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Abstract

Automatic mechanism generation is used to determine mechanisms for the CO2

hydrogenation on Ni(111) in a two-stage process, while considering the uncertainty

in energetic parameters systematically. In a coarse stage, all the possible chemistry is

explored with gas-phase products down to the ppb level, while a refined stage discovers

the core methanation submechanism. 5,000 unique mechanisms were generated, which

contain minor perturbations in all parameters. Global uncertainty assessment, global

sensitivity analysis, and degree of rate control analysis are performed to study the effect
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of this parametric uncertainty on the microkinetic model predictions. Comparison of

the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set

of microkinetic mechanisms that are in quantitative agreement with the measured data,

without relying on explicit parameter optimization. Global uncertainty and sensitivity

analyses provide tools to determine the pathways and key factors that control the

methanation activity within the parameter space. Together, these methods reveal that

the degree of rate control approach can be misleading if parametric uncertainty is not

considered. The procedure of considering uncertainties in the automated mechanism

generation is not unique to CO2 methanation and can be easily extended to other

challenging heterogeneously catalyzed reactions.

Methanation is a promising technology for reducing CO2 emissions while producing sustain-

able natural gas. From a climate-change perspective, the process is particularly advanta-

geous when excess renewable energy is used to generate the requisite H2 via water splitting as

part of the Power-to-Gas process.1,2 However, volatility in renewable energy sources induces

challenges on the transient operation of a catalytic reactor.3 Given that the net reaction,

CO2 + 4H2 CH4 + 2H2O, is exothermic, ∆Hrxn (298K) = −164.7 kJmol−1, transient

operation can lead to undesirable temperature and concentration gradients.4–6 Accordingly,

an accurate microkinetic mechanism is essential for optimizing reactor performance.

The most commonly used methanation catalyst is Ni, due to its good performance at reason-

able costs.2,7 Ni(111) has the highest share on a Ni crystal,8 yet its role in CO2 methanation

is unresolved, despite extensive research.9–17 Experiments with Ni/γ-Al2O3 catalysts point to

the higher activity of Ni(111) terrace sites, whereas experiments on Ni/SiO2 show a higher

activity of Ni(211) steps, which are also considered to be the active site for CO metha-

nation.18 Lozano et al.12 combined density functional theory (DFT) calculations using the

BEEF-vdW functional and kinetic Monte Carlo simulations to demonstrate that the Ni(111)

surface is inactive for the CO2 methanation; instead, they argued that the catalyst converts

the CO2 to CO in the reverse water-gas shift (RWGS) reaction, CO2 + H2 CO + H2O,
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with the CO*
2 dissociation being the rate-determining step (RDS). In the study of Vogt et

al.,10 the four most dominant Ni facets were investigated by DFT with the PBE functional.

They showed in a mean-field microkinetic model that although the Ni(111) facet is not as

active as the open (110) facet, it still exhibited some methanation activity. These authors

identified the dissociation of HCO* as the RDS, which is supported by Zhou et al.15 from

DFT calculations with the same functional. In addition to these models of CO2 hydrogena-

tion on Ni(111), other studies focused on the (reverse) water-gas shift reaction,19–21 methanol

synthesis,22 and formic acid formation.23 Apart from the general role/activity of the Ni(111)

facet, the dominant reaction network for CO2 hydrogenation has not been conclusively deter-

mined; the aforementioned computational studies disagree about important intermediates,

pathways, and the RDS.

The microkinetic mechanism for CO2 hydrogenation on Ni(111) can be developed based

either on surface science experiments assisted by operando methods,9,10,13,24 or by compu-

tational methods (e.g. DFT).16,19,25–28 DFT-based microkinetic mechanisms are increas-

ingly common, due to the availability of “black-box” electronic structure codes. Although

modern DFT functionals are reliable for adsorbate thermochemistry and kinetics, these cal-

culations remain computationally expensive. Accordingly, given a computational “budget”,

researchers must prioritize which intermediates and transition states to investigate. This pro-

cess assumes that the researcher knows a priori which intermediates and transition states

will be important. Consequently, the mechanism generation process can be biased by the

developer’s expectations.29,30 An alternative to DFT-based mechanism development is to use

approximate methods that, while less accurate, are orders of magnitude faster. One such

method is applying linear scaling (LS) relations, which are based on the d-band model.31 LS

relations can accelerate the procedure,32 and are often used for catalyst screening.28,33,34 Al-

though these approximate methods save computational resources, they still require expertise

and intuition to develop the mechanism, and this procedure does not avoid the problem of

incompleteness due to bias. An alternative to constructing mechanisms “by hand” is to use
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computers to propose and evaluate possible elementary reactions.35–42 One such approach

is the automatic Reaction Mechanism Generator (RMG) of Green and coworkers.39,43 Orig-

inally developed for gas-phase pyrolysis, RMG has been expanded to include reactions on

surfaces.40–42

The omission (intentional or unintentional) of certain reactions can be characterized as mech-

anistic uncertainty. In addition to bias, a second problem with microkinetic mechanism

generation is parametric uncertainty. All of the DFT-derived parameters carry uncertainties

because of the assumptions made in the exchange-correlation functional. For example, the

binding energies are assumed to have an uncertainty of ± 0.3 eV.44 However, the uncertain-

ties in binding energies for different adsorbates are correlated45–47 (indeed, some degree of

correlation is implicit in LS, and the BEEF-vdW functional exploits this correlation48,49). In

addition to correlation among adsorbate thermochemistry, reaction kinetics are correlated as

well, as exemplified by Brønsted-Evans-Polanyi (BEP) relations.50 The uncertainty in model

parameters should be propagated to the outputs of the model, e.g. conversion, turnover

frequency (TOF)44,45,49,51 and to identify the path with the highest occurring frequencies in

a mechanism.51–53 However, given the large uncertainty in model parameters, some pathways

or intermediates might have been overlooked because of the very complex landscape of the

potential energy surface.30 Therefore, it is necessary to account for the uncertainty directly

in the mechanism generation procedure to provide an exhaustive analysis of all possible

reactions and intermediates.

The present work aims to combine experiment, theory, and modeling to develop a microki-

netic model for the hydrogenation of CO2 on Ni(111). Instead of propagating uncertainty

from a final microkinetic model to the simulation outputs, we take a novel approach and

include the uncertainty directly in the mechanism generation procedure in RMG. The au-

tomatic mechanism generation process is repeated 5,000 times, with each new mechanism

including small perturbations in the DFT-derived parameters that can also result in mecha-
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nisms with different species and reactions. Therefore, we can discover all possible reactions

and intermediates in a vast reaction network. Global sensitivity analysis (GSA) and lo-

cal sensitivity analysis using the degree of rate control (DRC) are used to identify the most

important species and reactions over the whole uncertainty range. The mechanisms are com-

pared against experimental data for a Ni/SiO2 catalyst in a differential fixed-bed reactor.

This comparison determines a feasible set of microkinetic mechanisms that quantitatively

agree with the experimental data. Combining all of the methods allows us to advance our

understanding of the factors controlling the methanation activity on Ni(111) and to de-

rive a most likely methanation mechanism. Applying the DRC on each unique mechanisms

shows how versatile the DRC can be in a confined uncertainty range and how much more

information on the controlling factors is obtained when global uncertainty is considered.

This study provides an example for the benefit of automated mechanism generation and the

consideration of uncertainties to discover all the possible chemistry.

