
Environmental Research Letters

LETTER • OPEN ACCESS

Quantifying the influence of agricultural fires in northwest India on urban
air pollution in Delhi, India
To cite this article: Daniel H Cusworth et al 2018 Environ. Res. Lett. 13 044018

 

View the article online for updates and enhancements.

This content was downloaded from IP address 160.39.175.247 on 16/10/2018 at 20:26

https://doi.org/10.1088/1748-9326/aab303


Environ. Res. Lett. 13 (2018) 044018 https://doi.org/10.1088/1748-9326/aab303

LETTER

Quantifying the influence of agricultural fires in northwest

India on urban air pollution in Delhi, India

Daniel H Cusworth1,7 , Loretta J Mickley2, Melissa P Sulprizio2, Tianjia Liu1, Miriam E Marlier3, Ruth S

DeFries4, Sarath K Guttikunda5 and Pawan Gupta6

1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, 02138, United States of America
2 School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, United States of America
3 RAND Corporation, Santa Monica, 90401, United States of America
4 Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, 10027, United States of America
5 Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States of America
6 Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt MD 20770, United States of America
7 Author to whom any correspondence should be addressed.

OPEN ACCESS

RECEIVED

16 January 2018

REVISED

20 February 2018

ACCEPTED FOR PUBLICATION

1 March 2018

PUBLISHED

30 March 2018

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

Keywords: India, fires, air pollution, particulate matter, agriculture

Supplementary material for this article is available online

Abstract

Since at least the 1980s, many farmers in northwest India have switched to mechanized combine

harvesting to boost efficiency. This harvesting technique leaves abundant crop residue on the fields,

which farmers typically burn to prepare their fields for subsequent planting. A key question is to what

extent the large quantity of smoke emitted by these fires contributes to the already severe pollution in

Delhi and across other parts of the heavily populated Indo-Gangetic Plain located downwind of the

fires. Using a combination of observed and modeled variables, including surface measurements of

PM2.5, we quantify the magnitude of the influence of agricultural fire emissions on surface air

pollution in Delhi. With surface measurements, we first derive the signal of regional PM2.5

enhancements (i.e. the pollution above an anthropogenic baseline) during each post-monsoon

burning season for 2012–2016. We next use the Stochastic Time-Inverted Lagrangian Transport

model (STILT) to simulate surface PM2.5 using five fire emission inventories. We reproduce up to

25% of the weekly variability in total observed PM2.5 using STILT. Depending on year and emission

inventory, our method attributes 7.0%–78% of the maximum observed PM2.5 enhancements in Delhi

to fires. The large range in these attribution estimates points to the uncertainties in fire emission

parameterizations, especially in regions where thick smoke may interfere with hotspots of fire

radiative power. Although our model can generally reproduce the largest PM2.5 enhancements in

Delhi air quality for 1–3 consecutive days each fire season, it fails to capture many smaller daily

enhancements, which we attribute to the challenge of detecting small fires in the satellite retrieval. By

quantifying the influence of upwind agricultural fire emissions on Delhi air pollution, our work

underscores the potential health benefits of changes in farming practices to reduce fires.

1. Introduction

Residents of the heavily populated Indo-Gangetic Plain

(IGP) in India experience elevated health risks due

to poor air quality. The National Capital Territory of

Delhi (hereafter referred to as Delhi) sits within the

IGP and has a population of ∼16.5 million. The larger

National Capital Region of Delhi which is centered

on Delhi but also includes regions of Haryana, Uttar

Pradesh, and Rajasthan is estimated to exceed a pop-

ulation of 46 million (Registrar General India 2011).

Daily mean levels of surface particulate matter (PM2.5)

pollution inDelhi often exceed the World Health Orga-

nization threshold for unhealthy air (24 hour average

of 25�g m−3) as well as the daily mean threshold set

by the Indian Central Pollution Control Board (CPCB,

60�g m−3). Exceedances of PM2.5 standards in Delhi

occur year-round, with an annual mean PM2.5 con-

centration of more than 100�g m−3 (Tiwari et al

2013). During the post-monsoon season (October–

November), ambient PM2.5 concentrations are subject

to large episodic spikes. Pollution from anthropogenic
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sources (Guttikunda and Jawahar 2014, Gurjar et al

2016) is known to influence a variety of health ail-

ments for Delhi residents (Dey et al 2012). Nagpure

et al (2014) estimated a ∼60% increase in Delhi mor-

tality due to the degradation of air quality between

2000 and 2010. Residents of Delhi have been found

to suffer from diseases related to air pollution at

a rate 12 times higher than the national average

(Kandlikar and Ramachandran 2000). One major

uncertainty is the extent to which smoke emissions

from post-monsoon agricultural fires in rural areas

influence the already high concentrations of urban

air pollution in the IGP. This study aims to quan-

tify the magnitude of the contribution of these fire

emissions to PM2.5 pollution in Delhi during the post-

monsoon burning season over the 2012–2016 time

frame. The attribution of surface PM2.5 due to fires ver-

susotheranthropogenic sources is critical indeveloping

strategies to reduce overall pollution exposure.

