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A small system in contact with a macroscopic environment usually approaches an asymptotic
state, determined only by some macroscopic properties of the environment such as the temperature
or the chemical potential. In the long-time limit, the state of the small system is thus expected to
be independent of its initial state. In some situations, however, the asymptotic state of the system
is influenced by its initial state and some information about the initial state is kept for all times.
Motivated by this finding, we propose a measure to quantify the influence of the initial state of an
open system on its dynamics. Using this measure we derive conditions under which the asymptotic
state exists and is unique. We demonstrate our concepts for the dynamics of the spin-boson model,
identify three qualitatively different long-time behaviors, and discuss how they can be distinguished
based on the proposed measure.

I. INTRODUCTION

If a small system is put into contact with a macroscopic
environment, the system comes to an equilibrium. This
phenomenon, usually called thermalization, is known for
centuries. However, its emergence from the microscopic
dynamics, described by Schrödinger’s equation, is still
not fully understood. To make this problem more ac-
cessible, thermalization is decomposed into different as-
pects, which can be discussed separately. Following this
approach [1, 2], a system interacting with some environ-
ment is said to equilibrate if its state evolves towards
some particular state, called the equilibrium or asymp-
totic state, and remains close to it for almost all times.
The system thermalizes if the asymptotic state fulfills the
following three properties. First, the asymptotic state is
influenced by the initial state of the environment only
via some macroscopic properties, like the total energy.
Second, it is independent of the initial state of the small
system. Third, it is close to a Gibbs or thermal state.

Recently, it was shown by Linden and coworkers [1]
that the equilibration of small subsystems is a general
property of quantum many-body systems. Assuming
that the time-evolution of the joint system, i.e. system
and environment, is unitary, they showed that any small
subsystem approaches an asymptotic state and remains
close to it for almost all times, provided that the total
Hamiltonian has non-degenerate energy level spacing [1].
They also showed that the asymptotic state does not de-
pend on the precise initial state of the environment, and
analyzed in which situations the asymptotic state is in-
dependent of the initial state of the small system.

The discussion in Ref. [1] demonstrates that subsys-
tem equilibration can, in fact, be derived from the
Schrödinger equation if one assumes certain spectral
properties of the underlying Hamiltonian. On the other
hand, it is known that there are systems in contact with
an environment which do not equilibrate or thermalize

[3–7]. Subsystems of many-body localized systems also
fail to thermalize locally due to the absence of transport
in these systems [8–10].

For finite dimensional systems the spectrum of the to-
tal Hamiltonian can be used to investigate subsystem
equilibration. There are, however, some limitations to
this approach. First, the spectrum can only be calcu-
lated for relatively small systems. Second, even if it was
possible to calculate the spectrum for arbitrarily large
systems, this approach cannot be used to investigate
subsystem equilibration for infinite dimensional systems,
which occur for example in the description of condensed-
phase environments, as the spectrum of such systems is
typically continuous. Third, non-degenerate energy level
spacing of the Hamiltonian only guarantee two aspects of
thermalization: subsystem state equilibration and bath
state independence.

The dependence of the equilibrium state on the ini-
tial state of the subsystem has been investigated in [11],
employing the time average of the quantum dynamical
map which encodes the time evolution of a subsystem in
contact with some environment. The analysis of [11] fo-
cuses on the role of system-environment correlations and
changes in the environmental states in the thermaliza-
tion of open quantum systems. Here, we study the full
time dependence of the quantum dynamical map. This
not only allows us to discuss the influence of the initial
state on the equilibrium state, but also to derive an upper
bound for the impact of the initial state on expectation
values at all times. Compared to the analysis based on
spectral properties of the total Hamiltonian, an analy-
sis of the dynamical map is much more feasible, as its
dimension is determined by the subsystem.

A simple example for a dynamical map is provided
by a dynamical semigroup with a time-independent gen-
erator in Lindblad form [12, 13]. For this special case
some properties of the Lindblad generator which guar-
antee a unique asymptotic state are known. These in-
clude certain properties of the Kossakowski matrix [14]
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or the algebra of the Lindblad generators [15–18]. On
the other hand, it is known that even for the simple situ-
ation of a time-independent generator in Lindblad form,
the asymptotic state can exhibit a dependence on the ini-
tial state of the open system if the generator possesses
symmetries [19–23].

