies retrospectively assessed 

the impact of different vaccination intervals. One assessed the optimal timing during the 

epidemic to switch to an extended dosing interval, and the other assessed the risk of all-

cause mortality and hospitalisations between the two dosing groups.  

Added value of this study 

Our data synthesis approach combines real-world evidence from multiple data sources to 

retrospectively quantify the impact of extending the COVID-19 vaccine dosing interval from 

the manufacturer recommended 3-weeks to 12-weeks in England. 

Implications of all the available evidence 

Our study demonstrates that rapidly providing partial vaccine-induced protection to a larger 

proportion of the population was successful in reducing the COVID-19 hospitalisations and 

mortality. This was enabled by rapid and careful monitoring of vaccine effectiveness as 

nationwide vaccine programmes were initiated, and adaptation of guidelines in light of 

emerging evidence. 
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Introduction 

The Pfizer-BioNTech and Oxford–AstraZeneca COVID-19 vaccines were given regulatory 

approval on 2nd and 30th December 2020 respectively in the UK, making it the first country to 

start a nationwide COVID-19 vaccination campaign 1,2. Initially, the two scheduled doses of 

each vaccine product were administered similarly to the clinical trials at 3 to 4 weeks apart. 

However, the Joint Committee on Vaccination and Immunisation (JCVI) recommended 

delaying the second dose from 3- to 12-weeks after the first dose 3. This was based on 

evidence that one vaccine dose provided 70-90% protective effectiveness against 

symptomatic disease 4 and the higher peak antibody levels observed amongst individuals 

receiving a delayed second dose 5. This decision was also made in response to the 

emergence of the Alpha variant of concern (VOC). 

The delayed second dose strategy prioritised delivery of first vaccine doses and thus high 

partial short-term protection to as many people as possible. This strategy received some 

criticism, citing the lower level of protection offered to the most vulnerable by delaying the 

second dose, the limited number of studies available to support this change from the trial 

protocols, and concerns of partial vaccination accelerating the emergence of new vaccine-

evading VOCs 6,7. However, prompted by vaccine shortages and the emergence of Alpha, 

several countries including Canada 8, Denmark 9, Norway 10, India 11, and South Africa 12 

also extended the average time between first and second doses. Previous studies have 

explored the potential impact and optimisation of mass vaccination schedules under different 

assumptions of vaccine effectiveness (VE), vaccine mode of action, waning immunity, and 

the degree of non-pharmaceutical interventions (NPIs) in place 13,14. They highlighted that 

more hospitalisations and deaths could be prevented by adopting a delayed second dose 

strategy, but that results were particularly sensitive to VE assumptions and vaccine 

mechanisms, underscoring the importance of continued NPIs 15–17. 

In early 2021, informed by mathematical modelling, the UK Government published a 

“roadmap out of lockdown” for England, a policy setting out the conditions for and expected 

timeline of a stepwise lifting of NPIs. Between 8th March and 19th July, 2021, NPIs were 

incrementally lifted as vaccination coverage increased 18. During this time the recommended 

dose interval was initially shortened from 12 to 8 weeks only for priority groups 1-9 19, then 

for all over 40-year-olds, and finally for all cohorts, in response to the emergence of the Delta 

variant and increasing vaccine supply 20 (supplementary material figure S9). Here we 

retrospectively assess the impact of delaying the second vaccine dose in England and 

examine what the epidemic trajectory in terms of SARS-CoV-2 transmission, infections, and 

COVID-19 hospital admissions and deaths would have looked like if a three-week dose 

interval had been maintained.  

Methods 

Study design 

Ethics permission was sought for the study via Imperial College London's (London, UK) 

standard ethical review processes and was approved by the College's Research 

Governance and Integrity Team (ICREC reference 21IC6945). 