Materials and Methods

Microkinetic Mechanism Generation

Automated mechanism generation was performed with RMG (version 3.0).43,54 A detailed

explanation of the RMG software can be found in the work of Gao et al.39 and the exten-

sion to heterogeneously catalyzed reactions in the publication from Goldsmith and West.40

Only a brief explanation of the key features important for this work is provided. Elemen-

tary reactions are grouped according to reaction families, which are templates that convert

the chemical graphs of reactants into products. For each proposed species and elementary

reaction, RMG must provide thermodynamic properties and a rate coefficient, respectively.

RMG combines a database of precompiled values, but it can supplement these databases

with rules for predicting the properties for novel species/reactions. The total species popu-

lation is divided into two groups: core and edge. Core species are essential to the mechanism;
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typically, at the start of the process, only the reactants are contained in the core. The species

in the core are iterated through the reaction families, which potentially will generate new

species. RMG uses a rate-based algorithm to expand the mechanism.39,55 When RMG pro-

poses a new species, that species starts off in the edge. If the net rate of production of that

edge species is sufficiently large (based upon user-defined criteria), then it is moved from

the edge to the core, and the process begins anew. Thus, RMG exhaustively considers all

possible reactions that are consistent with the various reaction families for the core species;

however, it only retains the species that are kinetically relevant for the conditions of interest.

The automated mechanism generation requires that RMG predicts the thermochemistry of

adsorbates and the kinetics for the elementary reactions. Thermodynamic properties of the

adsorbates on the Ni facet were estimated via LS relations31 (see Equation (1)), which were

recently implemented in RMG by Mazeau et al.,41 based on reference values for Pt(111)

obtained via BEEF-vdW calculations in Ref. 42. The binding energy of an adsorbate is

estimated via:

∆EAX
Ni = ∆EAX

Pt + γ
(

∆EA
Ni −∆EA

Pt

)

(1)

where ∆EAX
Pt is the binding energy of the adsorbate AX* in the Pt(111) database, where

X represents any adsorbate, ∆EA
Ni is the binding energy of the adatom A* through which

AX* binds on Ni(111), ∆EA
Pt is the analogous property for Pt(111), and the slope γ is

related to the degree of saturation for the adsorbate. Accordingly, RMG requires values for

∆EH
Ni, ∆EC

Ni, and ∆EO
Ni for the Ni(111) facet for use in the LS procedure. These values

were obtained from DFT calculations.8 Additionally, the Pt(111) database in Ref. 42 only

considered adsorbates with no more than two heavy atoms (C, N, and O); RMG can use

those values to estimate the thermodynamic properties of larger adsorbates.56 However, we

anticipated that three adsorbates – CO*
2, HCOO*, and COOH* – would be essential to the

model, and so new DFT values were added to the Pt(111) database. DFT calculations
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were performed using the RPBE57 functional in VASP58,59 with dispersion correction60 and

converted to thermodynamic properties of the adsorbates as described in Ref 42. A detailed

description of the DFT method is provided in the Supporting Information (SI).

As mentioned above, elementary reactions are provided in the form of templates for a certain

reaction family. Kinetic parameters typically are provided as an Arrhenius fit, k (T ) =

A exp (−Ea/RT ), where A is the pre-exponential factor, Ea is the activation energy, and

R is the ideal gas constant. RMG estimates only kinetic parameters in one direction (e.g.

forward); the reverse rate constant is computed from the equilibrium constant, which ensures

thermodynamic consistency. In the present study, we assumed that CO2 and H2O adsorb

associatively.9,12,20 CH4, in contrast, has two possible adsorption pathways: association to a

physisorbed precursor state CH*
4 (which can then go on to dissociate on the surface),61 and

direct dissociative adsorption to CH*
3 and H*.9,12

RMG includes several libraries of rate constants taken from values reported in the literature

or computed via DFT. However, for the purposes of the present work, all the rate constants

were estimated using BEP relations, with one exception, the CO2 dissociation. Due to the

comparatively unique structure of CO*
2, the activation energy for CO*

2 dissociation is not

well described by the general BEP relation for cleavage a C O bond on a surface and was,

therefore, included as a specific reaction in a library based on previous work.8 By eliminating

the reaction libraries in favor of the BEP relations, we can systematically quantify the effects

of correlated uncertainty in thermodynamic properties (e.g. heats of formation) on rate

constants and vary all reactions within a given reaction family. Accordingly, the activation

energy for surface reactions is estimated using a BEP relation specific for that reaction

family:

Ea = E0
a + α∆Hrxn (2)
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where the intercept E0
a is the characteristic activation energy of a reaction family, and α

is the dimensionless slope of the BEP, so that the activation energy scales with the heat

of reaction, ∆Hrxn. BEP relations are organized in a tree structure with the most general

relation at the top (e.g. generic bond fission) and more specific child nodes beneath (e.g.

C-C bond fission). RMG climbs down the tree to the most specific node available to estimate

kinetic parameters.

The present work builds upon the pre-existing reaction families for surface kinetics,40,41

which can be categorized into adsorption/desorption, bond fission, and abstraction. All of

the existing BEP values were updated based upon new DFT calculations or literature data.

In particular, new values were added for the abstraction families (see SI for details). The

overwhelming majority of microkinetic mechanisms consist of only adsorption/desorption

and bond fission reactions; the inclusion of bimolecular-to-bimolecular reactions, such as

abstraction, have been primarily neglected29,30 but can become important, especially at

high coverage conditions.62 As will be demonstrated in the results section, these abstrac-

tion reactions can contribute significantly to the overall reactivity of the system. The rate

constants were computing using transition state theory, with the saddle points obtained via

climbing-image nudged elastic band (CINEB) method63 (see SI for further details). A com-

plete summary of the reaction families, including the BEP relations used for the mechanism

generation procedure, is provided in Table S1 and Figures S1 to S10. The initial conditions

of the mechanism generation process were set to a stoichiometric H2/CO2 mixture, with a

vacant Ni(111) surface, at temperatures of 573K and 673K, and a pressure of 1 bar. Further

parameters and settings used for the generation procedure are summarized in Table S2.

Experiments

CO2 methanation experiments were conducted with a 20wt% Ni/SiO2 catalyst produced

with a spray-drying method as described in the work of Kreitz et al.64 A solution of colloidal

SiO2 nanoparticles with a primary particle size of 8 nm and Ni(NO3)2 was sprayed into a
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tubular furnace operated at 673K using an atomizer to initiate a one-step calcination and

assembly of Ni/SiO2 nanoparticles. These nanoparticles were collected on a filter and heat-

treated at 673K for 3 h. The experiments were conducted with a Ni/SiO2 catalyst because

the acidic surface of the silica does not adsorb CO2
8 and, therefore, does not participate in

the methanation mechanism. Supports with basic surface sites, in contrast, such as γ-Al2O3

or CeO2, can participate in the mechanism and alter pathways.16,17,65 CO2 methanation ex-

periments were performed in a catalyst testing unit with a differential fixed-bed setup at

ambient pressure with a stoichiometric H2/CO2 mixture diluted in 75% Ar at a weight-

hourly-space velocity (WHSV) of 100 LN h−1 g−1. A catalyst amount of 30mg was used,

which results in a length of the catalyst bed of 4mm. The mixture was purified to remove

oxygen and water contaminants. Ar was employed as an internal standard and to reduce

thermal effects. A temperature-scanning experiment as described in Kreitz et al.64 was used

to investigate the methanation reaction over the entire temperature range up to 773K. Dur-

ing the temperature scan, the temperature was linearly raised with a rate of 20Kmin−1 (see

Table S3 for a summary). The product mole fraction was analyzed with a high temporal res-

olution using a mass spectrometer. Based on the measured exit gas concentration and using

Ar as an internal standard, the CO2 conversion, CH4 and CO selectivity, as well as CH4 yield

were calculated. Reaction rates, turnover frequencies, and activation energy were calculated

for a conversion below 20% assuming differential fixed-bed conditions. The catalyst was

characterized with transmission electron microscopy, X-ray diffraction, N2 physisorption, H2

and CO2 chemisorption, and temperature-programmed desorption. Further details on the

catalyst production, catalyst characterization, the experimental setup, and evaluation can

be found in Ref. 8 and 66 and are omitted here for brevity.