In general, the dynamics of an open system are, how-
ever, not described by a dynamical semigroup with a gen-
erator in Lindblad form. In such situations, the classi-
fication of the asymptotic behavior of the open system
cannot be based on properties of the generator. In this
work, without assuming a particular form of the dynam-
ical map, we propose a measure to quantify the influence
of the initial state of an open system on its dynamics.
This measure can be used to analyze if an open system
approaches an asymptotic state and can be used to quan-
tify the influence of the initial state on the asymptotic
state.

The paper is organized as follows: In Sec. II we briefly
review some basic concepts of the theory of open quan-
tum systems, introduce the dynamical map and discuss
how it can be used to quantify the influence of the ini-
tial state on the dynamics of an open system. To il-
lustrate our theoretical concepts we demonstrate them
for a two-level system coupled to a harmonic environ-
ment, also known as the spin-boson model. We intro-
duce the model as well as the method we use to simulate
the dynamics, the multilayer multiconfiguration time-
dependent Hartree approach (ML-MCTDH), in Sec. III.
In Sec. IV we apply our measure to the spin-boson model
and discuss different long-time behaviors.

II. THEORY

An open quantum system S can be considered as a
subsystem of a larger system, composed of S and another
subsystem E, its environment [24–26]. The Hilbert space
of the joint system S + E is given by

HSE = HS ⊗HE , (1)

where HS and HE denote the Hilbert spaces of S and
E, respectively. Physical states of the joint system are
represented by linear, self-adjoint, positive semidefinite
operators of unit trace on HSE , also called density ma-
trices. We denote the set of all physical states over a
Hilbert space H by S(H). The state of the open sys-
tem S is obtained by tracing out the environmental de-
grees of freedom of ρSE ∈ S(HSE), i.e. ρS = trE{ρSE},
where trE{·} denotes the partial trace over the environ-
ment. Throughout this paper we consider finite dimen-
sional open systems S, and thus, the state of the open
system can be represented as a finite, Hermitian, positive
semidefinite matrix with trace one.

We suppose that the joint system is closed and de-
scribed by a time-independent Hamiltonian of the form

H = HS +HE +HI , (2)

where HS (HE) describes the Hamiltonian of the system
(environment), respectively, and HI describes the inter-
action between the system and the environment.

Since the joint system is closed, its time-evolution is
described by a unitary time evolution operator U(t) =
e−iHt/~. In the following we set ~ = 1. Under the
assumption of a factorized initial state, i.e. ρSE(0) =
ρS(0)⊗ρE(0), the state of the open system ρS(t) at time
t is given by

ρS(t) = trE{e−iHtρS(0)⊗ ρE(0)eiHt}
= ΦtρS(0). (3)

For a fixed initial state of the environment ρE(0),
Eq. (3) defines a linear map Φt on the set S(HS) as

Φt : S(HS)→ S(HS)

ρS(0) 7→ ρS(t). (4)

The map Φt, called the dynamical map, is a superop-
erator mapping any initial state of the open system to
the corresponding state at time t. Thus, it encodes the
complete information on the time evolution of the open
system. Using Eq. (3), one can show that the dynamical
map preserves the Hermiticity and the trace of operators,
and that it is a positive map, i.e. Φt maps positive op-
erators to positive operators. Hence, Φt maps physical
states to physical states, implying that S(HS) is closed
under the action of Φt. Note that the dynamical map is
not only positive but also completely positive [24–26].

To discuss the long-time behavior of the open quantum
system, we introduce the notion of an asymptotic state
ρS,∞. For a given initial state ρS(0), the corresponding
asymptotic state is defined as

ρS,∞ := lim
t→∞

ΦtρS(0), (5)

provided the limit exists. In general, the asymptotic state
can depend on the initial state. The set of all asymptotic
states is given by the image of all possible initial states
of the open system under the dynamical map. Formally
it is defined as ImΦ∞ := limt→∞Φt(S(HS)). A state
ρS is said to be invariant if it is left unchanged by the
dynamical map, i.e. ρS = ΦtρS holds for all times t.
We emphasize that an asymptotic state need not be an
invariant state, i.e. ΦtρS,∞ 6= ρS,∞. The dynamical map
Φt is called relaxing if there exists a unique state ρ̃∞ ∈
S(HS), such that

