
ORNL REPORT

ORNL/TM-2013/282
Unlimited Release
Printed August 2013

Quantifying the Impact of Single Bit
Flips on Floating Point Arithmetic

J. Elliott, F. Mueller, M. Stoyanov, C. Webster

Prepared by

Oak Ridge National Laboratory

One Bethel Valley Road, Oak Ridge, Tennessee 37831

The Oak Ridge National Laboratory is operated by UT-Battelle, LLC,

for the United States Department of Energy under Contract DE-AC05-00OR22725.

Approved for public release; further dissemination unlimited.

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of

Energy (DOE) Information Bridge.

Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the

following source.

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Oak Ridge, TN 37831

Telephone 703-605-6000 (1-800-553-6847)

TDD 703-487-4639

Fax 703-605-6900

E-mail info@ntis.gov

Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

(ETDE) representatives, and International Nuclear Information System (INIS) representatives from

the following source.

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone 865-576-8401

Fax 865-576-5728

E-mail reports@osti.gov

Web site http://www.osti.gov/contact.html

NOTICE

This report was prepared as an account of work sponsored by an agency

of the United States Government. Neither the United States Government,

nor any agency thereof, nor any of their employees, nor any of their con-

tractors, subcontractors, or their employees, make any warranty, express

or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represent that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, pro-

cess, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommenda-

tion, or favoring by the United States Government, any agency thereof,

or any of their contractors or subcontractors. The views and opinions

expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

ii

ORNL/TM-2013/282

Computer Science and Mathematics Division

QUANTIFYING THE IMPACT OF SINGLE BIT FLIPS ON FLOATING
POINT ARITHMETIC

J. Elliot
∗

F. Mueller
†

M. Stoyanov
‡

C. G. Webster
§

Date Published: August 2013

Prepared by

OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283

managed by

UT-BATTELLE, LLC

for the

U.S. DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

∗Computer Science Department, North Carolina State University, Raleigh, NC, (jjellio3@ncsu.edu)
†Computer Science Department, North Carolina State University, Raleigh, NC, (mueller@cs.ncsu.edu)
‡Computer Science and Mathematics Division, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box

2008, MS-6367, Oak Ridge, TN 37831-6164 (stoyanovmk@ornl.gov).
§Computer Science and Mathematics Division, Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box

2008, MS-6164, Oak Ridge, TN 37831-6164 (webstercg@ornl.gov)

CONTENTS

LIST OF FIGURES . iv

LIST OF TABLES . v

ABSTRACT . 1

ACKNOWLEDGEMENTS . 1

1 Introduction . 2

2 Related Work . 3

3 Fault Characterization . 4

3.1 Single Bit Flips vs. Multiple Bit Flips . 4

4 IEEE 754 Specification . 5

5 Case Study: Vector Dot Products . 7

5.1 Analytic Error Propagation: Deterministic Case . 7

5.2 Analytic Error Propagation: Probabilistic Case . 7

5.3 Numerical Experiment . 8

6 Fixed Point Iterative Methods . 12

6.1 Example: Jacobi Method . 12

6.2 Numerical Example: Diffusion Equation . 13

6.3 Numerical Example: Scaling Comparison . 14

7 Conclusions . 17

iii

LIST OF FIGURES

1 Representation of the Binary64 IEEE format. 5

2 Probability of failure for different vector lengths as a function of the scaling of the

two vectors. Top-right, N = 100, flipping any bit other than the least significant

bits in the mantissa would cause failure, hence, P (e > ǫ) is highest with lowest

variance and no sensitivity to scaling. The other three plots correspond toN = 104

(top right), N = 105 (bottom left) and 106 (bottom right), when the vector size is

large enough, the number of zeros in the exponent become the determining factor

for P (e > ǫ) and we see the four plateaus correspond to the sudden change of bit

patterns as predicted by Table 2. 10

3 Expected value of the error e for different vector lengths as a function of the vector

scaling, both vectors have the same scaling. To emphasize the dependence on the

scaling, we truncate the expected error at 100%. We see decrease in the expected

value as the vector size increases, but more importantly we see the sharp jump as

scaling moves from 20 towards 21. 11

4 Expected number of additional iterations needed for convergence as a function of

the iteration where the hardware fault was encountered. Considering bit flips in the

mantissa (left), we see that the natural resilience capabilities of the Jacobi iteration

can correct the error with only a few iterations (< 8) and scaling has overall small

effect. However, when the bits of the exponent flip (right), then the standard Jacobi

iteration requires a huge number of additional iterations to converge (≈ 200), while

the scaled version performs much better. For the first 30 iteration, the Scaled Jacobi

iteration will not be affected by the bit flip regardless whether it happened in the

mantissa or the exponent. In the worst case, Scaled Jacobi took on average only

≈ 50 additional iterations. 16

iv

LIST OF TABLES

1 When a bit flips, a number v is perturbed to ṽ = v + z; the error z depending on

the index i of the flipped bit and whether the original value was 0 or 1. 5

2 Binary patterns in the exponent. 6

v

ABSTRACT

In high-end computing, the collective surface area, smaller fabrication sizes, and increasing density

of components have led to an increase in the number of observed bit flips. If mechanisms are not

in place to detect them, such flips produce silent errors, i.e. the code returns a result that deviates

from the desired solution by more than the allowed tolerance and the discrepancy cannot be dis-

tinguished from the standard numerical error associated with the algorithm. These phenomena are

believed to occur more frequently in DRAM, but logic gates, arithmetic units, and other circuits

are also susceptible to bit flips. Previous work has focused on algorithmic techniques for detecting

and correcting bit flips in specific data structures, however, they suffer from lack of generality and

often times cannot be implemented in heterogeneous computing environment.