Epidemiological model and fitting 

We used a previously described stochastic transmission model 21 which reliably captures the 

age-specific scale and timing of the SARS-CoV-2 pandemic in England in 2021 22 to 

examine the impact of vaccination in the first 9 months of its roll-out. This was a period 

marked by the transition – in May and June 2021 – from the Alpha (B.1.1.7) variant to the 

Delta variant (B.1.617.2). Using a Bayesian inference framework, we fit a two-variant model 
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to multiple data sources including daily hospital admissions and bed occupancy, deaths, 

population-level PCR prevalence, and serological data, for each English National Health 

Service (NHS) region (see supplementary materials for detail). To explicitly capture the 

emergence of the Delta variant, we additionally fitted the model to the UK Health Security 

Agency (UKHSA) variant and mutation dataset (VAM). Delta is seeded at a region-specific 

date determined by the model fit, no earlier than 8th March 2021.  

Our study period ranges from 8th December 2020, when vaccination started, to 13th 

September 2021, just before the introduction of booster doses in England which are not 

considered here. We modelled vaccine roll-out as reported in the NHS vaccine 

administration data including the distribution of doses by age and vaccine type. The dosing 

interval is informed by the real vaccination data; thus, the actual average dosing interval may 

differ slightly from reported guidelines. We refer to this as the “12-week strategy”. 

VE against infection, symptomatic disease, hospitalisation, death, and onward transmission 

for each variant were informed by effectiveness studies in the UK or England 4,23,32–36,24–31. 

We assumed full effectiveness of the first and second dose is reached after three- and one-

week post dose one and two respectively. For our baseline analysis, we assume the same 

VE under the 12- and 3-week strategies, and no waning post-dose one regardless of the 

dosing interval. 

We allowed for waning infection- and vaccine-induced protection, imperfect cross-protection 

between Alpha and Delta, and a fitted increased severity of Delta infection relative to Alpha 
32. We assumed that infection-induced immunity against the same SARS-CoV-2 variant 

wanes following an exponentially distributed duration with a mean of 6 years 37. To model 

the waning of vaccine-induced protection, we assumed individuals who had received a 

second dose moved to a waned compartment of reduced protection after, on average, 24-

weeks. To ensure the population average VE in our compartmental model was consistent 

with the observations, we fitted VE in the second dose and in the reduced protection (i.e. 

waned) compartments, for all vaccines and disease outcomes, to the VE estimated by 

Andrews et al. 26,38 (figure 1) (see supplementary material “Waning of vaccine-induced 

immunity” and figure S4 for Alpha values).  
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Figure 1: Vaccine effectiveness in weeks since second dose of AstraZeneca (AZ, left column) and 

Pfizer (PF, right column) vaccines against Delta (see supplementary materials for values against 

Alpha) for death (top), severe disease, (middle) and mild disease/infection (bottom). We assume the 

same protection against infection and mild disease. Purple points and uncertainty ranges show the 

VE estimates from Andrews et al, and the turquoise points our model assumptions. We assumed that 

the Moderna vaccine has the same VE as PF. Note the x-axis differs in the bottom row. See 

supplementary material for Alpha values. 

 

Assessing the potential impact of alternative vaccination schedules 

We explored a counterfactual scenario with a 3-week interval (“3-week strategy”) between 

vaccine doses to assess the impact of delaying the second vaccine dose interval to 12-

weeks (“12-week strategy”) on the epidemic trajectory. We assumed that the total daily 

number of vaccines administered matched that reported by the NHS. We compared the 

reported numbers and age distribution of hospital admissions between the fitted 12-week 

delay scenario and the counterfactual 3-week delay scenario. For our baseline VE 

assumption, we assumed the same VE for both 3-week and 12-week dosing intervals 

(supplementary material, table S3).  

We used the transmission rate at each roadmap step as estimated by fitting the model to the 

full epidemic trajectory up to 13 September 2021 to capture the impact of changing 
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restrictions and behaviours on transmission rates and use these estimated beta values to 

simulate the 3-week counterfactual strategy.  

Sensitivity Analyses 

We ran a number of sensitivity analyses to assess the impact of assumptions on VE and 

waning of vaccine-induced protection on our results (see supplementary material “Sensitivity 

Analyses” and Table S9). 