ρ̃∞ = lim
t→∞

ΦtρS(0) (6)

holds for all possible initial states ρS(0) ∈ S(HS) [14, 15].
In such a situation, the set of asymptotic states ImΦ∞
consists of a single state, i.e. is zero dimensional. There
are situations, in which ρS(t) does not become stationary
as t → ∞, and the limit in Eq. (5) does not exist. This
happens, for example, if decoherence free subspaces in
the Hilbert space of the open system exist [5].
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To investigate the asymptotic behavior of the open
system, we consider the dynamical map Φt, defined by
Eqs. (3) and (4), which encodes the full information
about the dynamics of the open system. Calculating the
dynamical map is usually not possible since it involves
the time-evolution of the joint system. It is, however,
possible to reconstruct the dynamical map from the dy-
namics of the open system alone in the following way. Let
ρS,kl be the matrix representation of the reduced density
matrix, i.e. ρS,kl = 〈k|ρS |l〉, where |l〉 is some fixed basis
in the Hilbert space of the open system. The action of
the dynamical map on the reduced density matrix can be
written as

ρS,ij(t) =
∑
kl

Φt;ij,klρS,kl(0), (7)

where Φt;ij,kl = tr
{

(|i〉 〈j|)†Φt |k〉 〈l|
}

. In this represen-

tation the dynamical map is a rank-4 tensor with N4

complex elements. The time evolution of N2 different
initial states can be used to invert Eq. (7) thus allow-
ing to reconstruct the dynamical map from the dynam-
ics of the open system alone. This approach was, for
example, used by Kidon et al. to obtain the exact mem-
ory kernel for the generalized non-equilibrium Anderson-
Holstein model [27, 28]. Any suitable impurity solver can
be used to calculate the time-evolution of the open sys-
tem [29–32]. To obtain the dynamical map numerically
we use Eq. (7), which defines the dynamical map as a map
acting on a matrix representation of the reduced state of
the open system. To analyze the influence of the initial
state on its dynamics it is more convenient to use the
representation of the state of the open system in terms
of the Bloch vector.

The density matrix of the open system can be repre-
sented by the (N2− 1) dimensional Bloch vector [33, 34]
or coherence vector [24, 35]. This means that the state
ρS is expanded in terms of the (N2 − 1) Hermitian and
traceless generators of SU(N) as

ρS =
1

N
1+

1

2

N2−1∑
n=1

anTn, (8)

where 1 is the identity matrix, the matrices {Tn} are the
(N2 − 1) generators of SU(N), and {an} constitutes the
(N2 − 1) dimensional Bloch vector, i.e. an = tr{ρTn}.
For a definition of the matrices Tn see, for example,
[24, 36]. Thus, every state ρS is represented by a unique

element of RN2−1. This representation guarantees her-
miticity and unity of the trace but not positivity. Thus,

not all elements of RN2−1 represent physical states. The

set of physical states is only a subset of RN2−1, de-

noted by B(RN2−1) which represents S(HS) and is some-
times called the Bloch-vector space [36, 37]. For N = 2,

B(RN2−1) is the well-known Bloch ball. For N ≥ 3 only

some general properties of B(RN2−1) were proven [36–
39]. For our discussion, however, it is sufficient to know

that B(RN2−1) is mapped into itself under the dynam-
ical map, which is guaranteed by the definition of the
dynamical map.

To obtain the action of the dynamical map on the
Bloch vector one can employ the fact that the dynam-
ical map is completely positive and trace preserving, and
thus, can be represented in terms of a set of Kraus oper-
ators Bn as [24, 40]

ρS(t) =

N2∑
n=1

Bn(t)ρS(0)B†n(t), (9)

with
∑N2

n=1B
†
n(t)Bn(t) = 1. Using this representation

and the expansion of the reduced density matrix in terms
of the generalized Bloch vector given by Eq. (8) the action
of the dynamical map on the generalized Bloch vector,
denoted by φt, can be written as [24, 41]

φt : B(RN2−1)→ B(RN2−1)

a(0) 7→ a(t) = M(t)a(0) + b(t). (10)

Here b(t) ∈ RN2−1 and M(t) ∈ R(N2−1)×(N2−1). The

map φt defines an affine transformation on B(RN2−1)
relating the initial Bloch vector a(0) to the corresponding
Bloch vector a(t) at time t.

Equation (10) is the starting point of our analysis.
First note that if the time-evolution of the open system is
unitary, e.g. for vanishing system-environment coupling,
one can show that b(t) = 0 and MT (t)M(t) = 1, i.e.
M(t) is an orthogonal matrix. The first equation can be
shown by considering the action of the dynamical map
on the vector 0 = (0 0 ...)T . From Eq. (8) it follows that
1 is conserved under a unitary transformation. Thus,
φt0 = 0, which directly implies b(t) = 0 for all times.
The orthogonality of M(t) follows from b(t) = 0 and the
fact that the Euclidean norm of the Bloch vector is pre-
served under unitary time evolution [24]. This means
that for a unitary time-evolution ||a(t)||2 = ||a(0)||2
holds for all times. The Euclidean norm ||x||2 of a vector

x is defined as ||x||2 =
√∑

n x
2
n.