Microkinetic modeling

The experimental apparatus was modeled as a plug-flow reactor (PFR) using Cantera,67

which is an open-source suite of tools for problems involving chemical kinetics, thermodynam-
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ics, and transport processes. A PFR was chosen due to the differential fixed-bed conditions.

The PFR was modeled as a series of 100 continuously-stirred tank reactors (CSTRs); the

number of tanks was tested for convergence. A mean-field microkinetic model was assumed

for the Ni(111) facet. All reactions were treated as reversible. Reaction kinetics were imple-

mented in the forward direction, and the reverse rate constant was always calculated from the

equilibrium constant, which ensures thermodynamic consistency. The temperature-scanning

experiment was modeled by computing steady-state solutions at several temperature incre-

ments. This assumption is justified since no deviation between steady-state and transient

results was observed in the experiments.64 The parameters for the simulation are summa-

rized in Table S3. As a simplification, no lateral interactions among the adsorbates were

considered in the surface mechanism. The Python source code is available in the SI.

Parametric Uncertainty in Mechanism Generation

Global uncertainty analysis (GUA) was recently added to RMG as a post-processing tool ex-

clusively for gas-phase mechanisms.68 The effect of parametric uncertainty on the automatic

mechanism generation process itself, in contrast, has not been previously investigated. A ma-

jor component of the current work is to quantify how uncertainties in the model-generation

parameters (e.g. heats of formation, activation energies) can influence the generated mecha-

nism and the final model predictions. The heats of formation for the gas-phase species were

taken from the Active Thermochemical Tables69,70 and are known to within ± 0.001 eV; con-

sequently, we assume these values to be “exact” and do not consider the impact of their

uncertainty further.

For adsorbates, we assume that the binding energies (and thence heats of formation) are

accurate to within ± 0.3 eV.44,47,51 However, although the global uncertainty in adsorbate

heats of formation might be ± 0.3 eV, the relative uncertainties between adsorbates is cor-

related, which is consistent with the LS concept.31 As an approximate method for dealing

with this correlation, we assume that all adsorbates that bind to the surface through the
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same element should be perturbed in the same direction. Rather than adjust the difference

in adatom binding energies between Ni and Pt in Equation (1), we choose to adjust the

adsorbate reference binding energy ∆EAX
Pt by a fixed amount δEAX

Pt (see SI for explanation).

Thus, the perturbed binding energies are given by:

∆EAX
Ni = (∆EAX

Pt + δEAX
Pt ) + γ

(

∆EA
Ni −∆EA

Pt

)

(3)

Accordingly, since chemisorbed species are assumed to bind through either H, C, or O, we

have three parameters – δEHX
Pt , δE

CX
Pt , and δEOX

Pt – that adjust the heats of formation for the

adsorbates. Additionally, physisorbed species (such as CH*
4, CO

*
2, and H2O

*) are not assumed

to bind through a particular element and thus are not subject to the same LS relations; rather

than treat them individually, we simply assume that well depths for all physisorbed species

are correlated, which provides the fourth global parameter for adsorbate heats of formation,

δEphys
Pt . The range of possible values for δEHX

Pt , δE
CX
Pt , and δEOX

Pt is ± 0.3 eV; the range for

δEphys
Pt is ± 0.2 eV. Admittedly, this approach does not completely describe the true uncer-

tainty (correlated and uncorrelated) in the heats of formation for adsorbates; nonetheless,

it does capture how systematic errors in DFT-derived energies can be represented in model

generation. A more detailed approach could provide different perturbations based upon

bond order. Still, as will be demonstrated below, this simplified approach already reveals

considerable information about the mechanistic response to parametric uncertainty.

Estimating the correlated uncertainty in the activation energy is an additional challenge. The

uncertainties for activation energies should be larger than for binding energies. The BEP

parameters E0
a
and α are obtained from linear regression (typically to barrier heights obtained

from DFT); accordingly, these parameters should be correlated.71 However, information on

the covariance matrix is seldom available in the literature. Therefore, we did not assume a

correlation between α and E0
a
. Instead, we assume that both the intercept and the slope are
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uncertain and that the final activation energy is given by

Ea = E0
a + δE0

a + (α + δα)∆Hrxn (4)

To be consistent with the uncertainty in the binding energies, the characteristic activation

energy is perturbed δE0
a± 0.3 eV. The slope is perturbed δα± 0.15; this perturbation is

conservative compared to uncertainties reported in the literature.62,72 Furthermore, the ac-

tivation energy will be perturbed via changes to the binding energies of the reactants and

products via Equation (3), which will change ∆Hrxn. Consequently, the total allowable

change in the activation energy is larger than that of the binding energy and can vary sig-

nificantly within a reaction family. As a simplifying assumption, the pre-exponential A was

not adjusted. This restriction is rather crude, since pre-exponential factors can vary by an

order of magnitude,51 but for the temperature range of interest, the uncertainties in the

activation energy will have a more significant impact on the overall kinetics. Lastly, we do

not assume any correlation among the reaction families. Accordingly, the total number of

perturbed parameters is 65: 4 parameters for adsorbate heats of formation, 1 parameter for

the activation energy of CO*
2 dissociation, and 30 BEP relations (each with 2 parameters).

The next step is to evaluate how perturbations to these 65 parameters within their stated

uncertainty bounds affect the size, complexity, and reactivity of the resulting mechanism.

This task was accomplished in two stages. In the first stage, RMG was set to build exhaustive

mechanisms by using smaller (tighter) convergence criteria (see Table S2). For this stage,

a total of 500 distinct mechanisms were generated by employing a quasi-random sampling

of the 65 parameters within the uncertainty range. Quasi-random numbers were generated

with the low discrepancy Sobol sequence73 using the SobolEngine from PyTorch.74 As will

be detailed below, these tighter criteria resulted in relatively large mechanisms, including

the production of gas-phase products in the ppb range. This set of mechanisms are referred

to as “coarse”.
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In the second stage, the mechanism generation parameters were adjusted to build smaller

mechanisms that focused more on the essential methanation kinetics; the convergence criteria

were loosened, and a maximum number of carbon atoms of 3 was imposed (see Table S2

for complete values). For this stage, a new Sobol matrix of 65×5000 was generated, which

resulted in a total of 5,000 unique mechanisms. This set of mechanisms are referred to as

“fine”. This dense sampling of the parameter space in the fine set will facilitate a global

sensitivity analysis (GSA), described below.

Sensitivity Analysis

Global sensitivity analysis was performed to determine the parameters that contribute the

most to the uncertainty of the output while considering the correlation among the input

parameters.75 The GSA was carried out with the UQTk package.76,77 Polynomial chaos

expansions (PCE) were used to build a surrogate model based on the 5,000 distinct mech-

anisms and the corresponding simulation results. PCEs allow analytical extraction of GSA

indices via variance decomposition.78 4,500 model results were used to build the surrogate

model with 3rd order polynomials, and 500 model results were used for the validation of the

model. Total and joint sensitivity indices, measuring output variance contributions one or

two parameter at a time, respectively.