India’s agricultural ‘breadbasket’ is located in the

northwestern-most region of the country, mostly in

the state of Punjab but also in the neighboring state

of Haryana. Agriculture in these states is typically

characterized by two growing seasons: a predomi-

nantly winter wheat crop, harvested in April–May,

and a predominantly summer rice crop, harvested

in October–November (Vadrevu et al 2011). Increas-

ing utilization of mechanized harvesters over the last

30 years has decreased costs and improved efficiency

for farmers, and studies have found that more than

75% of rice is harvested using a combine harvester

in Punjab (Kumar et al 2015). However, this har-

vesting method leaves more crop residue on the

fields than traditional methods using a sickle, and

many farmers burn this residue to ready fields for

the next growing season (Kaskaoutis et al 2014).

Smoke from these fires consists of black carbon and

organic particulate matter. The post-monsoon rice har-

vest season coincides with post-monsoon conditions

that favor stagnation and weak surface northwest-

erly winds in the IGP (Singh and Kaskaoutis 2014).

These conditions allow smoke to slowly permeate

throughout the IGP, including Delhi, about 350 km

downwind from Punjab.

Previousworkhasdiagnosedco-variabilitybetween

fire emissions in Punjab and observed urban pollu-

tion levels in the region and downwind. For example,

using ground-based sensors in the Punjab city of

Patalia, Mittal et al (2009) reported PM2.5 enhance-

ments as high as 547�g m−3 during the 2007 burning

season of October-November. Using satellite data

from the Moderate Resolution Imaging Spectrora-

diometer (MODIS), Mishra and Shibata (2012) found

enhancements of 0.1–0.3 in 850 nm aerosol optical

depth (AOD) during the 2009 post-monsoon burn-

ing season over the IGP. Consistent with this study,

Kaskaoutis et al (2014) found daily maximum MODIS

550 nm AOD to often be in excess of 2.0 during

the 2012 post-monsoon burning season. Observations

from two Aerosol Robotic Network (AERONET) sites

in the IGP show that aerosols tend towards larger

volume and smaller particle size during the post-

monsoon burning season (Kaskaoutis et al 2014); such

attributes are characteristic of fresh soot. Our previ-

ous work (Liu et al 2018) used back trajectory analysis

to define an airshed region upwind of Delhi during

both pre-monsoon (April–May) and post-monsoon

burning seasons. The study focused on relating avail-

able data on PM10 and other air quality measurements

to fire radiative power (FRP) in the airshed for both

burning seasons, accounting for meteorological con-

ditions. We found that post-monsoon MODIS FRP

within the airshed correlates with observed concen-

trations of surface PM10, visibility, and AOD in

Delhi, suggesting a coupling between upwind fires,

meteorology, and urban pollution.

Missing from recent studies is an estimate of the

magnitude of surface PM2.5 in Delhi that can be

attributed to agricultural fire emissions. Building on

the work of Liu et al (2018) and other studies, this

study aims to address this gap by combining analysis

of surface PM2.5 observations in Delhi with parti-

cle dispersion modeling. We find that our model can

capture much of the weekly observed PM2.5 variabil-

ity in Delhi, as well as at least some of the extreme

peaks in daily PM2.5 during the post-monsoon burn-

ing season. We further fine-tune these simulated

PM2.5 estimates with a statistical model fit with local

meteorology. Discrepancies between the model and

observed PM2.5 in Delhi point to the difficulty in

detecting small fires from satellite, especially when

clouds and/or smoke interfere with detection. Smoke

from satellite-detected fires that are detected can con-

tribute more than half the total observed PM2.5 across

Delhi during the post-monsoon burning season.

2 Data and methods

2.1. Surface and satellite observations

The CPCB provides online hourly observations of a

variety of pollutants including PM2.5 at 12 sites within

Delhi (www.cpcb.gov.in/CAAQM). We focus on

observed PM2.5 during the post-monsoonburning sea-

son (here defined as October 17–November 30) during

2012–2016. We find that at least 90% of October–

November FRP over the northwestern IGP during

2012–2016 is detected during this time window. No

CPCB site provides a complete record of PM2.5 obser-

vations during the entire course of 2012–2016. The US

Embassy in Delhi (https://in.usembassy.gov/embassy-

consulates/new-delhi/air-quality-data/) also provides

daily PM2.5 from 2013–2016, and is mostly complete

during that time span. Finally, we rely on obser-

vations from a new monitoring network, #Breathe

(http://api.indiaspend.org/dashboard/), launched in

2016 by IndiaSpend, a grassroots initiative to moni-

tor air quality at ten sites in Delhi and elsewhere in
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Figure 1. Median 2012–2016 STILT sensitivities of PM2.5 observations in Delhi (28.62◦N, 77.21◦E, purple circle) to fire emis-
sions in the surrounding grid cells during the post-monsoon burning season (October 17–November 30). Sensitivities below
10−6 ppm �mol−1 m2 s are not shown.