For a general φt, however, M(t) need not to be or-
thogonal, and thus, is not necessarily diagonalizable. To
analyze the asymptotic state of the open system we thus
make use of the singular value decomposition given by

M(t) = V(t)S(t)WT (t). (11)

Since M(t) has real entries, V(t) and W(t) can be chosen
to be real, orthogonal matrices and S(t) is a positive-
semidefinite diagonal matrix.

We start our analysis of the influence of the initial state
by considering its influence on the expectation value of
an observable O. To quantify this influence, we consider
two different initial states of the open system, ρ1

S(0) and
ρ2
S(0), and define the quantity

δ1,2(t;O) = |tr
{
O
(
ρ1
S(t)− ρ2

S(t)
)}
|. (12)
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δ1,2(t;O) describes the difference of the expectation value
of O at time t between the two different initial states of
the open system. One can show that this quantity is
bounded by

δ1,2(t;O) ≤ N3/2

√
2
|omax| Smax(t) ||a1(0)− a2(0)||2. (13)

Here omax is the eigenvalue of O with the largest abso-
lute value, Smax(t) is the largest singular value of M(t)
at time t and ||x||2 is the Euclidean norm of the vec-
tor x. The proof of Eq. (13) is provided in Appendix A.
Since Eq. (13) holds for any observable O we conclude
that the largest singular value of M(t) is a measure for
the influence of the initial state on the state at time t.
Consequently, the influence of the initial state on the
asymptotic state can be quantified by

Smax,∞ := lim
t→∞

Smax(t), (14)

provided that the limit exists. We note that the bound
for δ1,2(t;O) is very general. We will demonstrate later
that for a specific observable one can find tighter bounds
by employing properties of the observable of interest and
their relation to the generators of SU(N).

Next, we discuss the existence and uniqueness of an
asymptotic state of the open system. From Eq. (10) it
directly follows that if the two limits

b∞ = lim
t→∞

b(t), (15)

M∞ = lim
t→∞

M(t) (16)

exist, every initial state has an asymptotic state, which
is given by

a∞ = b∞ + M∞a(0). (17)

In general, the initial state a(0) has an influence on the
asymptotic state. We see from Eq. (17) that the asymp-
totic state becomes independent of the initial state if
all possible initial states are mapped to the same vec-

tor b∞ ∈ RN2−1. This is exactly the case if the image
of M∞ is zero dimensional, i.e. if M∞ = 0. This follows
from the fact that for any dimension of the open system

the Bloch-vector space B(RN2−1) includes the (N2 − 1)

dimensional sphere with radius rs =
√

2
N(N−1) [42]. The

image of this sphere under φt is zero dimensional if and
only if M∞ = 0. In this case, Eq. (17) becomes indepen-
dent of the initial state and the unique asymptotic state
is given by b∞. Note that in this case δ1,2(t;O) → 0 as
t → ∞ independently of O, implying that the expecta-
tion value of any observable becomes independent of the
initial state a(0).

We conclude that the asymptotic state exists for all
initial states if the limits (15) and (16) exist. The dynam-
ical map is relaxing, i.e. the asymptotic state is unique,
if and only if all singular values of M(t) decay to zero
as t → ∞. If the two limits (15) and (16) exist, but

M∞ 6= 0 then the asymptotic state is not unique. If,
on the other hand, one of the quantities b(t) or M(t)
remain time-dependent at all times, there is at least one
initial state for which the asymptotic state does not ex-
ist. Note that it is possible that the asymptotic state
exists for some initial states, whereas for others the state
of the open system remains time-dependent at all times.
In such a situation, some singular values of M(t) become
stationary and others remain time dependent.

III. MODEL AND METHOD

To illustrate the theoretical results obtained in Sec. II,
we consider the spin-boson model. The spin-boson model
involves a spin, or more generally a two-level system,
interacting linearly with a bath of harmonic oscillators
[43, 44]. Despite its simple form, the spin-boson model
exhibits several interesting effects, such as a transition
from coherent dynamics to incoherent decay and a quan-
tum phase transition [3, 4, 45], and has been used to
describe a variety of different processes and phenomena,
including electron transfer [46] and macroscopic quan-
tum coherence [47]. As we will demonstrate later, the
spin-boson model also exhibits three qualitatively differ-
ent long-time behaviors making this model a well-suited
prototype to demonstrate and discuss the above intro-
duced concepts.