The sensitivity indices quantify the contribution of the 65 parameters (LS and BEP param-

eters) to the observable (model) output variance. Therefore, the GSA in our study provides

only information on the reaction families and descriptor species but not on on the importance

of a single species or single reaction. A local sensitivity analysis was performed to quantify

the important of individual species and reactions.79 The mechanisms were evaluated with

sensitivity analysis in a steady-state CSTR using the degree of rate control (DRC)80–82 with
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respect to the methane formation rate, rCH4
, by

XRC =
ki

rCH4

(

∂rCH4

∂ki

)

(5)

where ki is the forward rate constant of the elementary reaction i. In a brute-force (one-

at-a-time) method, both forward and reverse rate constant were perturbed by 1% for each

reaction to maintain thermodynamic consistency. Additional DRC analysis was performed

with respect to the stability (thermochemistry) of the adsorbates. The intermediates were

stabilized by decreasing the standard state Gibbs free energy of formation ∆fG by 0.001 eV.

The degree of thermodynamic rate control of the intermediates XTRC
81,82 is given by

XTRC =
1

rCH4

(

∂rCH4

∂
(

−∆fG

RT

)

)

(6)

The perturbations (1% for rate constants, 0.001 eV for adsorbates) are assumed to be suf-

ficiently small so that the local approximation is valid and that they are not correlated.

The DRC for one mechanism has only limited meaning, given the broad range of parametric

uncertainty assumed in the mechanism generation process. Accordingly, we performed the

DRC analysis in Equation (5) and Equation (6) for all 5,000 mechanisms in the fine data set.

As will be demonstrated below, this comprehensive DRC approach, which covers all possible

combinations of parameters, identifies the global uncertainty of the DRC.83

Results and Discussion

Mechanism Generation for CO2 Hydrogenation on Ni(111)

The initial set of 500 generated mechanisms with the coarse settings produced considerably

different microkinetic mechanisms, with large variations in size (see Figure S13). The number

of species and reactions in the core ranged from 21 to 64 species and 20 to 450 reactions;
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the edge contained up to 360 more species and 1,053 different reactions. If we performed

the mechanism generation with only one set of parameters, we would have missed possible

pathways and intermediates. All generated mechanisms along with the evaluation is made

publicly available in Ref. 84.

Mechanisms with many species/reactions were typically unreactive, which seems counter-

intuitive at first, but it is a consequence of the flux-based mechanism-expansion procedure.

The variability in mechanism size and reactivity is not a flaw of the method, nor is it unique

to automated mechanism generation; instead, it is a natural consequence of the variability in

model parameters within their stated uncertainties. Different density functionals that give

systematically different (but otherwise correlated) energetics will result in different mecha-

nisms; e.g. the microkinetic models proposed by Vogt et al.10 and Lozano-Reis et al.12 also

show different number of species and reactions. The fact that most literature mechanisms

contain fewer species/reactions has more to do with the computational cost of potential en-

ergy surface exploration than the intrinsic complexity of the kinetics. To reduce complexity,

mechanism developers are forced to make assumptions that are not based on actual rates

but rather experience, which adds bias.29

Figure 1a illustrates the full reaction network discovered from the coarse RMG settings.

RMG discovered 64 unique species and 450 reactions in the core mechanism, with an addi-

tional 426 species and 1,205 reactions in the edge. The network contains multiple activation

pathways for CO*
2, including direct dissociation to CO* and hydrogen-assisted dissociation,

either via formate HCOO* or carboxyl COOH*. RMG successfully predicted the methana-

tion of CO2 with various pathways for CH4 formation. In addition to the expected products

of CH4, CO, and H2O, RMG predicted numerous other gas-phase species such as ethene,

ethane, propane, formaldehyde, methanol, ethanol, formic acid, and acetic acid. Addition-

ally, the edge revealed that RMG considered pathways that lead to larger alkanes, alkenes,

alcohols, and acids, with a maximum chain length of C6.
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Constrained 
 generation 
 in RMG

500 RMG runs
Core: 64 species/450 reactions
Edge: 426 species/1205 reactions

a

5000 RMG runs
35 species/150 reactions

b

Figure 1: a) Full reaction network of the core mechanism for the hydrogenation of CO2 on
Ni(111) obtained from coarse generation settings. b) Constrained reaction network from the
fine mechanism generation process.

Although RMG successfully found multiple gas-phase products, that does not imply that

these species are produced in meaningful quantities. Simulations with all 500 mechanisms

demonstrated that only CH4, CO, and H2O are produced in significant amounts (a few per-

cent) (see Figure S14), which is expected since Ni is a selective methanation7,9 or RWGS

catalyst12,19,20 depending on the conditions. The gas-phase product with the highest yield

from the side products is ethane, with concentrations of a few ppm; the other gas-phase

species had concentrations of a few ppb. Ethane and propane were also observed experi-

mentally over Ni/Al2O3
85,86 and Ni/SiO2 catalysts,

10 which suggests that these pathways do

indeed exist.
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Although it would be feasible to perform sensitivity analyses for these larger mechanisms,

it is neither practical nor useful. Additional gas-phase products, and the numerous surface

intermediates that are necessary for their production, do not influence the main CH4 forma-

tion pathways. For the fine sampling (5,000 RMG runs), the maximum number of carbon

atoms was restricted to 3 and the tolerance parameters were loosened to simplify the more

detailed mechanism analysis. The reaction network that results from the fine generation

process is illustrated in Figure 1b.

The mechanism for CO*
2 methanation is grouped into three main pathways: the formate

path (via HCOO*), the carboxyl path (via COOH*), and the redox/carbide pathway with a

direct dissociation of CO*
2 to CO*.10,12 In the formate path, CO*

2 is activated by H* at the

carbon atom. HCOO* then dissociates to formyl (HCO*), which is further hydrogenated

to hydroxymethylene (HCOH*) and then hydroxymethyl (H2COH*). The C O bond in

hydroxymethyl is then cleaved, forming hydroxyl (OH*) and methylene (CH*
2). In the car-

bonyl pathway, CO*
2 activation occurs at the oxygen atom; the resulting COOH* can then

cleave either the C O or C O bond to yield carbon monoxide (CO*) or hydroxymethylidyne

(COH*), respectively. Direct CO*
2 dissociation occurs in the redox pathway forming CO*,

which can desorb directly or undergo further bond fission to form surface carbon that is sub-

sequently hydrogenated to CH4. These three pathways are not separate mechanisms; rather,

they are coupled pathways entangled by various abstraction and dissociation reactions.10,12

Importantly, as depicted in Figure 1b, RMG found all three major CO*
2 activation routes,

as well as the numerous cross-coupling reactions. The constrained mechanisms still contains

the production of ethane via various C C coupling reactions like C CHx, CHx CHy, or

CHy CO.

The combined reaction network discovered by RMG for all 5,000 runs contains 35 species

and a total of 150 reactions. Of these reactions, 9 are adsorption/desorption, 36 are dissoci-

ation, and 105 are abstraction (see Table S9). The high number of abstraction reactions is in
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sharp contrast to most of the literature studies, where only dissociation reactions are consid-

ered.10,14,15 Some abstraction reactions were considered by Lozano-Reis et al.,12 but usually

these types of reactions are overlooked due to the combinatorial growth of possible reactions

to consider.29,30 The abstraction reactions are not limited to the oxidative dehydrogenation

reactions of R H by O* or OH*. Larger moieties can be abstracted further down the chain,

which creates a whole new set of reactions that are currently not considered in the literature.

The presence of these abstraction reactions nicely illustrates the full potential of automated

mechanism generation.