Our work takes a novel approach to this problem. We focus on quantifying the impact of

a single bit flip on specific floating-point operations. We analyze the error induced by flipping

specific bits in the most widely used IEEE floating-point representation in an architecture-agnostic

manner, i.e., without requiring proprietary information such as bit flip rates and the vendor-specific

circuit designs.

We initially study dot products of vectors and demonstrate that not all bit flips create a large

error and, more importantly, expected value of the relative magnitude of the error is very sensitive

on the bit pattern of the binary representation of the exponent, which strongly depends on scaling.

Our results are derived analytically and then verified experimentally with Monte Carlo sampling

of random vectors. Furthermore, we consider the natural resilience properties of solvers based on

the fixed point iteration and we demonstrate how the resilience of the Jacobi method for linear

equations can be significantly improved by rescaling the associated matrix.

ACKNOWLEDGEMENTS

The first two authors were supported by NSF grants 1058779, 0958311, 0937908 and DOE DE-

AC05-00OR22725. The third and fourth authors were supported by the ASCR and DOE DE-

AC05-00OR22725. The ORNL is operated by UT-Battelle, LLC, for the United States Department

of Energy under Contract DE-AC05-00OR22725.

1

1 Introduction

Supercomputers have become an essential instrument to push the limits of complex simulations and

large-scale data analysis for sciences, industry, and government. High-Performance Computing

(HPC) systems have reached multi-petascale capabilities with exascale on the horizon. But recent

work shows that at such scale faults are becoming the norm rather than the exception [24, 28].

Existing fault tolerance schemes (checkpoint/restart [9, 22, 32, 33]) are reaching their scalability

limitations [18, 23, 25, 27], while scalable approaches (e.g., redundant execution [11]), may only

become feasible at extreme scale and only via capacity computing (increasing job throughput)

rather than capability computing (exploiting all resources for an application) [10].

More significant for this work, hardware protection for memory (ECC) detects and corrects the

vast majority of bit flips due to radiation from space and decreasing fabrication sizes of semicon-

ductors [28]. Recent work has shown that multi-bit upsets are rare events and chipkill functionality

is extremely effective in reducing node failure rates due to DRAM errors [31]. However, process-

ing cores remain largely unprotected [12, 17]. Thus, novel approaches for scalable resilience are

required to address the challenge not only at hardware level, but also via the software.

Contributions: This work calls into question an assumption that the field of computational

science has taken for granted for quite some time, namely the assumption that computer arithmetic

is reliable. As systems continue to grow in size and density, and as fabrication sizes continue to

shrink, silent faults in the hardware will present a challenge never before anticipated by users. The

goal of this work is to understand the implications of faulty arithmetic and to do so in manner that

is theoretically sound and experimentally reproducible. We seek to quantify the impact of a single

bit flip on specific numerical methods. From this analysis, we take a first step in characterizing

numerical methods by their resilience to silent data corruption (SDC) caused by bit flips.

We analyze the IEEE-754 binary representation and observe the effects of scaling on the rela-

tive error introduced by bit flips into the vector dot product. We verify our results via Monte Carlo

sampling of random vectors and random bit flips. Furthermore, we explore the natural resilience

properties of fixed point iterative solvers and those can be improved by proper scaling.

This document is structured into three major themes: 1) Fault characterization; 2) modeling

and sampling the impact of a single bit flip in dot products; 3) analyzing the impact of a silent bit

flip on the fixed point iterative algorithms; 4) give a numerical example of how the resilience of the

Jacobi iterative method can be significantly improved by simple rescaling of the associated matrix.

2

2 Related Work

The interest in SDC isn’t new and a number of studies have already been conducted. Most com-

monly, a black-box approach is assumed, where soft errors are injected into an existing code and

the resulting error is observed. Recently, [14,15] analyzed the behavior of various Krylov methods

and observed the variance in iteration count based on the data structure that experiences the bit flip.

Shantharam et al. [29] analyzed how bit flips in a sparse matrix vector multiply (SpMV) impact the

L2 norm and observe the error as CG is run. Bronevetsky et al. [4, 30] analyzed several iterative

methods documenting the impact of randomly injected bit flips into specific data structures in the

algorithms and evaluated several detection/correction schemes in terms of overhead and accuracy.

Malkowski et al. [21] analyzed SDC from the perspective of the L1 and L2 caches and proposed

an eviction and prefetching scheme that minimizes the amount of time data sits in the unprotected

cache. Hoemmen and Heroux proposed a fault tolerant GMRES algorithm based on the principles

of flexible preconditioners and demonstrated that their method is resilient to soft errors [13]. Ex-

emplifying the concept of black-box analysis of bit flips, [20] presents BIFIT for characterizing

applications based on their vulnerability to bit flips.

Algorithm-based fault tolerance (ABFT) provides an approach to detect (and optionally cor-

rect) faults, which comes at the cost of increased memory consumption and reduced performance

[8,16]. The ABFT work by Huang et al. [16] was proven by Anfinson et al. [2] to work for several

matrix operations, and the checksum relationship in the input checksum matrices is preserved at the

end of the computation. Consequently, by verifying this checksum relationship in the final compu-

tation results, errors can be detected at the end of the computation. Costs in terms of extra memory

and computation required for ABFT may be amortized for dense linear algebra, and such over-

heads have been analyzed by many (e.g., [1, 3, 19]). The more subtle problem is that algorithms

have to be manually redesigned for ABFT support taking numerical properties (e.g., invariants)

into account. Recent work has looked at extending ABFT to additional matrix factorization algo-

rithms [8] and as an alternative to traditional checkpoint/restart techniques for tolerating fail-stop

failures [5–7].