For the purpose of this paper it is sufficient to con-
sider the unbiased spin-boson model. Employing mass-
weighted coordinates, the Hamiltonian reads

H = ∆σx +
1

2

N∑
n=1

(p2
n + ω2

nq
2
n) + σz

N∑
n=1

cnqn, (18)

where σx and σz are the Pauli matrices, ∆ denotes the
tunneling between the two spin states, and ωn, qn, and
pn represent the frequency, position, and momentum of
the bath oscillators, respectively; cn denotes the coupling
strength of the spin to the n-th harmonic oscillator of the
bath. The properties of the bath which influence the spin
are summarized by the spectral density [43, 44]

J(ω) =
π

2

N∑
n=1

c2n
ωn
δ(ω − ωn). (19)

To realize different long-time behaviors of the spin we
consider two different functional forms of the spectral
density. The first is the well-known Ohmic spectral den-
sity defined as [43, 44]

JO(ω) =
π

2
αωe−ω/ωc , (20)

where α denotes the system-bath coupling strength and
ωc the characteristic frequency of the bath. For this
spectral density, it is known that in the scaling regime,
ωc � ∆, the spin relaxes to a unique asymptotic state
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FIG. 1. Spectral densities considered in the model for α = 1.
The blue line (left axes) shows the Ohmic spectral density for
ωc = ∆. The red line (right axes) shows the gapped spectral
density. The green markers represent the experimental pa-
rameters [49]. Note that the gapped spectral density is zero
below ωmin and above ωmax.

for α < 1, whereas the spin localizes for α > 1 and T = 0
[3, 4, 43, 44, 48].

The second model we consider is inspired by a recent
experimental realization of the spin-boson model using
trapped ions [49]. The continuum limit of the spectral
density was obtained by fitting a continuous function
to the parameters of an experimental realization of the
spin-boson model with 5 environmental modes. The dis-
tinct feature of this model is that the spectral density
is gapped, i.e. the spectral density is zero below some
ωmin > 0. This results in a spectral density of the form

JG(ω) =
π

2
αa(ω − b)e−( ω−b

c )3χ[ωmin,ωmax], (21)

where α denotes the coupling strength, χ[x,y] denotes the
characteristic function of the interval [x, y], and a, b, and
c are fitting parameters. The spectral density JG(ω) has
a maximum at the transition frequency of the spin, i.e. at
ω = 2∆. A comparison between the two spectral densi-
ties showing the qualitative differences is given in Fig. 1.
A more detailed description of the origin of the model
and some details about the fit are provided in Appendix
B.

To simulate the dynamics of the spin-boson model,
we employ the multilayer multi-configuration time-
dependent Hartree (ML-MCTDH) approach [50–53],
which allows us to propagate the wave function of
the joint system in a numerically exact way. The
ML-MCTDH approach represents a rigorous variational
basis-set method, which uses a multi-configuration ex-
pansion of the wave function |Ψ(t)〉, employing time-
dependent basis functions and a hierarchical multilayer
representation. Specifically, a representation of the wave
function |Ψ(t)〉 which corresponds to a hierarchical tensor
decomposition in the form of a tensor tree network is em-

ployed. Within this approach, the wave function is recur-
sively expanded as a superposition of Hartree products,
the so-called ”single-particle functions” (SPFs). The
hierarchy is terminated by expanding the SPFs in the
deepest layer in terms of time-independent basis func-
tions/configurations, each of which may contain several
physical degrees of freedom. For more technical de-
tails, we refer the reader to earlier work on the ML-
MCTDH approach and its applications to the spin-boson
model [45, 50–54]. The ML-MCTDH equations of mo-
tion for the expansion coefficients and the SPFs are ob-
tained by applying the Dirac-Frenkel variational princi-
ple [30, 50], thus ensuring convergence to the solution of
the time-dependent Schrödinger equation upon increas-
ing the number of variational parameters included in the
calculation.

The ML-MCTDH approach allows for the simulation
of large but finite quantum systems. Thus, we represent
the continuous bath by a finite number of modes. In
this work we use an equidistant distribution but other
choices are possible [54, 55]. To ensure convergence to
the continuum limit over the timescale considered, we
employ several hundreds of modes. For a detailed dis-
cussion of the numerical treatment of a continuous bath,
see Ref. [54].

Here, we employ an implementation of the ML-
MCTDH theory with up to four dynamical layers plus
one static layer. To ensure that convergence is achieved,
for each set of physical parameter a series of careful con-
vergence tests were performed with respect to all the vari-
ational parameters such as the number of bath modes,
primitive basis functions and SPFs in each layer.