To understand the impact of the different VE assumptions by dosing interval on the epidemic 

trajectory, we explored two scenarios where we assumed a 10% absolute reduction in post 

dose 2 VE for the 3-week dosing interval: i) against infection or mild disease only, and ii) 

across all vaccine end points compared with the 12-week interval VE for both Alpha and 

Delta variants 39. We further explored uncertainty in all VE estimates by examining the 

impact of a 15% relative increase and decrease in VE for all end points and doses against 

Alpha and Delta for both the 12-week and 3-week strategies. We also explored the impact of 

slower or faster waning of VE over time and the impact of immediate vaccine-induced 

protection upon first dose vaccination (see supplementary material). Finally, to allow for a 

small level of waning of protection after the first dose but before the second, we allowed for 

an absolute 10% increase in the first dose VE across all end points for the 3-week strategy 

(where there would be less time for such waning).  

Role of the funding source 

The funders of this study had no role in the study design, data collection, data analysis, data 

interpretation, or writing of the report. 

 

Results 

Under the “12-week interval” between first and second doses adopted in the UK, first doses 

were distributed to a greater number of individuals. In comparison, with a shorter 3-week 

interval between first and second vaccine doses, second doses start being rolled out sooner 

as the most vulnerable individuals are prioritised for full vaccination (figure 2A). As 

previously shown 21, our model effectively captures national SARS-CoV-2 trends in daily 

hospital admissions by age between 1st January and 13th September 2021 (figure 2B, 

supplementary material figure S10). A 3-week interval between first and second vaccine 

doses led to higher peak daily hospital admissions during the summer Delta wave with 2,080 

(95% credible interval (CrI): 1,760 – 2,440) hospitalisations on 22nd July 2021 in our baseline 

scenario (figure 2B). Overall, we estimated 297,000 (95% CrI: 279,000-327,000) cumulative 

hospitalisations between 8th December 2020 and 13th September 2021 with the 3-week 

delay compared to the estimated 233,000 (95% CrI: 226,000-237,000) hospitalisations with 

the delayed second dose over the same time period (figure 2C). Similarly, the total number 

of infections and deaths were also higher in the 3-week, compared to the 12-week strategy 

(supplementary table 1). 

Cumulative COVID-19 hospitalisations were greater in the 3-week delay strategy, compared 

to the 12-week delay strategy (figure 2C). Whilst this difference was observed throughout, it 

became more apparent from late May 2021 onwards following the emergence of the Delta 

variant. This difference stabilised in late September, as under the 3-week strategy, the 

epidemic peaked and then declined at a much faster rate than the observed 12-week 

strategy due to the rapid depletion of susceptible individuals.  
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Figure 2: COVID-19 vaccines administered and epidemic trajectory in England. Results are shown for 

central vaccine effectiveness and waning assumptions (see supplementary material for sensitivity 

analyses results). A) Cumulative vaccine doses administered between 8th December 2020 and 13th 

September 2021. Grey ribbon shows all (first and second doses), purple and green show the second 

doses administered under the 12-week and 3-week strategy respectively over time. B) Daily hospital 

admissions. The black points show the data, the purple line and shaded area show the median model 

fit and 95% CrI. The green line and shaded area show the median and 95% CrI of the simulated daily 

hospital admissions under the counterfactual assuming a 3-week delay between vaccine doses. C) 

Cumulative hospital admissions over time under the 12-week (purple) and 3-week (green) strategy. 

The vertical dashed lines show the roadmap out of lockdown steps and the vertical solid line the time 

when the Delta variant emerged. In panel B, uncertainty is greater for the 3-week scenario, which was 

explored through unconstrained simulations, than in the 12-week fit, which was obtained by particle 

filtering and is thus more constrained by the data (see supplementary material for methods). 