3

3 Fault Characterization

We first establish clear definition of bit flip and hardware faults. According to Hoemmen’s abbre-

viated taxonomy [13], our focus is best described as one on transient silent faults. We extend this

taxonomy by introducing a classification called silent and present the following definitions:

(1) Silent faults are a subset of soft faults, meaning they do not cause immediate program

interruption and are not detected. These silent faults may occur in hardware units that do not

have any safeguards in place to detect bit flips, such as the Arithmetic Logic Unit or registers

(and occasionally L1 caches, such as in BlueGene/L). We do not consider not a number (NaN)

or infinity (Inf) to be silent faults because 1) NaN and Inf may be trapped using floating point

exceptions, and, more importantly, 2) for the methods presented in this paper NaN or Inf will

propagate to the solution where they are a clear indicator that something is incorrect.

(2) Transient silent faults are faults that do not persist in the data, i.e., they corrupt data but

do persist in the output of the operation that used the data. For instance, a flip in an adder can

be modeled as a corrupt input, but the corrupted input is never saved. Hence, the corruption only

manifests itself in the output of the adder, which may be saved or used in another operation.

3.1 Single Bit Flips vs. Multiple Bit Flips

Bit flips are commonly thought to only occur extremely rarely during arithmetic operations inside

of arithmetic and logic units (ALUs) and floating-point units (FPUs). This belief is corroborated by

years of experience with ALUs/FPUs units on systems providing solutions that match analytic so-

lutions. However, recent work indicates there may be higher bit flip rates than previously thought,

not just in memory but also in ALUs/FPUs [12, 17].

In this study, we analyze a single bit flip on the input to some numerical methods, but this

single flip on the input may be viewed as multiple flips on the output. Consider the multiplication

of two integers, 9× 3 = 27, and assume a bit is flipped, e.g., 9→ 13. This results in the following

output:

9× 3 = 27 = 1001× 0011 = 011011,

13× 3 = 39 = 1101× 0011 = 100111.

Note how a single flip on the input results in multiple incorrect bits in the output. Hence, even

though we consider only the case of a single bit flip, most of our results trivially extend to multiple

flips.

4

Table 1: When a bit flips, a number v is perturbed to ṽ = v+ z; the error z depending on the index

i of the flipped bit and whether the original value was 0 or 1.

Original bit value Mantissa bit 0 ≤ i ≤ 51 Exponent bit 52 ≤ i ≤ 62 Sign bit i = 63

0 2e2i−52 (22
i−52

− 1)v −2v

1 −2e2i−52 (2−2i−52

− 1)v −2v

4 IEEE 754 Specification

The IEEE 754 specification describes various floating point standards, from which we chose to

analyze the 64-bit double precision specification called Binary64 that is widely used in scientific

computing today. Given 64 bits {bi}
63
i=0, a Binary64 number is represented as

v = (−1)b632e−1023

(

1 +
51
∑

i=0

bi2
i−52

)

, (4.1)

where {bi}
51
i=0 are the bits of the mantissa, e =

∑62

i=52
bi2

i−52 is the exponent, and b63 is the sign bit.

A visual representation of the format is given on Figure 1. Note that the exponent is stored using a

bias of 1023. This bias may be exploited to enhance resiliency as demonstrated in Section 5.

��������

�	
� �

�����������

Figure 1: Representation of the Binary64 IEEE format.

Suppose a single bit flips, i.e. one of bi changes from 0→ 1 or 1→ 0, then v is perturbed to a

new value

ṽ = v + z,

where z depends on the location and value of the flipped bit. We consider all possible cases in

Table 4. We can bound the relative error for all cases as

|z|

|v|
≤

2i−52, 0 ≤ i ≤ 51,

(22
i−52

− 1), bi = 0 and 52 ≤ i ≤ 62,

(2−2i−52

− 1), bi = 1 and 52 ≤ i ≤ 62,
2, i = 63.

(4.2)

The relative error is largest when a zero bit in the exponent is flipped, in all other cases the relative

error is bounded by
|z|
|v|
≤ 2, therefore, zero-bits in the exponent are the most “volatile” bits. With-

out prior knowledge about the hardware, we can improve the resilience of an algorithm if we reduce

the number of “volatile” bits in the double precision structures of the algorithm’s implementation.

5

Table 2: Binary patterns in the exponent.

Exponent Bits

Base10 b62 . . . b52 Bias Relation Effective Exp.

≈ 10308 11111111110 22047−1023 21024

5 10000000001 21025−1023 22

2 10000000000 21024−1023 21

1 01111111111 21023−1023 20

.2 01111111100 21020−1023 2−3

.5 01111111110 21022−1023 2−1

≈ 10−308 00000000000 20−1023 2−1023

Table 2 presents several cases for the bit pattern in the exponent and the resulting scaling.

The most volatile case is close to machine precision, while the most resilient operates at very

large numbers. Usually, numerical code avoids working with numbers at the extremes of the

double-precision representation range due to numerical stability. Away from the extremes, the most

volatile representation is associated with numbers slightly bigger than 2, while numbers between

1 and 2 have the largest number of resilient bits. This observation is fundamental in assessing the

effects of bit-flips and can also be used to increase the resilience of numerical algorithms.

6

5 Case Study: Vector Dot Products

5.1 Analytic Error Propagation: Deterministic Case

First we study the effect of single bit flips on the dot product of two N -dimensional vectors. We

make this choice since many linear algebra operations can be decomposed into dot products, e.g.

the matrix-vector product.