IV. RESULTS AND DISCUSSION

In this section, we use the theoretical concepts intro-
duced above to analyze the initial state dependence for
the example of the spin-boson model. In the limit t→∞,
an open system can exhibit three qualitatively different
asymptotic behaviors. First, the open system can relax
to a unique asymptotic state. Second, the open system
can relax to an asymptotic state which depends on the
initial state. Last, the open system may not relax to an
asymptotic state and ρS(t) remains time-dependent at
all times. As we will demonstrate below, all these cases
can be distinguished by properties of the matrix M(t)
introduced in Sec. II.

To obtain M(t) and b(t) numerically we proceed as fol-
lows. Employing the ML-MCTDH method we simulate
the dynamics for four linearly independent initial states
of the reduced density matrix of the spin. From this we
calculate the representation of the dynamical map given
by Eq. (7). Using Eq. (10), the two quantities M(t) and
b(t) can be calculated numerically.

We focus on the zero temperature limit, where it is
known that the spin localizes in its initial state for an
Ohmic spectral density in the strong coupling regime [3,
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FIG. 2. Singular values Sj(t) of M(t) as a function of time
for the Ohmic spectral density for ωc = 20∆ and α = 0.1.
The inset shows 〈σz〉 (t) for different initial states of the spin
parametrized by θ. For all initial states ϕ = 0. The black line
in the inset shows Smax(t).

4, 45]. Consequently, the harmonic oscillators of the bath
are initially all in their ground state. The spin is initially
in a pure state of the form

|ψ(0)〉spin = cos
θ

2
|↑〉+ eiϕ sin

θ

2
|↓〉 , (22)

where θ and ϕ parameterize the direction of the spin at
time t = 0.

A. Ohmic Spectral Density

We begin our discussion with the Ohmic spectral den-
sity. It is known that in the scaling limit (ωc/∆ → ∞),
the dynamics of the spin can be grouped into three qual-
itatively different regimes, comprising coherent decay for
weak system-environment coupling (α < 0.5), incoherent
decay (intermediate coupling, 0.5 < α < 1), and localiza-
tion (strong coupling α > 1) [43, 44, 54]. Thus, we expect
that for α < 1 the spin relaxes to a unique asymptotic
state, whereas for α > 1 the asymptotic state depends on
the initial state. It is also known that for finite ωc/∆ both
critical couplings shift to larger values [45, 54, 56, 57].

In Fig. 2, the singular values of M(t) are shown for a
weak coupling α and large ωc. It directly follows from
Eq. (10) that M(0) = 1, and thus, all three singular val-
ues of M(0) are initially one. Over time, they decay to
zero, reflecting the vanishing influence of the initial state
on the dynamics. The first two singular values exhibit
periodic modulations. We find that S1(t) > S2(t) for all
times, i.e. the two singular values never cross. The third
singular value decays monotonically.

In the weak coupling and large ωc limit an approxi-
mate analytic solution can be used to connect the behav-
ior of the singular values with the dynamics of the spin

[43, 44, 56]. The equations for the Bloch vector a(t),
as well as the derivation of M(t) and b(t) for the weak
coupling limit are provided in Appendix C. The analytic
solution reveals that the periodically modulated singular
values S1(t) and S2(t) are related to the coherent decay
of 〈σy〉 (t) and 〈σz〉 (t). The two singular values are ex-
ponentially damped, with the same damping as 〈σy〉 (t)
and 〈σz〉 (t). The frequency of the periodic modulations

of S1(t) and S2(t) is given by 2∆̃, where ∆̃ denotes the
renormalized frequency of the spin. The monotonically
decaying singular value S3(t) describes the monotonic
decay of 〈σx〉 (t). Both, the singular value S3(t) and
〈σx〉 (t), decay exponentially with the same decay rate.

In the inset of Fig. 2, the vanishing influence of the
initial state for long times is exemplified for the expec-
tation value of σz. As predicted by the vanishing of the
singular values, 〈σz〉 (t) relaxes to an equilibrium value
as t→∞ independent of its initial value. The black line
is the largest singular value which provides a bound for
the influence of the initial state at all times. Note that
according to Eq. (13) the quantity δ1,2(t;σz) is bounded
by 4Smax(t), while we find δ1,2(t;σz) < 2Smax(t). This
is related to the fact that in the derivation of Eq. (13)
no property of the observable O was used. For O = σz
one can employ that the expectation value of σx and σy
vanishes in both eigenstates of σz. Using this, one can
show that δ1,2(t;σz) is bounded by 2Smax(t).