The C1 species discovered are consistent with prior literature mechanisms,10,12,14,15 with

the most sophisticated study by Lozano-Reis et al.12 It is worth emphasizing that none

of these species were included in the input, and thus RMG did not “know” to look for

them. Additionally, several new abstraction reactions were predicted by RMG, which have

not previously been considered for methanation. Furthermore, none of the other studies

includes the formation of C2 species, even though it is experimentally observed.10,85,86 A

predictive microkinetic mechanism should capture all the important pathways that lead

to experimentally observable products, even if C C coupling does not represent a major

competing pathway for methanation under the present conditions.

Microkinetic Modeling

Figure 2 shows the experimentally recorded concentration profiles for all species measured

during the temperature-scanning experiment on a dry basis (except Ar). The carbon mass

balance is always closed within ±2%. With the current setup, it is not possible to accu-

rately measure the H2O concentration due to partial condensation in the transfer lines. The

experiments show a starting temperature for the CH4 formation around 500K, followed by

a pronounced CO peak with a maximum at 550K. A maximum CH4 formation rate is

observed at a temperature of 650K, with a CH4 selectivity of 97%. The CH4 concentra-

tion decreases at higher temperatures, whereas the CO concentration increases according
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Figure 2: (a) Comparison of measured (open blue circle) and simulated (lines) mole fractions
(on dry basis) for the temperature-scanning experiment using the microkinetic models gener-
ated by RMG. The dotted black line corresponds to the thermodynamic equilibrium and the
solid black line to the generated reference mechanism. The colored area consists of all gener-
ated mechanisms. (b) Comparison of the measured and predicted TOFs. (c). Histogram of
apparent activation energies calculated from the slope of the TOFs. (d) Simulation results
for the four species with highest coverage.

to thermodynamic equilibrium that is reached in the experiment at temperatures beyond

700K. An activation energy of 84 kJmol−1 was determined, which is comparable to other

Ni/SiO2 catalysts.
10,64,87,88 Results from the microkinetic model generated by RMG with the

reference settings shows a significantly lower activity at lower temperatures. CH4 formation

starts at 600K and reaches the maximum rate at 700K. The production of CO starts at a

temperature of 650K and directly reaches the equilibrium concentration.
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Also included in Figure 2 are the reactor simulations using the 5,000 different mechanisms.

All generated mechanisms adhere to the thermodynamic constraints, which was confirmed

according to literature guidelines89,90 (see SI). The predicted profiles range from almost no

CH4 formation even at high temperatures to an increased activity at low temperatures, with

maximums of 5% at 600K. This broad range in reactivity is a consequence of the approx-

imate ± 0.3 eV uncertainty in energies obtained from electronic structure calculations. In

other words, for some combination of parameters, the Ni(111) facet is inactive for methana-

tion but only produces CO via the RWGS reaction, and thus other facets should be consid-

ered.10,12 For other parameter combinations, in contrast, the Ni(111) surface exhibits quite a

high methanation activity, also in agreement with the literature,10,15 and could, therefore, be

the active site. Accordingly, it is difficult to establish the importance of the Ni(111) facet for

CO2 methanation with confidence, given the current parametric uncertainty of DFT data.

Figure 2b presents the turnover frequency (TOF) for the system, which was calculated from

the average CH4 formation rate and the amount of exposed Ni surface atoms in the PFR.

Figure 2c presents a histogram of the corresponding apparent activation energy. Most of

the mechanisms exhibited very low activity as can be seen by the dense cluster of lines at

higher temperatures in the TOF plot and the broad range of comparatively high activation

energies. This distribution in activity is consistent with the Sabatier principle; high activity

is only obtained when key intermediates are bound to the catalyst neither too strongly nor

too weakly.

Figure 2d summarizes the surface site fractions for the vacant site (Ni*) and the three ad-

sorbates with the highest coverages (H*, O*, CO*). Profiles for other adsorbates, as well as

for CO2 conversion, CH4 selectivity, and CH4 yield are provided in the SI. Depending upon

the particular combination of parameters, the surface can be entirely vacant, completely

blocked by either H* or CO*, or in a few instances, covered by O*. This range in coverage

suggests that it is challenging to make a priori assumptions regarding the most-abundant
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surface intermediates (MASI) with any confidence. The predicted coverages of the reference

model are in contrast to the results reported by Vogt et al.,10 who report a Ni(111) surface

that was completely saturated with CO*, but they did not include the possibility of CO*

desorption. In contrast, Lozano-Reis et al.12 obtained a nearly vacant Ni(111) surface with

just around 10% H* coverage. Heine et al.13 observed CO* on the Ni(111) surface at elevated

temperatures during CO2 methanation, which agrees with the model predictions.
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Figure 3: a) Comparison of the experiments with the mechanisms with the closest agreement
to the data from the global uncertainty analysis. The solid black line is the base-case
mechanism; the solid red line is the mechanism with the lowest MAPE, and the shaded pink
region contains the mechanisms that are within +30% of the lowest MAPE (the “feasible
sets”). b) Reaction network of the mechanism with the lowest MAPE compared to the
experimental data. Only the intermediates and pathways that contribute significantly to the
CH4 formation rate are displayed. c) Values for the LS descriptor species and d) the kinetic
parameters for the most important reactions. The black box shows the possible range of
values and the pink area the values from the feasible sets.

From the computed profiles in Figure 2, it is possible to identify the subset of mechanisms in
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closest agreement with the experimental data. The mechanism that had the lowest overall

mean-absolute percentage error (MAPE) for the predictions of all four species against the

experimental data is shown as a red line in Figure 2. Additionally, there are multiple

combinations of parameters that are within 30% of the lowest MAPE. This ensemble of

feasible mechanisms, along with the closest match, are illustrated by the shaded pink region

in Figure 3a. It should be emphasized that the red line in Figure 2 and 3, although in

quantitative agreement with the measured data, is not in any way a fit or optimization.

All the parameters were selected within their stated uncertainty ranges consistently with

their correlated uncertainties. The agreement with measured concentrations certainly could

be improved by optimizing the pre-exponential factors, optimizing the binding energies and

activation energies (within a narrower range), and accounting for coverage dependence, but

such an attempt at optimization is beyond the scope of the present work.

The essential pathways for the methanation of CO2 on Ni(111) are illustrated in Figure 3b.

At a temperature of 573K, 75% of CO* is produced via the direct dissociation of CO*
2, and

the remaining 25% comes from various reactions in the carboxyl path, which contradicts

conclusion from Vogt et al.,10 who argued that this path does not contribute to CH4 forma-

tion. The only significant source of CH* (and thus ultimately CH*
4) is from the dissociation

of HCO*, HCO* + CH* O* . According to the DRC analyses for all 5,000 mechanisms,

there is no combination of parameters in which the formate path, CO*
2 HCOO*

HCO*, is a significant source of HCO* (see SI for details). Instead, the overwhelming ma-

jority of HCO* is produced via hydrogenation of CO*, CO* + H* HCO*, where CO*

is produced via the redox and carboxyl path. This result is in agreement with Heine et

al.,13 who did not observe HCOO* during CO2 methanation on Ni(111) in operando XPS

studies. Although HCOO* has been observed in some spectroscopic studies9,10,91,92 during

CO2 hydrogenation on Ni, our findings support the conclusion that HCOO* is a spectator

species.19,91,92
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Figure 3c presents the best match and feasible set for the four parameters that govern the

correlated binding energies. The results suggest that all mechanisms in the feasible set re-

quire an increase to the heat of formation for H* (i.e. destabilize), and a decrease to the

heat of formation of species that bind through oxygen. Variability in the binding energy of

adsorbates that bind through carbon, in contrast, is not as important. Figure 3d presents

similar results for the top five reactions (see Sensitivity Analysis); the most significant de-

viation from the base case is for HCO* dissociation, where the feasible set is more tightly

clustered around a reduction in the activation energy of 0.4 eV.