Let ~u,~v ∈ R
N be two N -dimensional vectors. The dot product between u and v is defined as

~u · ~v =
N
∑

j=1

ujvj,

where uj and vj are the components of ~u and ~v. Suppose we encounter a bit flip in bit i and w.l.o.g.

assume that the j-th element of ~u was perturbed to uj + z, where z is the error described in the

previous section. The relative error introduced by the bit-flip is

e =
|ũ · ~v − ~u · ~v|

|~u · ~v|
=

|z|
|uj |
|ujvj|

|~u · ~v|
=
|z|

|uj|

|ujvj|

|~u · ~v|
=
|z|

|uj|
|dj|,

where dj =
ujvj
~u·~v

. Thus, the error is bound by two components, the relative error term described in

4.2 and the relative magnitude of |ujvj|/|~u · ~v|.

If |~u · ~v| ≪ |ujvj| then the error becomes effectively unbounded, however, this case will arise

only when there is a significant cancellation in the components of the dot product sum and such

cancellation is numerically unstable even if executed on reliable hardware. In the converse case

|ujvj| ≪ |~u · ~v|, the relative magnitude significantly dampens the effects of the hardware error.

The scaling of |~u · ~v| and |ujvj| are problem specific and hence we want to focus our attention on

the effect of
|z|
|uj |

. We consider the balanced case, where the components ujvj have similar sign and

magnitude and hence |dj| ≈
1

N
.

According to 4.2, when a bit flips from 1 to 0 or if the bit is not in the mantissa, then
|z|
|uj |
≤ 2.

Otherwise, the error has the form (22
i−52

− 1), thus if the i-th bit is flipped

e =
|z|

|uj|
|dj| ≤

{

(22
i−52

− 1)/N, bi = 0 and 52 ≤ i ≤ 62,
2/N, otherwise,

(5.1)

where {bi}
63
i=0 are the bits that represent uj .

5.2 Analytic Error Propagation: Probabilistic Case

Bit flips are a random phenomena, hence, we seek a probabilistic description of the error. We

associate each bit bi with the probability of flip in that bit pi, so that
∑63

i=0
pi = 1 1. Numerical

1We also assume that every double precision number is equally susceptible to a flip

7

solvers always generate an approximate solution to a problem, hence a bit flip will not have a

significant effect unless the error introduced exceeds the numerical accuracy. In other words, we

are interested in the probability of failure P (e > ǫ), i.e. the probability that e would exceed some

pre-defined ǫ. Define B as the set of bit indexes that would result in a failure:

B = {i : 0 ≤ i ≤ 63, and e > ǫ} .

Then we have the probability of error

P (e > ǫ) =
∑

i∈B

pi.

If pi for different bits doesn’t vary in a significant way (i.e. pi are distributed uniformly), then the

major factor affecting the probability of failure is the cardinality of B.

Suppose that ǫ and the vector size N are so that 2/N < ǫ, then according to (5.1) failure may

occur only if the flipped bit is a zero in the exponent of the binary representation

B2/N<ǫ = {i : 53 ≤ i ≤ 62 and bi = 0} .

In that case, P (e > ǫ) is only affected by the bit pattern illustrated on Table 2.

On the other hand, if 2/N > ǫ, then every bit flip in the exponent would result in failure

B2/N>ǫ =
{

i : i ≤ 52, and 2i−52/N > ǫ
}

∪ {53, 54, · · · , 63} .

Conclusion: For sufficiently large problem size N , the probability of a bit flip causing a catas-

trophic failure is affected only by the number of zero bits in the mantissa of the IEEE 754 repre-

sentation.

5.3 Numerical Experiment

Next, we experimentally verify the analytic conclusion from the previous section. Suppose we are

given two N -dimensional vectors of IEEE 754 double-precision numbers. We can systematically

flip every one of the 2× 64×N bits and observe the resulting relative error in the dot product. We

assume that every bit is equally likely to flip, then for a given ǫ we can compute the probability of

failure

P (e > ǫ) =
number of bits resulting in error more than ǫ

2× 64×N
.

We want to observe the effects of the bit pattern on P (e > ǫ), however, the total number of possible

patterns is prohibitively large. We use Monte Carlo sampling where we generate a series of random

vectors using C stdlib rand() and compute P (e > ǫ) for each sample. Then we take the mean and

standard deviation of P (e > ǫ) for each sample set. Each vector is scaled so that the elements

have approximately the same magnitude and we consider a range for possible magnitudes each

corresponding to a different bit pattern of the exponent.

8

We consider the range of magnitudes between 2−50 and 250, which corresponds to 101 bit

patterns. For each power of 2, we consider vector lengthsN = 102, 104, 105, 106. For each case we

generate 106 Monte Carlo samples. We take ǫ = 10−4. The results of the experiment are visualized

as four plots on Figure 5.3. As the vector size increases, we observe a decrease in the probability

of failure. More importantly, we observe very strong dependence on the scaling, in particular in

the transition region between 20 and 21. Whenever one or two of the vectors transitions to a bit

pattern with significantly more 1-bits in the exponent, the probability of failure sharply increases.

Next we observe the expected value of the error as a function of the scaling. We generate ran-

dom vectors in the same manner, however, we only consider equal scaling. As before, we consider

N = 102, 104, 105, 106. We compare the results of Monte Carlo sampling with 106 samples to the

analytically computed expected value. Whenever the expected value exceeds 1, we truncate the

plot, since we assume that 100% error would be catastrophic for most applications. Figure 5.3

shows the results of the sampling. Again, we observe the sharp transitions between 20 to 21. Fur-

thermore, we observe that for large vectors N , the expected value can be rather small for scaling

20 and slightly below.

Conclusion: The expected magnitude of the error introduced by bit flips depends on the bit

pattern of the associated floating point data structures. If a numerical method is capable of cor-

recting small errors introduced into the floating point operations, then the method will be able to

withstand some bit flips (i.e. converge even if executed on unreliable hardware). Furthermore,

problem scaling will have significant impact on the resilience of the method.