 

 

The higher hospitalisations estimated under the counterfactual 3-week strategy was driven 

by, overall, fewer individuals benefiting from full or partial vaccine-induced protection. For 
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example, by the beginning of April 2021, 7.7 million fewer individuals had any level (one or 

two doses) of vaccine-induced protection under the 3-week, compared to the 12-week 

strategy. This trend continued in April and May (figure 3A), with a large difference in the total 

number of individuals with any vaccine protection between the two strategies. This gap then 

narrowed from June 2021 onwards.  

The number of individuals with reduced protection after dose 2 was higher throughout in the 

3-week strategy: vaccine protection under the 3-week interval had already started to wane in 

some individuals by March 2021 (supplementary figure S16). This increased over time with 

10 million people 24-weeks or more post dose two, compared to 7 million people under the 

3-week and 12-week strategies respectively, by the beginning of July 2021 when 

hospitalisations peaked (supplementary figure S16). This was due to prioritising fully 

vaccinating, with second doses, each eligible age group before the next group became 

eligible for vaccination. Thus, the number of individuals with reduced protection was always 

much greater in the 3-week than the 12-week strategy. Throughout the epidemic, we find a 

lower average risk of infection (figure 3B) and a lower risk of hospitalisation if infected 

through vaccination in the 12-week compared to the 3-week vaccination strategy, and a 

lower risk of hospitalisation if infected (figure 3C). In the 3-week strategy, although the most 

vulnerable oldest age groups received greater protection earlier, the population level severity 

was still higher than in the 12-week strategy (figure 3C). 
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Figure 3: Vaccine-induced protection against COVID-19. A) Vaccination status within the population 

(millions of people) for each month for the 12-week strategy (model fit, “12w”) and 3-week strategy 

(counterfactual, “3w”). Colours show how the distribution of >21 days post first- and >7 days post 

second-dose and two-dose vaccine-induced protection, and population with no vaccine-induced 

protection changes over time. B) Average proportion of the population without vaccine protection 

against infection with Alpha or Delta. C) Average population risk of hospitalisation given infection, for 

first infections. This accounts for vaccine-induced protection, but not naturally acquired protection 

from prior infections. In B) and C), the 12-week strategy (model fit) is shown in purple and the 3-week 

strategy (counterfactual) in green. 

 

We estimate the distribution of hospitalisations by age remains broadly similar under both 

vaccination strategies (supplementary material, figure S17), with most hospitalisations 

occurring in the older age groups (figure 4).  

The 12-week strategy meant a greater number of individuals remained partially protected for 

longer before their second dose was effective. This is reflected in a small proportion of older 

individuals in this category (yellow in top row, figure 4) being hospitalised during the study 

period. Conversely, under the 3-week strategy, there were almost no hospitalisations 
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amongst individuals with partial protection from a single vaccine dose compared to the 12-

week strategy. However, this short-term benefit  of the 3-week strategy was rapidly lost, with 

many more hospitalisations occurring in the summer of 2021 compared to the 12-week 

strategy (figure 4).  

These trends were observed regardless of age group. Across both strategies, the most 

vulnerable individuals (80+ years) were vaccinated first. The 3-week strategy, however, gave 

higher protection quickly for the most vulnerable individuals. Thus, by the peak of the Delta 

wave, vaccine-induced protection in these individuals who received their last vaccine dose at 

least 6 months ago would have decreased, making them vulnerable once more to severe 

outcomes (supplementary figure S17). For example, by 13th September, we estimated 2.8 

million and 3.3 million individuals aged 75+ years had their vaccine 24 or more weeks ago 

under the 12-week and 3-week strategies respectively. Prioritising fully vaccinating the most 

vulnerable population as quickly as possible under the 3-week strategy would have reduced 

the short-term morbidity and mortality in the older age groups, but increased the total long-

term burden due to waning vaccine-induced protection and higher levels of virus circulating 

in younger age groups who drive transmission. 

 

 

Figure 4: Modelled daily COVID-19 hospital admissions over time by age group (columns) for the 12-

week (top row) and 3-week (bottom row) strategy. Colours show the status of vaccine-induced 

protection of hospitalised individuals. 