For moderate couplings, 0.5 < α < 1, the spin exhibits
incoherent decay. In this regime the decay slows down
as the coupling strength is increased until the spin even-
tually localizes at α ≈ 1. In Fig. 3, the first and second
singular value of M(t) are shown for ωc = 20∆ for differ-
ent values of the coupling strength α. The third singular
value shows a very similar behavior as the second one and
is thus not shown. Similar to the weak coupling regime,
we find that all singular values of M(0) are initially one.
For 0.5 < α < 1, the three singular values exhibit a
monotonic decay to zero. They show, however, an oppo-

0.0
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1.0

S 1

0.0 0.5 1.0 1.5 2.0
t /

0.0

0.5

1.0

S 2

= 0.5
= 0.7

= 0.9
= 1.2

FIG. 3. The first and second singular value of M(t) as a
function of time for different values of α and ωc = 20∆.
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FIG. 4. 〈σz〉 as a function of time for different initial states
parametrized by θ. In this plot ωc = 20∆, α = 1.2 and
ϕ = 0. The results show that the asymptotic state of the spin
depends on the initial state of the spin.

site trend upon increasing the coupling strength. S2(t)
and S3(t) decay faster for increasing coupling strength,
while the decay of S1(t) slows down and eventually ap-
proaches a non-zero value as t → ∞ for α & 1. This is
consistent with the transition from incoherent decay to
localization as the coupling strength approaches α ≈ 1.
One way to understand this localization was introduced
by Silbey and Harris by means of a renormalized system
frequency ∆̃ [58, 59]. For the Ohmic spectral density they

used a variational Polaron transformation to calculate ∆̃,
showing that in the limit ∆/ωc → 0 the renormalized sys-
tem frequency vanishes above a critical coupling αc, i.e.
∆̃ = 0 for α > αc. Due to the vanishing of the effective
coupling, the spin is frozen in its initial state explain-
ing the dependence of the asymptotic state on the initial
state.

The dependence of the asymptotic state on the initial
state for strong coupling (α = 1.2) is exemplified in Fig. 4
for the expectation value of σz. For all initial states of
the spin, the expectation value becomes stationary. How-
ever, the stationary value of 〈σz〉 (t) depends on the ini-
tial state of the spin. As discussed above, for α & 1,
one singular value of M(t) approaches a non-zero value
as t → ∞, implying that the image of M∞ is one di-
mensional. Thus, M∞ projects the set of initial states,
the Bloch sphere, onto a one dimensional subset. This
also implies that some initial states are mapped to the
same asymptotic state. In order to classify those initial
states which are mapped to the same asymptotic state,
we consider the singular value decomposition of M∞, in
the following denoted by V∞S∞WT

∞. Assuming that
only one singular value is non-vanishing, the asymptotic
state of the spin can be written as

a∞ = s∞,1 〈w∞,1,a(0)〉v∞,1 + b∞,1, (23)

where v∞,1 (w∞,1) are the vectors formed by the first col-

umn of the matrix V∞ (W∞), respectively, and 〈x, y〉 =∑
n xnyn is the standard scalar product between real

vector x and y. All initial states a(0), for which the
scalar product 〈w∞,1,a(0)〉 is equal are mapped to the
same asymptotic state. This means that all initial states
which are in a plane orthogonal to w∞,1 are mapped
to the same asymptotic state. For the parameters con-
sidered in Fig. 4, i.e. ωc = 20∆ and α = 1.2, we find
wT
∞,1 ≈ (0, 0.13, 0.99).

B. Gapped Spectral Density

To demonstrate the behavior of M(t) for a case
where the open system does not approach an asymptotic
state, we consider the gapped spectral density defined in
Eq. (21).

Fig. 5 shows the three singular values of M(t) for weak
coupling, α = 0.1. The qualitative behavior is very simi-
lar to the Ohmic spectral density, i.e. all singular values
show an overall decay to zero. S1(t) and S2(t) exhibit a
periodically modulated decay, where the frequency of the
periodic modulations is twice the frequency of the spin.
S3(t) decays in a non-oscillatory way. The vanishing in-
fluence of the initial state is exemplified in the inset of
Fig. 5 for the expectation value of σz. The expectation
value of σz decays to zero for all values of θ. As indi-
cated by the black line the quantity δ1,2(t;σz), is again
bounded by 2Smax(t).