Figure 4: Potential energy diagram for the most dominant CH4 formation pathway. The
balancing H* atoms are omitted for clarity after the adsorption step. Only a reduced number
of 1000 mechanisms is displayed for clarity.

A subset of the potential energy diagram that highlights the main pathway is presented

in Figure 4. The individual yellow lines represent different possible mechanisms. The large

spread in possible values in the initial portion of the potential energy diagram is due primarily

to the fact that there are 8 H*. Adsorbates that bind through carbon (i.e. C*, CO*, HCO*)

represent the various minima for the first half of the diagram. The difference between the

base case (solid black line) and the best match (solid red line), combined with the results

from Figure 3d, indicates that the majority of the change from the black line to the red
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line comes from the weakening of the H* binding energy by 0.2 eV; the binding energies for

adsorbates that bind through carbon are not changed significantly. Adsorbates that bind

through oxygen (i.e. O*, OH*) represent the second half of the diagram. Here we see that a

decrease in the heats of formation (stabilizing) of 0.1 eV of species that bind through oxygen

is needed to improve the agreement. The parameterized mechanism of this reduced network

is provided in Table S10 and the complete mechanism in Table S11.

The species lowest in potential energy are H* and CO* and, therefore, most likely to be the

MASIs on the Ni(111) surface, which also agrees with the simulation results. High activation

barriers are obtained for HCO* formation and dissociation, as well as the hydrogenation of O*

and OH*. CO does not desorb in the best cases because the desorption barrier is significantly

higher than the hydrogenation to HCO*. There are several routes for the activation of CO*
2

in the carboxyl pathway with comparable barriers (see Table S10 and Figure S19 for the

free energy surface); either via reaction with H*, or CO*
2 can abstract a H atom from OH*

or H2O
*. After the creation of COOH*, there are two possible routes with comparable free

energy barriers for its decomposition, with the cleavage of C O or C OH. The formation

of CO from COH requires an additional step, and the oxidative dehydrogenation of COH*

provides a significantly lower barrier than the direct dissociation, in agreement with results

from the activation of CO on Co in the Fischer-Tropsch synthesis.27 BEP relations providing

barriers for bimolecular reactions are coupled to the thermochemistry of multiple species,

so the uncertainty range of the barrier can be large. Consequently, the activity of these

pathways, which are all relatively close in free energy, can contribute to various extents to

the CH4 formation in the parametric uncertainty range. Figure 4 and Figure S19 actually

show that it is currently difficult to predict a certain path within the given accuracy of the

present DFT functionals.47,52,53

Although the microkinetic model can accurately predict the measured CO2 conversion and

CH4 yield, it is currently not able to accurately predict the correct selectivities towards
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CH4 and CO at low temperatures (see Figure 2a and Figure S16). Some simulations show

a CO desorption peak at low temperatures, but this can only occur if the binding energy

of CO is lowered, so that CO can partially desorb from the catalyst surface before the

activation barrier of the step consuming the CO* is overcome. A likely explanation for the

discrepancy in the selectivity is coverage dependence.93 As mentioned above, no coverage

effects were considered in the present study. However, adsorbates like CO* or O* show

repulsive interactions, which destabilize their binding energies.20,94 In general, including

coverage effects will affect the binding strength of species and transition states and can

significantly alter the potential energy surface.46,51 Thus, we suspect that the inability of our

model to describe the CO desorption peak is a consequence of neglecting coverage effects, not

due to missing kinetic pathways. The inclusion of coverage effects directly in the mechanism

generation procedure is the aim of future studies.
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Figure 5: a) Total sensitivity coefficients for the 6 most influential input parameters on the
uncertainty of the CH4 concentration at different temperatures. b) The joint sensitivity
coefficients with the highest values. The hash combines the pair of colors from the total
sensitivity coefficients.

In a microkinetic model, not all species and reactions are equally important; typically, the
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variability of the output is determined by just a few species and reactions. The total sensitiv-

ity coefficients for the CH4 concentration, determined from the polynomial chaos expansion,

are displayed in Figure 5a. Of the 65 parameters that were varied in the global uncertainty

analysis, the parameter with the largest sensitivity index is for δEHX
Pt , which corresponds to

the heat of formation of H*. This result is unsurprising, given that hydrogenation reactions

are critical in methanation and that the heat of formation of H* affects activation barriers

via BEP relation and reverse rates via the equilibrium constant. The next most important

parameters are δECX
Pt and δEOX

Pt for the heats of formation of adsorbates that bind through

oxygen and carbon, respectively. The larger influence of thermochemistry than kinetics was

observed in other studies as well.45

The fourth most important parameter is the reference activation energy for the reaction

family for the dissociation of HC=R double bonds. This family provides kinetics for the

dissociation of the C O bond in HCO*, which many studies consider to be the RDS.10,15

Moreover, this reaction is the most important pathway for CH* formation observed in the

mechanisms with best agreement to the experiments (see Figure 3b and Figure 4). The next

most sensitive reaction is CO*
2 dissociation, which is also thought to be rate controlling.12

In a complex microkinetic model, there will be higher-order interactions among the parame-

ters, which are further amplified by the coupling of the thermochemistry with the activation

barriers in the BEP relations. These higher-order interactions are captured by the joint

sensitivity indices from the PCE method and displayed in Figure 5b. The highest joint

sensitivities are caused by H* in combination with O*, C*, CO*
2 dissociation, and the HC R

dissociation family.

Figure 6 summarizes the results of the degree of rate control analysis. The black boxes in

Figure 6a-b represent the range of possible DRC values at 573K for reactions and species,

respectively, that were obtained for the entire set of 5,000 mechanisms. Also included in-

side each box is the DRC value for the best match (vertical red line) and the ensemble of
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Figure 6: DRC for (a) reactions and (b) adsorbates at 573K. Only the 10 most important
reactions/species are presented, with the reactions/species with the highest absolute average
DRC at the top. The black box represents the range of the DRC values for all possible
mechanisms; the black line is the base set; the red line and pink shaded region are the best
mechanism and feasible set, respectively. Averaged absolute c) DRC and d) thermodynamic
DRC at different temperatures.

feasible mechanisms (shaded pink region). According to the DRC analysis, the most impor-

tant reactions are the dissociation of CO*
2 and the dissociation of the C O bond in HCO*,

in agreement with the results from the GSA, the network from the best match, and the

literature.10,12,15

The results in Figure 6a-b nicely highlight the implicit assumptions in the DRC approach

and associated challenges that it entails. For the overwhelming majority of parameter com-

binations, the dissociation of HCO* has a positive DRC, implying that increasing the rate

constant will increase the rate of CH4 production. For the feasible set, however, it is zero.
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The dissociation of CO*
2, in contrast, has a XRC that ranges from -2 to value near 1. Addi-

tionally, abstraction reactions that convert CO*
2 to COOH*, which are frequently neglected,

are rate controlling for some parameter combinations. Equally important, the actual values

of XRC for a given reaction can vary considerably. Vogt et al.10 and Zhou et al.15 report

that the dissociation of HCO* is the RDS on Ni(111), whereas Lozano-Reis et al.12 state

that the dissociation of CO*
2 is the RDS. The present results suggest that the choice of RDS

is, in fact, highly dependent on the microkinetic parameters (and thus the method through

which they were obtained). Indeed, both of these reactions and many others can be rate-

controlling, depending upon small perturbations of parameters within a narrow uncertainty

range. For the best match mechanism, CO*
2 dissociation has the largest XRC. The DRC

analysis shows that from all 150 elementary reactions, only a handful have high DRCs over

the entire uncertainty range and the rest are never rate-controlling (see Figure S22).