9

−50
−40

−30
−20

−10
0

10
20

30
40

50

−50
−40

−30
−20

−10
0

10
20

30
40

50
0

0.1

0.2

0.3

0.4

Vector Magnitude 2
x

Flipping bits 0 to 64 in vector: Dot Product
Mean: 0.276361, Sample Standard Deviation: 0.0000170856

Vector Magnitude 2
y

P
r(

R
e
la

ti
v
e
 E

rr
o
r

>
 1

e
−

4
)

0.2763

0.2763

0.2764

0.2764

0.2764

0.2764

−50
−40

−30
−20

−10
0

10
20

30
40

50

−50
−40

−30
−20

−10
0

10
20

30
40

50
0

0.1

0.2

0.3

0.4

Vector Magnitude 2
x

Flipping bits 0 to 64 in vector: Dot Product
Mean: 0.127860, Sample Standard Deviation: 0.0138473510

Vector Magnitude 2
y

P
r(

R
e
la

ti
v
e
 E

rr
o
r

>
 1

e
−

4
)

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

−50
−40

−30
−20

−10
0

10
20

30
40

50

−50
−40

−30
−20

−10
0

10
20

30
40

50
0

0.1

0.2

0.3

0.4

Vector Magnitude 2
x

Flipping bits 0 to 64 in vector: Dot Product
Mean: 0.069536, Sample Standard Deviation: 0.0219732608

Vector Magnitude 2
y

P
r(

R
e
la

ti
v
e
 E

rr
o
r

>
 1

e
−

4
)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

−50
−40

−30
−20

−10
0

10
20

30
40

50

−50
−40

−30
−20

−10
0

10
20

30
40

50
0

0.1

0.2

0.3

0.4

Vector Magnitude 2
x

Flipping bits 0 to 64 in vector: Dot Product
Mean: 0.062345, Sample Standard Deviation: 0.0212331428

Vector Magnitude 2
y

P
r(

R
e
la

ti
v
e
 E

rr
o
r

>
 1

e
−

4
)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 2: Probability of failure for different vector lengths as a function of the scaling of the two

vectors. Top-right, N = 100, flipping any bit other than the least significant bits in the mantissa

would cause failure, hence, P (e > ǫ) is highest with lowest variance and no sensitivity to scaling.

The other three plots correspond to N = 104 (top right), N = 105 (bottom left) and 106 (bottom

right), when the vector size is large enough, the number of zeros in the exponent become the

determining factor for P (e > ǫ) and we see the four plateaus correspond to the sudden change of

bit patterns as predicted by Table 2.

10

−50 −40 −30 −20 −10 0 10 20 30 40 50
−7

−6

−5

−4

−3

−2

−1

0

Log2 of Vector Magnitude

L
og

10
of

E
x
p
ec
te
d
R
el
at
iv
e
E
rr
or

(c
la
m
p
ed

to
0)

Expected relative error given similarly scaled vectors of different lengths

Predicted error for vector length 100
Predicted error for vector length 1000
Predicted error for vector length 10000
Predicted error for vector length 100000
Predicted error for vector length 1000000
Observed error for vector length 100
Observed error for vector length 1000
Observed error for vector length 10000
Observed error for vector length 100000
Observed error for vector length 1000000

Figure 3: Expected value of the error e for different vector lengths as a function of the vector

scaling, both vectors have the same scaling. To emphasize the dependence on the scaling, we

truncate the expected error at 100%. We see decrease in the expected value as the vector size

increases, but more importantly we see the sharp jump as scaling moves from 20 towards 21.

11

6 Fixed Point Iterative Methods

Iterative solvers are usually the methods of choice for large scale problems, e.g. Jacobi and Gauss-

Siedel methods for linear equations or Newton method for non-linear equations. A sequence

{vk}
∞
k=1 ⊂ R

N of approximate solutions is created so that vk → v∗, where v∗ is the exact so-

lution to the linear or non-linear equation of interest. A special class of iterative methods are the

fixed point methods.

Theorem 1 Fixed Point Theorem

Suppose Γ ⊂ R
N is complete in some norm ‖ · ‖ and let ψ : Γ→ Γ be a contraction operator,

i.e. there is a constant c < 1 so that

‖ψ(v)− ψ(w)‖ ≤ c‖v − w‖, for all v, w ∈ Γ.

Then, there is a unique fixed point v∗ ∈ Γ so that ψ(v∗) = v∗. Furthermore, for any v0 ∈ Γ the

sequence {vk}
∞
k=0 defined by vk+1 = ψ(vk) converges to v∗ (i.e. vk → v∗) and the error ‖vk − v

∗‖
is bounded by

‖vk − v
∗‖ ≤ ck‖v0 − v

∗‖.

A proof of the theorem can be found in [26].

For a properly chosen operator ψ, the fixed point of the above theorem is the solution to a linear

or non-linear equation of interest. Examples of such methods are Jacobi and Gauss-Seidel itera-

tions for linear equations and the Newton method for non-linear problems. In practice, one seeks

an initial guess v0 that is close the fixed point of interest and the sequence {vk}
∞
k=0 is terminated at

some K with ‖vK − v
∗‖ ≤ tol.

Fixed point methods have natural resilience. Suppose that we encounter error at step k and the

iterate xk is perturbed to

ṽk = vk + ṽ,

so long as ṽk ∈ Γ, the fixed point iteration will converge and the error at iteration step n (n > k)

can be bound by

‖vn − v
∗‖ ≤ ck‖v0 − v

∗‖+ cn−k‖ṽ‖.

Therefore, fixed point methods can withstand a range of hardware faults by correcting the error

with additional iterations. Furthermore, the number of additional iterations needed for convergence

is strongly dependent on the magnitude of the added hardware error.