 

 

Across all sensitivity analyses, we found that the 3-week strategy led to a greater number of 

hospitalisations and deaths compared to the 12-week strategy (supplementary material, 

figures S18-S25).  

Discussion 
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Our study explored the impact of the COVID-19 vaccination strategy of delaying the interval 

between vaccine doses to 12 weeks (rather than the 3–4 weeks assessed in clinical trials) in 

England, comparing the observed number of hospitalisations and deaths to a counterfactual 

scenario where the vaccine dose interval remained at the recommended 3 weeks. We 

estimate in our baseline scenario, delaying the interval between the first and second COVID-

19 doses from 3 to 12 weeks averted on average 64,000 hospitalisations in England by 13th 

September 2021 and averted between 39,000 and 211,000 total hospitalisations across all 

sensitivity analyses.  

The 12-week strategy led to a larger number of partially protected individuals which 

temporarily led to more hospitalisations and deaths in older age groups in spring 2021 

(figure 3, supplementary table). However, the strategy provided partial but high protection to 

more age groups, including younger groups that may sustain transmission 40, which 

eventually indirectly protected the vulnerable. Conversely, prioritising fully vaccinating the 

most vulnerable with two vaccine doses under the 3-week strategy led to a large proportion 

of the most at-risk population having a lower level of vaccine-induced immunity during the 

Delta wave in summer 2021 due to waning immunity which resulted in higher peak 

hospitalisations. The age-prioritisation of vaccine roll-out and the choice of dosing interval 

was effectively a trade-off between protecting those who were most at risk of severe disease 

and death and limiting infectivity in younger age groups which would also indirectly protect 

vulnerable groups. The magnitude of the impact of the 12-week strategy may also be 

sensitive to the timing of the Delta wave. Had Delta emerged 3 months later, the 12-week 

strategy would likely have still been beneficial than the 3-week strategy, but to a smaller 

relative extent. 

Retrospective assessments of the impact of different vaccination strategies in other 

countries are not yet available. However, our findings are consistent with previous 

prospective simulation studies that explored optimal vaccination strategies under different 

assumptions of VE, stringency of NPIs, vaccine mode of action, and waning immunity. 

These studies also found that prioritising partial protection of a larger proportion of the 

population by increasing the dosing interval could reduce the number of hospitalisations and 

deaths 13–17. Barmpounakis et al. found that the optimal strategy was to prioritise fully 

vaccinating the most elderly, before switching to a delayed second dose strategy for those 

under 75 years 41. This is effectively the strategy England pursued, with around 25% of 80+ 

years old vaccinated with a first dose before JCVI changed their guidance. This combined 

strategy essentially targets a combination of susceptibility in the highest risk groups and 

infectivity in the younger age groups. 

Mathematical models are valuable tools to quantitatively evaluate vaccination programmes, 

improve their design, and monitor new vaccine initiatives 21,42. By using a Bayesian 

evidence-synthesis approach, we were able to integrate multiple sources of data including 

cases, hospitalisations, deaths, infection prevalence, and sero-surveys to ensure we 

captured the epidemic in England accurately. Our model is also able to explicitly account for 

the introduction of the Delta variant, different vaccine end points, and the waning of infection- 

and vaccine-induced protection. Thus, counterfactual scenarios simulated using our model 

calibrated to these data allow us to robustly explore the impact of alternative vaccination 

strategies and a wide range of sensitivity analyses. Additionally, by using the exact reported 

number of vaccinations distributed each week in both model fitting and simulations, we can 

mimic the actual capacity of the vaccination program. 