From the thermodynamic DRC, we obtain that the most important species are CO*, H*,

HCO*, and CO*
2, which can also be anticipated based on XRC. Also, according to Stegelmann

et al.81 and Wolcott et al.95 XTRC is correlated to the coverage, and CO* and H* are the

MASIs. Both CO* and H* have predominantly negative XTRC, and thus increasing the

stability of these two species on Ni(111) will inhibit the CH4 formation rate. HCO* exhibits

the opposite behavior; increasing the stability of this species will increase the CH4 formation

rate. CO*
2 shows a complex behavior of the sensitivity coefficients. Stabilizing CO*

2 can lead

to an increase in the CH4 formation rate in some cases, whereas it is inhibiting in others.

For the other species in the mechanism, the results are more complicated. On average,

their contribution to the production rate is small, but each one can have a controlling effect

for some parameter combinations. Perhaps the most surprising result from Figure 6a-b is

that, for the mechanisms that are in closest agreement with the experimental data, most

reactions/species have DRC values close to zero. An additional observation from this analysis

is that some species can have a highXTRC although they have no significant coverage over the

entire uncertainty range (see Figure S15), which calls into question the correlation between
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XTRC and coverage in complex microkinetic models.

In the absence of experimental data, it would not be possible to determine a priori which

mechanism will provide the closest description of reality – let alone speculate as to the reac-

tion/species with the highest DRC. Accordingly, averaging over the DRC of all mechanisms

is a compelling way to predict how the mechanism is likely to respond in the absence of other

information. Additionally, it prioritizes which rate constants or thermochemistry should be

refined. Figure 6c-d plots the average of the absolute value of the DRC at different tempera-

tures for reactions and species, respectively. These figures demonstrate that 4 reactions and

6 species have a high DRC over the entire temperature range. Of these results, the CO*
2 and

HCO* dissociation, together with heats of formation for the H* and CO*, are most impor-

tant, which is consistent with the GSA and the literature.10,12,15 Thus, every effort should

be made to refine the kinetic and thermodynamic parameters for these reactions and species

as accurately as possible. However, comparing Figure 6c-d with Figure 6a-b highlights how

varied the DRC results can be, depending upon the structure of the underlying mechanism.

A key finding in Figure 6a-b that critical reactions (CO*
2 and HCO* dissociation) and species

(H* and CO*), can exhibit enormous variability in DRC, depending upon the model param-

eters. Figure 7a-c illustrates this variability in XTRC for H* and XRC for the CO*
2 and HCO*

dissociation over the variation in the uncertainty range. If we focus on the DRC for CO*
2

dissociation (7b), we observe two broad clusters. For negative values of ∆Ea, the XRC tend

to be clustered around 0.0 (because a low barrier leads to a higher rate), and for positive

values of ∆Ea, the XRC tend to be clustered around 1.0. However, in both cases, there is

considerable scatter. Moreover, the feasible set (represented by the red squares) spans the

entire horizontal range, with no clearly discernible trend. The results for HCO* dissociation

(7c), in contrast, show more structure. The results from the feasible set are all tightly clus-

tered around −0.6 < ∆Ea < −0.2, which result in XRC = 0. When the activation energy

for this reaction is increased, the reaction shifts from XRC ≈ 0 to XRC ≈ 1 and it becomes
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Figure 7: Scatter plots for a) XTRC of H* versus change binding energy, b) XRC of CO*
2

dissociation, and c) XRC of HCO* dissociation versus change in activation energy. Red
squares are the values for mechanisms in the feasible set, and the black square is the reference
mechanism. d) Heatmap for XTRC of H* over δEHX

Pt and δEOX
Pt . Heatmaps for the DRC for

the e) CO*
2 and f) HCO* dissociation as a function of their change in activation energy and

δEHX
Pt . Heatmaps for CH4 mole fraction as a function of δEHX

Pt and g) δEOX
Pt , h) activation

energy of CO*
2 dissociation, i) activation energy of HCO* dissociation. The data are sorted

into a 30×30 grid and all sensitivity coefficients or CH4 mole fractions are averaged in these
bins. All results are for a temperature of 573K.

the RDS. Another clear trend is obtained for the thermodynamic DRC for H* (Figure 7a);

as H* is stabilized on the surface, it has an increasingly inhibiting effect.

By combining these results with the joint sensitivity coefficients from Figure 5b, we can begin

to see what other parameters contribute the most to the scatter in Figure 7a-c. Specifically,

30



for both reactions, the parameter with the highest joint sensitivity coefficient is δEHX
Pt (and

therefore the heat of formation for H*). Variation in XTRC for H* in Figure 7d is mostly ver-

tical; it goes from 0 to -2 as δEHX
Pt is decreased (and thus H* is made more stable), but δEOX

Pt

has very little effect. The surface is covered in H* under these conditions (see Figure S30),

which agrees with observations that XTRC is linked directly to surface coverage.81,95 Fig-

ure 7e,f present heatmaps for XRC of CO*
2 and HCO* dissociation, respectively. In Figure 7e,

the values of XRC ≈ 1 are generally clustered between −0.3 < δEHX
Pt < −0.1, suggesting

that CO*
2 dissociation is only rate controlling when H* is stabilized on the surface. At these

conditions the surface is covered in H* and lacks CO*, which is why the production of CO*

via CO*
2 dissociation is rate-controlling. However, the HCO* dissociation is rate controlling

over the entire uncertainty range of δEHX
Pt (Figure 7f). Figure 7d-f clearly indicate that the

DRC can change from insensitive to rate controlling within the range of a few meV.

Figure 7g-i present heatmaps for CH4 mole fraction as a function of δEOX
Pt as well as the

barrier for CO*
2 and HCO* dissociation in combination with δEHX

Pt . Other key parameters

are reported in the SI. In Figure 7h for CO*
2 dissociation, we can see a vertical area where

CH4 formation is feasible, which is when H* is destabilized, without a clear dependence on

the activation barrier. Figure 7i shows that CH4 is only produced when H* is destabilized

and the barrier for HCO* dissociation decreased. When the activation barrier for the HCO*

dissociation is increased, no further conversion pathways for CO* are available, and the sur-

face will be poisoned by CO*, thereby inhibiting H* adsorption. Since the activation barrier

is determined from the BEP, these points coincide with the pattern for the O*/H* depen-

dence (see Figure 7g). A decrease in O* heat of formation lowers the heat of reaction and

thus the activation barrier. Looking at the scatter plot (Figure 7c), we can now state that

HCO* dissociation is never rate-controlling when CH4 is formed, which is why it has also

a small DRC for the best cases, and other reactions are rate controlling instead, e.g CO*
2

dissociation. Collectively, however, these results all indicate that the HCO* dissociation in

combination with H* and O* binding strength are the true factors that control the metha-
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nation activity of the Ni(111) facet. This can also be seen in Figure 3c-d, where these three

parameters show a clear grouping of values for the feasible set of parameters that agree well

with the experimental data. These results highlight a severe limitation of the DRC analysis

given the large uncertainty of DFT parameters. The factors that control the methanation

activity locally (DRC) are not the same as the global properties that truly determine the

methanation activity. Only when H* is destabilized can other important intermediates (e.g.

CO*, O*) cover the surface and the destabilization decreases several activation barriers. A

high CO* and O* coverage favor CH4 production; the H* surface site fraction for the best

cases are actually rather small (see Figure S18). Furthermore, we have seen that all steps

with high DRC values are part of the reduced methanation mechanism. Based on our in-

sights gained from the global sensitivity analysis and the global uncertainty of the DRC, we

can further hypothesize that the reduced microkinetic model (see Figure 3b and Table S10)

determines the methanation activity over the entire uncertainty range, making it the most

likely methanation mechanism for the Ni(111) facet.