6.1 Example: Jacobi Method

One of the simplest examples of a fixed point method for solving linear equations is the Jacobi

iteration. While the Jacobi method is more often used as a preconditioner rather than a solver, its

12

simplicity makes it the perfect example for an algorithm that can benefit from resilience enhancing

scaling.

Consider the system of linear equations described in matrix form as

Av = b, (6.1)

where A ∈ R
N×N and b ∈ R

N are given. If A is non-singular, then there exist a unique solution

v∗ ∈ R
N that satisfies (6.1).

Let D = diag(A) (i.e. R ∈ R
N×N is a diagonal matrix with the elements of A on the diagonal)

and define R = A−D. The Jacobi operator is defined as

J(v) = D−1(b−Rv),

and for a given initial guess v0 we have the Jacobi iteration

vk+1 = J(vk) = D−1 (b−Rvk) .

The solution v∗ to equation (6.1) is a fixed point of J(v) (i.e. J(v∗) = v∗). If J(v) is a contraction

in any norm then according to the Fixed Point Theorem the Jacobi method will converge. Denote

by ρ(D−1R) the spectral radius of D−1R, if ρ(D−1R) < 1, then for any initial guess the Jacobi

iteration will converge to the solution.

The most computationally expensive step of the Jacobi algorithm is computing the vector ma-

trix product Rvk, which consists of N dot products. We want to enhance the resilience of the

Jacobi method by utilizing the relation between scaling and the magnitude of error introduced by

bit flips.2.

6.2 Numerical Example: Diffusion Equation

Let Ω = [0, 1]× [0, 1] ⊂ R
2 and consider the partial differential equation

d

dt
u(t, x, y) = −

∂2

∂x2
u(t, x, y)−

∂2

∂y2
u(t, x, y), (x, y) ∈ Ω, t > 0,

u(t, x, y)|∂Ω = 0,

u(0, x, y) = xy(x− 1)(y − 1).

We seek a numerical approximation to the solution u(t, x, y). We discretize the problem in Ω using

Finite Difference scheme with uniformly distributed nodes. Define

{xi}
n
i=1, xi =

i

n+ 1
, {yj}

n
j=1, yj =

j

n+ 1
,

2In most large sale applications the matrix A is sparse. In order to reduce the memory footprint, the sparse data

structure is often times represented in a compact form by a mixture of integers and floating point numbers (e.g. row

compact form). The integers are susceptible to bit flips, however, discrete data structures require different resilience

approach which is beyond the scope of this document.

13

and approximate

u(t, xi, yj) ≈ ui,j(t), ui,j(0) = xiyj(xi − 1)(yj − 1).

We discretize the diffusion operator as

−
∂2

∂x2
ui,j(t)−

∂2

∂y2
ui,j(t) ≈

ui−1,j(t)− 2ui,j(t) + ui+1,j(t)

∆x2
+
ui,j−1(t)− 2ui,j(t) + ui,j+1(t)

∆y2
,

where ∆x = ∆y = 1

n+1
and u0,j(t) = un+1,j(t) = ui,0(t) = ui,n+1(t) = 0. The spacial discretiza-

tion results in n2 ordinary differential equations that can be written in a matrix form

v̇(t) = Lv(t),

where the k-th component of v(t) is associated with ui,j(t) by vin−n+j(t) = ui,j(t) and L is the

matrix representation of the discretized operator.

We evolve the system in time using backward Euler method. We select a time step ∆t and

approximate

v(t+∆t) ≈ (I −∆tL)−1 v(t).

At each time step we need to solve a system of linear equations and we use the Jacobi method.

For the purpose of this study, we only consider the linear system associated with the initial step

for t = 0 that approximates v(∆t). We take n = 50 which results in 2, 500 degrees of freedom and

we use ∆t = 2−12.

6.3 Numerical Example: Scaling Comparison

We split the matrix L as

L = −
4

∆x2
I +

1

∆x2
R = −

4

∆x2
I + S,

where R is a sparse matrix with ones corresponding to the off-diagonal non-zeros of L, S = 1

∆x2R
and I is the identity matrix. We are interested in solving a linear system of equations of the form

(I −∆tL) v = b,

where b is the vector of initial conditions for the diffusion problem and the solution v∗ is the first

step of the Euler integration scheme. We apply the Jacobi method to the above system and we

present two alternative implementations of the solver.

14

Algorithm 1 Regular-Jacobi-Iteration

Given ∆t, S and b, let v0 = b and k = 0
repeat

k ← k + 1
vk ← Svk−1

vk ←
1

∆t
b+ vk

vk ←
∆t∆x2

4∆t−∆x2vk
ek ← ‖vk − vk−1‖2

until ek < 10−10

Algorithm 2 Scaled-Jacobi-Iteration

Given ∆t, S and b, let v0 = b and k = 0
repeat

k ← k + 1
vk ← Rvk−1

vk ←
1

∆x2∆t
b+ vk

vk ←
∆t∆x2

4∆t∆x2−1
vk

ek ← ‖vk − vk−1‖2
until ek < 10−10

The main difference between the two algorithms is that one uses R, while the other one works

with S. All entries of R are equal to 1, which according to Table 2 has binary representation with

very few zeros in the exponent and hence a bit flip in the entries of R will result in error with

smaller relative magnitude. On the other hand, the entries of S have bit patterns that will result in

larger bit-flip error (in expectation).

If executed without errors, both algorithms 1 and 2 converge to the solution in 74 iterations.

We introduce random bit flips in the floating point numbers representing R and S and we observe

the number of additional iterations that each algorithm would need to converge. In some cases,

the error introduced by the bit-flip is too large and it requires a prohibitive number of additional

iterations, we limit the total number of steps to 10, 000 to avoid such stagnation. We consider

the additional number of iterations needed to converge as a function of the iteration on which the

bit-flip took place. Given an iteration for the bit flip, we randomly select one of the numbers in R
or S and we change one of its bits. For each of the 74 iterations, we take 1, 000, 000 realizations

of the possible bit flips and we take the average for the number of additional iterations needed to

converge.