India. Figure S1 shows the spatial configuration of

all surface sites where PM2.5 was available sometime

during 2012–2016. We aggregate and validate these

surface observations with satellite AOD (described in

section 3.1) retrieved from the MODIS Level 3 Aqua

Deep Blue algorithm (MYD08D3; Hsu et al 2013).

The Deep Blue algorithm is designed to provide AOD

retrievals over bright surfaces, and was found to corre-

late well with the AERONET station in Kanpur, India

(0.70≤R≤ 0.86; Sayer et al 2013).

2.2. Fire emission inventories

In situ information that can be used to quantify

regional fire emissions on the daily scale in Punjab

and Haryana is limited. Thus, we consider top-down

fire emission inventories that are based on satellite

information. The inventories considered in this study

are the Fire Inventory from NCAR (FINN; Wiedin-

myer et al 2011), the Global Fire Emissions Database

version 4 with small fires (GFED4.1s; van der Werf

et al 2017, Giglio et al 2013, Randerson et al 2012), the

Global Fire Assimilation System (GFAS; Kaiser et al

2012), and The Quick Fire Emissions Dataset (QFED;

Darmenov and da Silva 2013). Each of these fire emis-

sion inventories are based in part on thermal anomalies

detected by MODIS (Giglio et al 2006). However,

they each differ in their treatment of emission factors

and land cover that translate these thermal anomalies

into emission estimates, and they also have different

methods for treating gaps in the MODIS record. We

include another inventory, called GFED+Agriculture,

where increase the GFED4.1s emission factors asso-

ciated with agricultural burning by a factor of three.

More detailed information about each inventory is

contained in appendix S1 available at stacks.iop.org/

ERL/13/044018/mmedia.

2.3. Particle dispersion, chemical transport, and sta-

tistical modeling

We perform 2012–2016 simulations of daily surface

PM2.5 in Delhi using the Stochastic Time-Inverted

Lagragian Transport (STILT) model (Lin et al 2003),

driven by 0.5◦ × 0.5◦ Global Data Assimilation meteo-

rology (GDAS; https://ready.arl.noaa.gov/gdas1.php).

STILT is a receptor-oriented Lagrangian particle dis-

persion model (appendix S2), and has been used

previously to assess the influence of wildfires on urban

air pollution (Mallia et al 2015). Figure 1 shows the

spatial footprint of the median 2012–2016 sensitiv-

ities of a Delhi receptor (28.62◦N, 77.21◦E) to the

surroundingemissionsduring theburning season. Sen-

sitivities are derived from particle back-trajectories

(appendix S2). We see that Delhi is highly sensi-

tive (∼10−3 ppm�mol−1 m2 s) to the upwind burning

regions in Punjab. Similar to Koplitz et al (2016), we

assume that the PM2.5 reaching Delhi from upwind

fires is in its primary BC or OC form.

Using STILT footprints, we simulate the urban

fate of primary PM2.5 from fires and assume no chem-

istry. To account for additional PM2.5 production

from other anthropogenic sources, we determine a

background or baseline from observations (described

further in section 3.1). We compare this baseline

to a simulated anthropogenic PM2.5 from the 3D

global chemical transport model, GEOS-Chem (geos-

chem.org; appendix S2).

We tune the STILT simulation of PM2.5 for a cer-

tain receptor using the least absolute shrinkage and

selection operator (LASSO; Tibshirani 1996, appendix

S3), which is a statistical model that here relies on

local variables that may not be well captured in the

0.5◦ reanalysis, e.g. local precipitation, mixing layer

height, and wind speed. All variables are taken from

3
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Figure 2. (Top) Number of daily-averaged PM2.5 observations available at the Central Pollution Control Board (CPCB), US Embassy,
and India Spend sites during the post-monsoon burning season (October 17–November 30) for each year during 2012–2016. (Bottom)
Correlations R between observed PM2.5 and satellite aerosol optical depth (AOD) over Delhi. The horizontal line at R = 0.5 corresponds
to the threshold used to determine if a site is included in the PM2.5 network average. All correlations above R = 0.5 are statistically
significant (p< 0.05).

the Integrated Global Radiosonde Archive (Durre et al

2006) and the Global Historical Climatology Network

(Menne et al 2012).