Our study has some limitations. First, there is substantial uncertainty in VE by dosing interval 

in the UK. Studies are limited due to the switch in strategy early in the vaccine roll-out 39. VE 

studies in countries where a 3-week interval between doses was maintained suggest that VE 

is slightly lower compared to a 12-week interval 43–46. Although it is not possible to make 
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direct comparisons between the VE using the two intervals between different countries, we 

did explore this hypothesis in a sensitivity analysis, and obtained similar findings. Second, 

we assume a simple model of waning immunity with only two stages. However, sensitivity 

analyses where we varied assumptions regarding waning of vaccine-induced protection 

produced results consistent with our main analysis. Third, we do not directly account for 

waning of vaccine-induced immunity after the first dose. Studies have estimated that 

protection starts to wane from approximately 4-5 weeks after first dose vaccination in some 

age groups but with large uncertainty 27,38,47. We performed a sensitivity analysis 

demonstrating that such waning after first dose did not alter our results. Fourth, although we 

capture changes in the overall level of mixing over time, we assumed that under the 3-week 

strategy mixing patterns remained identical to that estimated under the 12-week strategy. In 

reality, population-based behaviours and risk perception changes as case numbers or 

hospitalisations increase 48. It is possible that, under a 3-week strategy, the last step of the 

roadmap would have been delayed further as the projected hospitalisations would have 

been much higher (figure 2B); it is also possible that behaviour would have been different 

under that strategy. Therefore, our counterfactual analysis can only represent a scenario 

assuming only the vaccination interval changed. Additionally, we did not consider the 

potentially reduced risk of VOC emergence in the 3-week, compared to the 12-week 

strategy. However, with SARS-CoV-2 circulating globally, and most VOCs rapidly spreading 

worldwide, it is unlikely that a change in the risk of emergence in England alone would have 

affected the broader patterns of emergence and therefore the circulation of variants.  

Finally, although we have quantified the relative success of the 12- versus 3-week strategy 

in terms of COVID-19 infections, hospitalisations, and deaths, we have not quantified 

specifically the long-term burden of disease, for example due to long COVID, although this is 

likely to be proportional to the burden of SARS-CoV-2 infections. 

In line with previous studies, we find that a key aspect of England’s successful vaccination 

strategy was to rapidly provide partial vaccine-induced protection to a larger proportion of 

younger age groups who may be less vulnerable to severe disease but may contribute more 

to transmission, thus indirectly protecting the most vulnerable groups 41,49. This successful 

switch to a 12-week interval between COVID-19 vaccine doses was informed by early real-

world VE estimates in the UK, careful assessment of the trade-offs in the context of limited 

vaccine supply in a growing epidemic, and limited 12-week efficacy data from the 

AstraZeneca vaccine trial. Our study shows that early and continuous assessment of real-

world vaccine effectiveness is crucial especially in emergency situations. There is benefit in 

carefully considering and adapting guidelines in light of new emerging evidence and the 

population in question.  

It is difficult to extrapolate findings from England, where vaccine roll-out started whilst strict 

NPIs were also maintained, to other settings due to differences in demography, behaviours, 

implementation of NPIs, availability of vaccines, and VOCs in circulation. However, across 

all sensitivity analyses explored, we estimated that in England, the decision to switch to a 

delayed vaccine interval was beneficial. Importantly, this beneficial effect is observed across 

all age groups, including the most vulnerable ones, who had higher indirect protection under 

the 12-week strategy. 

It was fortunate that both vaccines licensed in England were highly effective, combined with 

a very high uptake of both first and second vaccine doses despite the longer interval 

between doses. In other settings where vaccine supply is limited, or vaccines with a lower 

effectiveness are widely used, a switch to a 12-week strategy may not be advantageous. In 

this context, it is crucial to consider the likely acceptance of new vaccines and/or further 

booster doses in the population, and potential barriers to uptake especially during a period of 

sustained high transmission as there is a risk of vaccine-resistant variants emerging. Models 
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have shown that the long-term trajectory of COVID-19 is strongly shaped by vaccination 

policies with wide-ranging epidemiological and evolutionary outcomes 50. Therefore, as 

booster and fourth vaccines doses are rolled out, it will be important to continue evaluating 

VE against any new variants and waning vaccine-induced protection.  

Beyond the immediate priority of COVID-19, understanding the impact that changing 

COVID-19 vaccination guidance has had or may have on hesitancy towards other vaccines 

as well as overall trust in public health guidance is crucial.  
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