We show the result from our experiment on Figure 6.3. The expected number of additional

iterations is plotted vs the iteration where the bit flip was introduced. For a bit flip in the mantissa

(left plot), we observe that the natural resilience properties of the Jacobi algorithm can converge to

a solution with very few additional iterations. Scaling changed the maximum number of iterations

from 8 to 2, however, this is a small improvement on the scale of 74 total iterations. The biggest

difference between the regular and scaled algorithms was observed when the bits were flipped

in the exponent. In the best case, the regular Jacobi algorithm requires on average almost 200
additional iterations to converge, while the scaled algorithm is unaffected by a bit-flip in the first

30 iterations. Even in the worst case, the scaled version of the algorithm needs only 50 additional

iterations vs 250 for the regular one.

In this example, all the entries of R were 1, which is the most resilient number according to

Table 2. For other problems, the benefit from the scaling will be less significant. However, scaling

as many numbers as possible to be one (or slightly less than one), will have a significant impact in

proving the resilience of all fixed point methods that rely on vector (or even scalar) dot product.

15

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Iteration where the flip is encountered

E
x
p

e
c
te

d
 v

a
lu

e
 f

o
r

th
e

 a
d

d
it
io

n
a

l
it
e

ra
ti
o

n
s
 n

e
e

d
e

d
 t

o
 c

o
n

v
e

rg
e

Regular Jacobi Iteration

Scaled Jacobi Iteration

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

Iteration where the flip is encountered

E
x
p

e
c
te

d
 v

a
lu

e
 f

o
r

th
e

 a
d

d
it
io

n
a

l
it
e

ra
ti
o

n
s
 n

e
e

d
e

d
 t

o
 c

o
n

v
e

rg
e

Regular Jacobi Iteration

Scaled Jacobi Iteration

Figure 4: Expected number of additional iterations needed for convergence as a function of the

iteration where the hardware fault was encountered. Considering bit flips in the mantissa (left), we

see that the natural resilience capabilities of the Jacobi iteration can correct the error with only a

few iterations (< 8) and scaling has overall small effect. However, when the bits of the exponent

flip (right), then the standard Jacobi iteration requires a huge number of additional iterations to

converge (≈ 200), while the scaled version performs much better. For the first 30 iteration, the

Scaled Jacobi iteration will not be affected by the bit flip regardless whether it happened in the

mantissa or the exponent. In the worst case, Scaled Jacobi took on average only ≈ 50 additional

iterations.

16

7 Conclusions

This work contributes an analysis of how a silent bit flip in floating point arithmetic impacts the

elementary linear algebra constructs. We particularly considered the vector dot product and the

impact of the bit pattern of the IEEE-754 floating point representation on the relative magnitude

of the error introduced by a bit flip. We demonstrated analytically and experimentally that scaling

(and the associated bit patterns of the mantissa) has profound effect on the error introduced.

In addition, we also considered a common class of iterative solvers based on a fixed point con-

traction iteration. Those methods possess natural resilience properties that can be further enhanced

by changing the problem scaling. In particular, we considered diffusion equation discretized with

finite difference method in space and backward Euler method in time. The implicit time stepping

was solved with Jacobi iterative method and we demonstrated how the scaling of the matrix entries

can have a significant impact on the resilience of the solver. When the entries of the matrix were

scaled to 1 and a bit was randomly flipped, the Jacobi method required much fewer additional

iteration to converge to the desired solution.

17

REFERENCES

[1] A. AL-YAMANI, N. OH, AND E. J. MCCLUSKEY, Performance evaluation of checksum-

based abft, in Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2001), Oct.

2001, pp. 461–466. 3

[2] C. J. ANFINSON AND F. T. LUK, Linear algebraic model of algorithm-based fault tolerance,

IEEE Transactions on Computers, 37 (1988), pp. 1599–1604. 3

[3] P. BANERJEE, J. T. RAHMEH, C. STUNKEL, V. S. NAIR, K. ROY, V. BALASUBRAMA-

NIAN, AND J. A. ABRAHAM, Algorithm-based fault tolerance on a hypercube multiproces-

sor, Computers, IEEE Transactions on, 39 (1990), pp. 1132–1145. 3

[4] G. BRONEVETSKY AND B. DE SUPINSKI, Soft error vulnerability of iterative linear algebra

methods, in International Conference on Supercomputing, 2008, pp. 155–164. 3

[5] Z. CHEN, Extending algorithm-based fault tolerance to tolerate fail-stop failures in high

performance distributed environments, in International Parallel and Distributed Processing

Symposium, Apr. 2008. 3

[6] , Algorithm-based recovery for iterative methods without checkpointing, in Symposium

on High-Performance Parallel and Distributed Computing, June 2011, pp. 73–84. 3

[7] T. DAVIES, C. KARLSSON, H. LIU, C. DING, AND Z. CHEN, High performance linpack

benchmark: A fault tolerant implementation without checkpointing, in International Confer-

ence on Supercomputing, May 2011, pp. 162–171. 3

[8] P. DU, A. BOUTEILLER, G. BOSILCA, T. HERAULT, AND J. DONGARRA, Algorithm-based

fault tolerance for dense matrix factorizations, SIGPLAN Not., 47 (2012), pp. 225–234. 3

[9] J. DUELL, The design and implementation of berkeley lab’s linux checkpoint/restart, tr,

Lawrence Berkeley National Laboratory, 2000. 2

[10] J. ELLIOT, K. KHARBAS, D. FIALA, F. MUELLER, C. ENGELMANN, AND K. FERREIRA,

Combining partial redundancy and checkpointing for HPC, in International Conference on