3. Results

3.1. Creating a network-average and anthropogenic

baseline of PM2.5

Due to data inconsistencies among the CPCB sites,

we employ data quality preprocessing before calculat-

ing a city-wide network average of urban PM2.5 for

Delhi. Figure 2 shows the number of daily averaged

PM2.5 observations available at each site during the

burning season for each year. Few CPCB sites have

a record of observations of more than three years

during 2012–2016. To represent mean pollution expo-

sure across the city through the years, and account

for potential problems with instrumentation or local

outliers, we implement a two-step data-cleaning proce-

dure (appendix S4). In 2016, we have data from CPCB,

US Embassy, and India Spend PM2.5 observations. We

compare each data source (figure S2) and find close

correlation between datasets (R = 0.91–0.92).

We next determine a PM2.5 baseline in Delhi to

represent typical non-fire anthropogenic pollution lev-

els in the absence of smoke from agricultural fires.

Quantification of this baseline is important as we

use it to derive a PM2.5 enhancement from observa-

tions (yobs = total observed PM2.5—baseline). Baseline

anthropogenic PM2.5 in post-monsoon months con-

sists of elemental carbon, organic matter, and

secondary sulfate-nitrate-ammonium from gasoline

exhaust, coal combustion, dust, and urban biomass

combustion (Pant et al 2015). For simplicity, we

assume that baseline levels are constant during a given

burning season. However, we anticipate that baseline

PM2.5 likely changes over the years due to changes

in the surface monitoring network and local emis-

sion sources. For these reasons, we compute a unique

baseline PM2.5 for each year during 2012–2016. We

apply three different methods with different assump-

tions in order to test the robustness of our baseline

estimates. Briefly (more details discussed in appendix

S5), Method 1 determines the baseline by averaging all

observations on the last day of N days of no fires in

the Punjab. Method 2 compares overlapping fire and

STILT sensitivity grid cells, and determines a baseline

if little or no overlap is detected. Method 3 averages

the lowest M weekly average PM2.5 observations.

Figure 3 shows the interannual variability in

baseline estimates of urbanpollution inDelhi for 2012–

2016. Depending on the year and method chosen, the

baseline can vary from 130–290�g m−3. The Method

3 baseline is consistently lower than the other base-

lines, however each baseline estimate is at least twice the

CPCB daily air quality standard of 60�g m−3. Method

3 shows the greatest interannual stability, and pre-

dicts an average baseline across 2012–2016 of about

150�g m−3, which is within the annual average range

of 122.3 ± 90.7�g m−3 total PM2.5 reported by Tiwari

et al (2013) for Delhi in 2011. The mean network

averaged PM2.5 during the month prior to the post-

monsoon burning season (here September 17–October

16) ranges from 90–150�g m−3 during 2012–2016,

which is slightly lower but near the Method 3 baseline

estimate.

We compare these baseline estimates of Delhi

PM2.5 to that provided by GEOS-Chem. For this

comparison, we perform the GEOS-Chem simulation

4
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Figure 3. Estimates of the anthropogenic PM2.5 background in Delhi during the burning season (October 17–November 30). Method
1 determines the baseline by averaging all observations on the last day of N days of no fires in the Punjab. Method 2 compares
overlapping fire and STILT sensitivity grid cells, and determines a baseline if little or no overlap is detected. Method 3 averages the
lowest M weekly average PM2.5 observations. Error bars represent 1 standard deviation when baseline parameters (e.g. N, M) are
varied, as described in the text.

without the influence of fires. Figure S3 shows the

resulting distribution of daily average urban PM2.5

during the burning season of 2012. The distribution

is centered on a mean of 99�g m−3, but is slightly

skewed towards larger PM2.5 values, with a maxi-

mum at 200�g m−3. Our observation-driven method

for determining the 2012 PM2.5 baseline yields values

ranging from 147 ± 47.9�g m−3 to 287 ± 21.9�g m−3

(figure 3), or about 1.5–3 times the mean GEOS-Chem

simulated baseline.

3.2. Variability of surface PM2.5

Wefirstprobehowwell theSTILTmodeling framework

reproduces the variability of PM2.5 in Delhi during

the burning season. Our approach is to couple daily

STILT sensitivity maps to each of the fire emission

inventories described in appendix S1 and compare

the resulting PM2.5 enhancements in Delhi to those

observed when averaged across the network and with

the derived PM2.5 baseline subtracted. To reduce noise

andvariability arising from local emissions,weconsider

only weekly-averaged modeled and observed PM2.5

enhancements. Results show that each of the emission

inventories to some degree captures the variability in

the surface observed surface PM2.5 (0.29<R< 0.50,

table 1), suggesting that smoke from fires upwind

drives at least part of the weekly variability of Delhi

PM2.5. This modeling result agrees with previous stud-

ies that report significant correlations between urban

AOD, PM10, visibility, and PM2.5 and MODIS FRP

(Liu et al 2018, Kaskaoutis et al 2014).