Finally, we wish to emphasize that the purpose of this analysis is not to provide a definitive

mechanism for CO2 methanation on Ni. In fact, it is difficult to state conclusively whether

or not Ni(111) is the active facet. Although the microkinetic mechanism agrees with the

experimental data with remarkable predictive power, self-consistent sets of parameters can

yield virtually every conceivable outcome within this confined uncertainty space of ± 0.3 eV.

This is neither a flaw in this study, the applied methods, nor automated mechanism gener-

ation in general. Since all assumptions on the uncertainty in this study represent only the

accuracy of present DFT functionals, it indicates that it is not possible for a pure DFT study

to conclusively determine the activity of the Ni(111) facet either. Moreover, this result is

not unique to methanation; a large variation in activity was also observed by Sutton et al.45

for ethanol steam reforming. However, with the automated mechanism generation, we were

able to derive a complete mechanism including all the possible chemistry as well as unravel

the reactions and parameters that control the activity over the entire uncertainty range (see

32



Figures 3, 6 and 7), which cannot be done with typical DFT studies.

Ultimately, it will be necessary to repeat this procedure for all four Ni facets independently

and combine them in a multifacet model, as has been done in previous work by some of

the authors to describe TPD experiments from a supported Ni catalyst.8 Furthermore, such

an effort should include coverage effects. Another challenge for mechanism generation and

microkinetic modeling for CO2 methanation on industrial catalysts is the influence of basic

sites on the support for e.g. Ni/γ-Al2O3 catalysts.
8,65,96 Basic supports lead to more active

Ni catalysts because the support participates in the activation of CO2 by providing lower

energy pathways at the metal/support interface16,17 and should, therefore, be included for

these systems.

The combination of linear scaling and BEP relations is commonly used to screen the activity

of catalysts over the whole range of transition metals with an assumed microkinetic model,

including CO* methanation.33,34,93,97 For the screening procedure, the binding energy of the

descriptor species is changed by a few eV to move across the various transition metals.

Simultaneously, the structure of the underlying microkinetic model is assumed to be static,

is often derived from the knowledge for one particular metal/facet, and a single pathway is

assumed. In a similar approach, Wolcott et al.95 screened catalysts with the DRC method

and observed that the rate-controlling transition state is constant in the range of a few eV.

Within this study, we showed that within a few meV (i) the mechanism changes significantly,

(ii) the activity varies over several orders of magnitude, (iii) the DRC is far from constant,

and (iv) global and local rate-controlling parameters are completely different. Consequently,

the conclusions drawn from the screening for the most active materials might be incorrect

because of the simplified microkinetics. Nonetheless, the usage of these screening techniques

has boosted catalyst development and advanced our understanding of several important

reactions. Including automated mechanism generation into the catalyst screening procedure

with correlated uncertainties is not only beneficial, but rather necessary to truly advance
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the predictive power of the LS and BEP relations and to determine the most active and

selective materials. Although the purpose of this work is emphatically not catalyst screening,

the results suggest at a nickel-like alloy that has a slightly reduced binding energy for H*

and slightly increased binding energy for adsorbates that bind through oxygen, relative to

Ni(111), will offer superior production rates for CH4.

Finally, it is worth emphasizing the computational efficiency of this approach. It took approx-

imately 24 CPU-hours to generate all 5,000 mechanisms. The various sensitivity analyses

took an additional ∼300 CPU-hours. A single CINEB calculation, in contrast, required

approximately 1,300 CPU-hours on the same architecture. In other words, the current ap-

proach built and analyzed 5,000 mechanisms in one-fifth of the time required to perform a

single transition state calculation.

Conclusion

The present work presents the first application of automatic mechanism generation for CO2

hydrogenation to CH4 on Ni(111) using the open-source automated reaction generation soft-

ware RMG.39,40,43,54 Uncertainties in the model generating parameters, such as adsorbate

binding energies and activation energies, were explored in a systematic manner that is con-

sistent with the underlying correlation. Moreover, this is the first work including correlated

parametric uncertainty in a rate-based automated mechanism generation procedure. RMG

was capable of discovering a vast reaction network including up to C6 chemistry, but the

main path is the methanation of CO2 via various routes. The global uncertainty analysis

reveals that it is necessary to consider the uncertainties in the model input parameters to

discover all possible species and reactions.

CO2 methanation simulations with all discovered mechanisms in a PFR model shows a vast

spread of results. This allows various interpretations of the Ni(111) facet activity within the

uncertainty of DFT functionals and it is even possible to reach opposite conclusions. From
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all mechanisms, we discovered sets of parameters that describe our experimental results from

Ni/SiO2 catalyst with a remarkable accuracy without parameter optimization.

In combination with the global sensitivity analysis, it was possible to determine which factors

control the activity of Ni(111) and to derive a most likely methanation mechanism, which is

a combination of the redox and carboxyl pathway. The only relevant conversion from CO*

to CH4 occurs via HCO* and this reaction together with the thermochemistry of H* and O*

determines the (in)activity of Ni(111).

The analysis reveals that results from the degree of rate control approach is highly sensitive

to model uncertainty, and that small changes to the parameters can result in completely

different degrees of rate control. A more useful approach is to perform the degree of rate

control over the entire uncertainty range, since it quantifies which factors truly control the

activity, and thus which parameters need to be refined the most. This new methodology is

computationally efficient and can be applied to arbitrary systems in heterogeneous catalysis.
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Capacity of Supported Catalysts with a Novel Quasi-Continuous Pulse Chemisorption

Method. ChemCatChem 2020, 12, 4373–4386.

(67) Goodwin, D. G.; Speth, R. L.; Moffat, H. K.; Weber, B. W. Cantera: An Object-

Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport

Processes. https://www.cantera.org, 2018; Version 2.4.0.

(68) Gao, C. W.; Liu, M.; Green, W. H. Uncertainty Analysis of Correlated Parameters in

Automated Reaction Mechanism Generation. Int. J. Chem. Kinet. 2020, 52, 266–282.

(69) Ruscic, B.; Pinzon, R. E.; Morton, M. L.; von Laszevski, G.; Bittner, S. J.; Nij-

sure, S. G.; Amin, K. A.; Minkoff, M.; Wagner, A. F. Introduction to Active Ther-

mochemical Tables: Several “Key” Enthalpies of Formation Revisited. J. Phys. Chem.

A 2004, 108, 9979–9997.

(70) Ruscic, B.; Bross, D. H. https://atct.anl.gov, Active Thermochemical Tables

(ATcT) Values Based on ver. 1.122g of the Thermochemical Network.

(71) Prager, J.; Najm, H. N.; Sargsyan, K.; Safta, C.; Pitz, W. J. Uncertainty Quantification

of Reaction Mechanisms Accounting for Correlations Introduced by Rate Rules and

Fitted Arrhenius Parameters. Combust. Flame 2013, 160, 1583–1593.

(72) Sutton, J. E.; Vlachos, D. G. Ethanol Activation on Closed-Packed Surfaces. Ind. Eng.

Chem. Res. 2015, 54, 4213–4225.

(73) Sobol’, I. On the Distribution of Points in a Cube and the Approximate Evaluation

44

https://www.cantera.org
https://atct.anl.gov


of Integrals. USSR Computational Mathematics and Mathematical Physics 1967, 7,

86–112.

(74) Paszke, A. et al. In Advances in Neural Information Processing Systems 32 ; Wallach, H.,
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