Distributed Computing Systems, 2012. 2

[11] K. FERREIRA, J. STEARLEY, J. H. L. III, R. OLDFIELD, K. PEDRETTI, R. BRIGHTWELL,

R. RIESEN, P. BRIDGES, AND D. ARNOLD, Evaluating the viability of process replication

reliability for exascale systems, in Supercomputing, nov 2011. 2

[12] A. GEIST, What is the monster in the closet? Invited Talk at Workshop on Architectures I:

Exascale and Beyond: Gaps in Research, Gaps in our Thinking, Aug. 2011. 2, 4

[13] M. HOEMMEN AND M. A. HEROUX, Fault-tolerant iterative methods via selective reliabil-

ity. http://www.sandia.gov/ maherou/docs/FTGMRES.pdf. 3, 4

[14] V. HOWLE AND P. HOUGH, The effects of soft errors on krylov methods. Invited Talk. SIAM

Parallel Processing., Feb. 2012. 3

18

[15] V. HOWLE, P. HOUGH, M. HEROUX, AND E. DURANT, Soft errors in linear solvers as

integrated components of a simulation. Invited Talk, Apr. 2010. 3

[16] K.-H. HUANG AND J. A. ABRAHAM, Algorithm-based fault tolerance for matrix opera-

tions, IEEE Transactions on Computers, C-33 (1984), pp. 518–528. 3

[17] A. A. HWANG, I. A. STEFANOVICI, AND B. SCHROEDER, Cosmic rays don’t strike twice:

understanding the nature of dram errors and the implications for system design, in Architec-

tural Support for Programming Languages and Operating Systems, 2012, pp. 111–122. 2,

4

[18] T. Z. ISLAM, K. MOHROR, S. BAGCHI, A. MOODY, B. R. DE SUPINSKI, AND R. EIGEN-

MANN, Mcrengine - a scalable checkpointing system using data-aware aggregation and com-

pression, in Supercomputing, Nov. 2012. 2

[19] Y. KIM, J. S. PLANK, AND J. J. DONGARRA, Fault tolerant matrix operations using check-

sum and reverse computation, in Symposium on the Frontiers of Massively Parallel Comput-

ing, Oct. 1996, pp. 70–77. 3

[20] D. LI, J. VETTER, AND W. YU, Classifying soft error vulnerabilities in extreme-scale sci-

entific applications using a binary instrumentation tool, in Supercomputing, Nov. 2012. 3

[21] K. MALKOWSKI, P. RAGHAVAN, AND M. KANDEMIR, Analyzing the soft error resilience

of linear solvers on multicore multiprocessors, in International Symposium on Parallel Dis-

tributed Processing, Apr. 2010, pp. 1 –12. 3

[22] A. MOODY, G. BRONEVETSKY, K. MOHROR, AND B. DE SUPINSKI, Design, modeling,

and evaluation of a scalable multi-level checkpointing system, in Supercomputing, Nov. 2010.

2

[23] I. PHILP, Software failures and the road to a petaflop machine, in Workshop on High Perfor-

mance Computing Reliability Issues, IEEE Computer Society, 2005. 2

[24] E. PINHEIRO, W.-D. WEBER, AND L. A. BARROSO, Failure trends in a large disk drive

population, in USENIX Conference on File and Storage Technologies, 2007. 2

[25] R. RIESEN, K. FERREIRA, D. D. SILVA, P. LEMARINIER, D. ARNOLD, AND P. G.

BRIDGES, Alleviating scalability issues of checkpointing protocols, in Supercomputing, Nov.

2012. 2

[26] W. RUDIN, Principles of mathematical analysis, vol. 3, McGraw-Hill New York, 1964. 12

[27] K. SATO, A. MOODY, K. MOHROR, T. GAMBLIN, B. R. DE SUPINSKI, N. MARUYAMA,

AND S. MATSUOKA, Design and modeling of a non-blocking checkpointing system, in Su-

percomputing, Nov. 2012. 2

[28] B. SCHROEDER, E. PINHEIRO, AND W.-D. WEBER, Dram errors in the wild: a large-

scale field study, in SIGMETRICS Conference on Measurement and Modeling ofComputer

Systems, 2009, pp. 193–204. 2

19

[29] M. SHANTHARAM, S. SRINIVASMURTHY, AND P. RAGHAVAN, Characterizing the impact

of soft errors on iterative methods in scientific computing, in International Conference on

Supercomputing, 2011, pp. 152–161. 3

[30] J. SLOAN, R. KUMAR, G. BRONEVETSKY, AND T. KOLEV, Algorithmic approaches to

low overhead fault detection for sparse linear algebra, Dependable Systems and Networks,

(2012). 3

[31] V. SRIDHARAN AND D. LIBERTY, A study of dram failures in the field, in Supercomputing,

Nov. 2012. 2

[32] C. WANG, F. MUELLER, C. ENGELMANN, AND S. SCOTT, A job pause service under

LAM/MPI+BLCR for transparent fault tolerance, in International Parallel and Distributed

Processing Symposium, Apr. 2007. 2

[33] , Proactive process-level live migration in hpc environments, in Supercomputing, 2008.

2

20

v1.0

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	ACKNOWLEDGEMENTS
	Introduction
	Related Work
	Fault Characterization
	Single Bit Flips vs. Multiple Bit Flips

	IEEE 754 Specification
	Case Study: Vector Dot Products
	Analytic Error Propagation: Deterministic Case
	Analytic Error Propagation: Probabilistic Case
	Numerical Experiment

	Fixed Point Iterative Methods
	Example: Jacobi Method
	Numerical Example: Diffusion Equation
	Numerical Example: Scaling Comparison

	Conclusions