As a measure of the mean bias of our predicted

PM2.5 compared to Delhi observations, we compute

the root mean squared error RMSE (table 1). We find

that driving the model with STILT alone accounts

for an RMSE between 79–109�g m−3, depending on

the baseline method and emissions inventory, reveal-

ing that even though we can predict much of the

Table 1. Correlation and root mean squared error (RMSE) between
modeled and observed PM2.5 enhancements in Delhi for 2012–2016.
Ranges are determined by the method (1–3) used to determine the
anthropogenic baseline (see section 3.1).

STILTa STILT + LASSOb

Model Correlation RMSE Correlation RMSE

GFED 0.43–0.50 80–109 0.72–0.78 53–62
QFED 0.41–0.46 79–101 0.69–0.72 59–65
FINN 0.29–0.45 80–98 0.70–0.73 59–64
GFAS 0.38–0.42 81–109 0.66–0.70 62–68

a Correlation and RMSE between observed and modeled PM2.5. The

PM2.5 enhancements are simulatedusing theStochasticTime-Inverted

Lagrangian Transport (STILT) model driven with several fire emission

inventories.
b Correlation and RMSE between observed and modeled PM2.5. Here

the results from STILT are combined with local observed meteorology

fromsondes (precipitation,wind speed,winddirection,mixingheight)

and fit to the observed PM2.5 enhancements using the least absolute

shrinkage and selection operator (LASSO), a form of regularized linear

regression.

observed surface PM2.5 variability using STILT, we

greatly underestimate the magnitude of the enhance-

ments. A potential reason for this underestimate could

be that the GDAS reanalysis used to drive STILT poorly

characterizes the local meteorology. We add infor-

mation from local meteorological sources and fit a

statistical model to the observed PM2.5 enhancements.

Results of the statistical model are shown in table 1.

Adding local meteorological factors improves the cor-

relation of predicted vs. observed PM2.5 in each fire

emission scenario (0.66<R< 0.78). Figure 4 presents

the normalized regression coefficient weights for just

the GFED4.1s simulation. Regression coefficients for

other statistical models fit with different emission

inventories are shown in figure S5. The STILT-

GFED4.1s predictor is one of the most significant

contributors, as expected by the presence of signifi-

cant correlation (0.43<R< 0.50) between observed

5
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Figure 4. Standardized regression coefficients (�g m−3 standard deviation−1) fit to daily PM2.5 enhancements, derived from three
different baseline methods. See text for description of these methods. The GFED term is the PM2.5 prediction based on driving STILT
with GFED4.1s. The other predictors are derived from surface or sonde observed meteorology.

and GFED4.1s STILT-derived PM2.5 enhancements.

The next two dominant predictors of observed PM2.5

are wind speed below the boundary layer and pre-

cipitation. This result underscores the importance

of local meteorology as drivers of urban PM2.5

variability and suggests that the assimilated GDAS

meteorology may not capture such meteorological

effects at 0.5◦ resolution. The statistical model yields

RMSE values ranging from 53–68�g m−3, substan-

tially lower than those from the purely STILT-driven

model, but still rather large. We hypothesize that

other unaccounted factors (e.g. the smoke from small

fires that escape satellite detection) could lead to

model bias. We discuss this reasoning further in

section 4.

3.3. Maximum daily enhancement of PM2.5 during

burning season

While we capture the variability of PM2.5 with both

STILT and the statistical model, in both cases we find

a high RMSE when compared to observations. Here

we focus on smoke extremes during each fire season to

probewhether themodel systematically underestimates

surface PM2.5. We also quantify the contribution of

smoke PM2.5 derived from observations or STILT to

total PM2.5 during these extreme events.

Figure 5 shows the model simulated maximum

daily smoke enhancement in each burning season—i.e.

the enhancement on that day each season charac-

terized by the greatest simulated PM2.5 value. For

years when STILT simulations disagree on which

day should produce maximal PM2.5, we choose the

day for which most models agree. The plot also

shows the observed PM2.5 enhancement and total

observed PM2.5 that correspond to the day where

the STILT simulation predicted the maximal urban

pollution enhancement. We compare these values in

figure 5 to the maximum observed PM2.5 enhance-

ment for each burning season, regardless of when

the STILT simulation predicted a large enhancement.

The largest observed PM2.5 enhancements occur in

2012 and 2016 (492 and 648�g m−3 respectively, aver-

aged across all baseline methods). The maximum

observed enhancements are much lower during 2013–

2015 (130–264�g m−3), which could be a result of

lower fire activity or other local pollution-causing

events. The magnitude and interannual variability in

the maximum observed PM2.5 enhancement differs

from STILT, for which the largest simulated PM2.5

enhancement occurs in 2013 (65–232�g m−3). The

STILT simulated enhancements show roughly inter-

annual consistency during 2012–2016 when averaged

across all inventories (99–160�g m−3). However, sev-

eral of the days over 2012–2016 where the observations

alone predict the largest seasonal enhancements are

not consistent with the days STILT predicts. When

we instead compare the maximum STILT enhance-

ments to the same-day corresponding observed PM2.5

enhancement (108–299�g m−3), we find closer agree-

ment. The FINN and GFED + Agriculture emission

inventories often give the largest estimate of magnitude

of the PM2.5 enhancement in Delhi (145–231�g m−3

and 147–255�g m−3, respectively). We find the largest

mismatch between observed and modeled enhance-

ments during 2012 and 2016 across all models. In these

years, depending on emission inventory, the maxi-

mum STILT derived enhancements are 45–147 and

37–255�g m−3
,
respectively.

Table 2 shows the percent contributions of smoke

PM2.5 to total PM2.5 on extreme smoke days predicted

by STILT—i.e. the day during the season where STILT

predicts that the smoke enhancement is greatest. This

provides a metric of the contribution of fires dur-

ing the largest predicted episodes each season to total

6
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Figure 5. The maximum of daily simulated enhancements of PM2.5 due to fires upwind fires during each post-monsoon burning
season. In parentheses is the day in which the STILT simulation of PM2.5 reached its maximum during each burning season from
2012–2016. In shades of red are the different model simulated PM2.5 enhancements using different fire emission inventories that
correspond to the date in parentheses. In shades of blue are the different network-averaged observed PM2.5 enhancement estimates
above the anthropogenic baseline for three different baseline methods that correspond to the date in parentheses. The outlined dark
blue box represents the total observed PM2.5 for the date in parentheses. The outlined grey box represents the maximum observed
PM2.5 enhancement regardless of the date when the STILT simulation predicted largest enhancement during the post-monsoon
burning season.

Table 2. The percentage of the maximum PM2.5 simulated STILT
enhancements to corresponding total observed PM2.5 for each
burning season in Delhi during 2012–2016. OBS refers to the range of
PM2.5 enhancements derived using the three baseline methods (see
section 3.1). Each of the other columns reports simulated PM2.5

enhancements from STILT.

Maximum enhancement
Year OBSa GFED GFED+ AGRIb QFED FINN GFAS

2012 21%–60% 13% 40% 33% 38% 12%
2013 54%–61% 15% 48% 45% 54% 24%
2014 36%–50% 24% 78% 18% 68% 7.0%
2015 21%–56% 19% 62% 58% 42% 15%
2016 52%–72% 16% 50% 16% 34% 7.3%

a OBS corresponds to the network-averaged PM2.5 enhancement that

was observed on same day that the maximum STILT-simulated PM2.5

enhancement occurred.
b GFED+AGRI is an emissions inventory based on GFED dry matter

emissions, with 100% agriculture landcover assumed and emissions

factors increased by a factor of three.

surface particulate pollution observed in Delhi. The

observed PM2.5 enhancement on days when STILT

predicted a pollution maximum accounts for 21%–

72% of the total observed PM2.5, depending on the

year and baseline method used, implying that PM2.5

from a regional source (here assumed to be fires) can

constitute a large fraction of the total PM2.5 concen-

tration. For STILT PM2.5, the GFED + Agriculture

and FINN simulations provide large PM2.5 estimates,

and can account for as much as 78% and 68% percent

of the total corresponding observed PM2.5 in 2014,

respectively. In other years, these two inventories can

account for asmuchas and40%–62%and28%–54%of

the total corresponding observed PM2.5, respectively.

This result means that on days when STILT predicts

a large enhancement in Delhi from agricultural fires,

the smoke from these fires constitutes a large por-

tion of the total PM2.5. On the lower end, the GFAS

simulation accounts for just 7.0%–24% of the corre-

sponding total PM2.5. Since all inventories use MODIS

fire detections to constrain emissions, the variability

in PM2.5 estimates that arise from these inventories

can be attributed to differing emission factors, allo-

cation of additional fires from burned area maps,

model assimilation, and MODIS gap-filling methods.

Figure 5 and tables 1–2 show the large sensitivity

in our PM2.5 estimates to the underlying assump-

tions used to translate satellite retrievals to actual

emissions.

The results of figure 5 and table 2 show that STILT

can at times reproduce much of the observed PM2.5

enhancement in Delhi (depending on the emission

inventory used), a result that appears at odds with

the very high RMSE between observed and modeled

enhancements in table 1. To further investigate the

reasons driving the discrepancies between observed

and modeled PM2.5 enhancements, we plot the time

series of observed and simulated PM2.5 enhancements

for the 2013 post-monsoon burning season (figure 6).

We show observed and simulated PM2.5 for 2012 and

2014–16 in figure S5 and include the daily GEOS-

Chem simulation of PM2.5 for 2012. For 2013, three

versions of the STILT model—those driven by FINN,

QFED, and GFED + Agriculture emissions—are able

to match the PM2.5 enhancement on November 5th

almost exactly. However, during the days before and

after this large pollution enhancement, these models

predict little or no PM2.5.

There are several potential reasons for the mis-

matchesbetweenmodeled andobserved enhancements
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Figure 6. Time series of observed and modeled PM2.5 during the 2013 burning season. The blue envelopes represent the observed
total PM2.5 and the PM2.5 enhancement derived by subtracting the daily PM2.5 by the mean PM2.5 of the lowest week during the
season. Each colored line represents a model simulation with a different fire emission inventory. The black dots are the MODIS AOD
retrievals during the burning season. The dashed vertical line on represents the start of the Diwali festival for 2013 (November 3rd).

in smoke PM2.5. On the days preceding the Novem-

ber 5th maximum, MODIS may have been unable

to detect many small agricultural fires upwind. Only

when a sufficient number of these small fires become

detectable is a pollution enhancement predicted by

the STILT model. The challenge in detecting small

fires from satellites is a well-known problem (Ran-

derson et al 2012). November 3rd was also the start

of Diwali in 2013, a Hindu religious holiday cele-

brated with an abundance of firecrackers and sparklers.

However, we find that although it can be a contrib-

utor, Diwali is not a principal driver of sustained

post-monsoon PM2.5 enhancements (appendix S6).

For the days succeeding the November 5th PM2.5

enhancement, local meteorology may have deviated

from the coarser 0.5◦ GDAS winds, favoring increased

stagnation within the city and potentially amplifying

surface PM2.5 exposure. Stagnation could have been

further amplified by boundary layer stabilization from

enhanced PM2.5 aloft, a feedback previously examined

as an amplifier of pollution in China (e.g. Petäjä et al

2016, Wang et al 2014, Ding et al 2016).

We also hypothesize that dense smoke from fires

may sometimes obscure the signal of fire activity at the

earth’s surface. Figure 7(a) shows True Color Terra

reflectance imagery from MODIS as well as MODIS

Aqua + Terra fire detections on a sample day over

the IGP (November 6, 2016). Figure 7(b) shows the

Visible Infrared Imaging Radiometer Suite (VIIRS)

reflectance imagery with VIIRS fire detections. VIIRS

detects many more fires on this day than does MODIS,

perhaps because VIIRS has a finer resolution and dif-

ferent fire detection algorithm than MODIS (375 m

compared to 1 km; Schroeder et al 2014). The MODIS

cloud product misidentifies the thick smoke plumes

over the Punjab as clouds on this day. The Collec-

tion 6 MODIS fire product accounts for thick smoke

from fires by relaxing the thresholds that determine

whether a pixel is cloud-obscured (Giglio et al 2016).

In fact, on the day illustrated in figure 7 (Novem-

ber 6th, 2016), the MODIS fire product assumes that

no pixels over Punjab and Haryana are obscured

by clouds, even though the MODIS cloud prod-

uct reports cloud cover (figure 7(c)). Even so, fire

detections still appear minimal in regions where the

smoke is thickest. Thus we hypothesize that the large

model underestimates of smoke PM2.5 enhancements

in 2016 may be due in large part to layers of dense

smoke interfering with satellite detection of thermal

anomalies.

4. Discussion

We estimate the contribution of smoke from upwind

agricultural fire emissions to PM2.5 exposure in Delhi

during the burning season (October 17–November

30). We apply two methods: (1) an observationally

based method using CPCB and other surface obser-

vations, in which we determine daily enhancements

above background levels, averaged over Delhi, and

(2) application of the Lagrangian particle dispersion

model STILT, in which we implement a suite of fire

emission inventories. We find that the two approaches

yield timeseries of weekly-averaged PM2.5 that cor-

relate significantly (0.29<R< 0.50) with each other,

implying that smoke from agricultural fires upwind

accounts for much of the weekly variability of PM2.5

in Delhi during the burning season. Addition of local

meteorological factors (precipitation, wind speed, wind

direction, temperature, and mixing heights) improves

the correlation further (0.66<R< 0.78). The maxi-

mum PM2.5 smoke concentration calculated by the

STILT model during each burning season is of sim-

ilar magnitude as its corresponding observed PM2.5

enhancement. For example, in 2013, the maximum
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Figure 7. MODIS or VIIRS surface reflectance maps for November 6, 2016 overlaid with different fire and cloud detection algorithms.
The top panel (A) shows the Terra and Aqua MODIS 1 km fire counts used in part to drive the fire emission inventories used in this
paper. The middle panel (B) shows 375 m VIIRS day and night fire detections. The third panel (C) shows MODIS fire detections with
MODIS Terra daytime cloud fraction overlaid. Comparison of the top and middle panels show that the resolution of the satellite sensor
could influence the number of fires detected, meaning that many smaller fires may be undetected with current MODIS capabilities.
Comparison with the bottom panel shows that thick smoke in the Indo-Gangetic Plain may be detected as clouds, which may interfere
with surface thermal anomalies.

simulated PM2.5 enhancements (occurring on Novem-

ber 5th) from GFED + Agriculture, QFED, and

FINN are 48%, 45%, and 54% of the corresponding

observed maximum PM2.5, respectively, close to the

54%–61% range derived from observations (table 2).

This result implies that smoke from agricultural fires

contributes significantly to PM2.5 pollution in Delhi

during intenseepisodes.However, ingeneral, thePM2.5

simulations greatly underestimate the enhancements

implied by the observations over the entire burning

season, with RMSE of 79–109�g m−3, indicating that

further improvements to fire emission inventories are

needed.

We find that although we can predict the mag-

nitude of the maximum PM2.5 enhancement during

most seasons using STILT, we miss many smaller

PM2.5 enhancements. In the case of 2013, many

smaller fires were likely undetected due to limita-

tions in the resolution of the MODIS retrieval. Active

fire detection using higher resolution (375 m) VIIRS
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data may provide a promising new avenue to quan-

tify the contribution from small fires. For other fire

seasons, as in 2016, STILT underestimates the maxi-

mum PM2.5 enhancement more severely, even though

Delhi experienced much greater concentrations of

PM2.5 than compared to previous seasons. The fires

in 2016 were especially strong, but analysis of visual

MODIS imagery, fire counts, and cloud cover sug-

gests that many fires were either missed due to the

coarse resolution of MODIS detection or were not

observed by satellites due to interference of thick

smoke. If there are missed fires due to the interac-

tion of thick smoke with surface thermal anomalies,

this could potential represent a large source of under-

estimation in assimilated fire emission inventories. As

GFAS and QFED estimate FRP in cloud-obscured pix-

els by using information from adjacent non-obscured

pixels, an omitted or false-negative thermal anomaly

under thick smoke would not be assimilated in the

fire emission inventory. In Punjab and Haryana, where

thick smoke is prevalent during the post-monsoon

season due to agricultural fires and low boundary lay-

ers, this problem could particularly exacerbate low

fire emission estimates.

Some uncertainty in this analysis can be traced

to the methods of obtaining a seasonal PM2.5 base-

line. We incorporate three different methods to isolate

the PM2.5 enhancement due to fires. However, each

of these methods shows considerable sensitivity to its

various threshold parameters, and there is much vari-

ability between each of the methods (e.g. the baseline

for 2016 ranges from 140 to 240�g m−3). As more

monitors become available in Delhi, distinguishing a

regional signal from local enhancement will become

less challenging. Inversion methods to optimize emis-

sion factors or the spatial allocation of emissions

could then be applied with more confidence, since

these methods rely on the accuracy of the observed

PM2.5 enhancement. Instead of computing the base-

line from the observations, one could instead simulate

the PM2.5 baseline using a chemistry model such

as GEOS-Chem over the entire time domain. How-

ever, the result of such simulations would depend

strongly on the quality of the emissions used to drive

the model and on the extent to which we under-

stand pollution chemistry in this region. In our 2012

GEOS-Chemsimulation,wefindthat themodelunder-

estimates the PM2.5 baseline by at least a factor of 2,

compared to the baselines derived from observations.

Many studies have assessed the human health

impact of elevated particulate pollution in Delhi (Nag-

pure et al 2014, Kandlikar and Ramachandran 2000).

Our work builds on these studies by quantifying

the contribution of agricultural burning in the Pun-

jab and Haryana to the degradation of Delhi air

quality. Although officially banned nationally and

enforced on the state level by the National Green Tri-

bunal Act of 2010 (Nain Gill 2010), the practice of

agricultural burning is cheap and commonplace for

farmers after harvest. India’s population is expected

to surpass China 2022, and reach 1.7 billion by 2050

(United Nations 2015). Delhi is projected to grow to

a population of 36 million by 2050 (Hoornweg and

Pope 2013). Thus the need for efficient and inexpen-

siveagriculturalproduction isparamount to feeding the

increasing population. However, the adverse effects of

fire emissions need to continue to be seriously consid-

ered and more accurately quantified as the populations

of Delhi and the greater IGP continue to grow, leav-

ing more people at risk. Building on the approaches

in previous studies (e.g. Liu et al 2018), the mod-

eling approach presented in this paper can be used

to infer not just the co-variability of urban pollution

and upwind fires, but also the percent contribution of

smoke to the already intense urban PM2.5 in Delhi. As

estimates of fire emissions improve and the distribu-

tion of air quality monitors in Delhi expands, such

an approach will reduce uncertainty in the impacts

of current agricultural practices that involve fire. This

information can provide policymakers with a quanti-

tative sense of the consequences of current agricultural

burning practices in regions upwind of the city in

order to inform decision-making.
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