In the strong coupling regime, however, we find that
the spin does not approach an asymptotic state. This is
illustrated in Fig. 6, which shows the three singular val-
ues of M(t) for α = 1.2. All three singular values exhibit
a fast initial decay. Unlike in the regimes discussed so
far, the singular values cross for t∆/π . 5. After the ini-

0 2 4 6 8 10 12 14
t /

0.0
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0.6

0.8

1.0

1.2

S j

S1 S2 S3

0 4 8 12
t /

1

0

1

<
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>

0

FIG. 5. Singular values Sj of M(t) as a function of time for
the gapped spectral density for α = 0.1. The inset shows
〈σz〉 (t) for different initial states of the spin, where ϕ = 0.
The black line in the inset shows the largest singular value of
M(t).
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FIG. 6. Singular values Sj of M(t) as a function of time for
α = 1.2. The inset shows the expectation value of σz for
different initial states of the open system, where ϕ = 0. The
black line in the inset shows the largest singular value of M(t).

tial decay, the smallest singular value decays further and
remains close to zero, while the other two singular values
of M(t) exhibit undamped oscillations, which indicates
the non-existence of an asymptotic state, i.e. the state
of the open system remains time-dependent at all times.
For these longer times, we find that S1(t) > S2(t) for all
times, i.e. the two singular values do not cross. Similar
to the above discussed cases, the period of the oscilla-
tions of the singular values have twice the frequency of
the spin. In the inset of Fig. 6, the expectation value of σz
is shown demonstrating that the expecation value does
not approach a stationary state and that the initial state
has an influence on 〈σz〉 (t) at all times. The influence of
the initial state on 〈σz〉 (t) is again bounded by 2Smax(t)
at all times.

This behavior can be understood in a similar way
as the localization in the Ohmic case. Using the same
variational polaron transformation as Silbey and Harris
[58, 59], one can show numerically that the renormal-

ized system frequency ∆̃ for the gapped spectral density
is a monotonically decreasing function of the coupling
strength. For sufficiently strong coupling α the renor-
malized system frequency is below the smallest bath fre-
quency. In this case, the bath cannot act as a true envi-
ronment and fails to equilibrate the spin. For α = 1.2,
we find that ∆̃ is close to the smallest bath frequency, re-
sulting in a partial decoherence of the spin on short time
scales. However, the environment cannot equilibrate the
spin completely and the state of the spin remains time-
dependent at all times.

V. CONCLUSION

In this paper we have proposed a measure to quan-
tify the influence of the initial state of an open system

on its dynamics, based on the dynamical map, a quan-
tity which describes the time evolution of an open system
in the presence of an environment. Using this measure
it is possible to investigate the asymptotic behavior of
a quantum system in contact with an environment, and
to quantify the information stored in local observables.
We have demonstrated our theoretical concepts for the
well-known spin-boson model and identified three quali-
tatively different long-time behaviors, which can be dis-
tinguished by considering the singular values of the dy-
namical map. We note that it is possible to reconstruct
the measure from local expectation values alone, mak-
ing it experimentally accessible. It might be of interest
to apply our measure to analyze numerically observed
bistabilities in more complex systems, like the one dis-
cussed in Ref. [7]. The investigation of local memory in
many-body quantum systems, e.g. systems exhibiting
many-body localization, based on the dependence of the
initial state of a subsystem is another interesting subject
of future work.
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[22] B. Buča and T. Prosen, A note on symmetry reductions
of the lindblad equation: transport in constrained open
spin chains, New J. Phys. 14, 073007 (2012).

[23] V. V. Albert and L. Jiang, Symmetries and conserved
quantities in lindblad master equations, Phys. Rev. A
89, 022118 (2014).

[24] R. Alicki and K. Lendi, Quantum Dynamical Semigroups
and Applications, Lect. Notes Phys. (Springer Berlin Hei-
delberg, 2007).

[25] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, Oxford,
2007).

[26] E. Davies, Quantum Theory of Open Systems (Academic
Press, London, 1976).

[27] L. Kidon, E. Y. Wilner, and E. Rabani, Exact calculation
of the time convolutionless master equation generator:
Application to the nonequilibrium resonant level model,
J. Chem. Phys. 143, 234110 (2015).

[28] L. Kidon, H. Wang, M. Thoss, and E. Rabani, On the
memory kernel and the reduced system propagator, J.
Chem. Phys. 149, 104105 (2018).

[29] G. Cohen, E. Gull, D. R. Reichman, A. J. Millis, and
E. Rabani, Numerically exact long-time magnetization
dynamics at the nonequilibrium kondo crossover of the
anderson impurity model, Phys. Rev. B 87, 195108
(2013).

[30] H. Wang and M. Thoss, Numerically exact quantum dy-
namics for indistinguishable particles: The multilayer
multiconfiguration time-dependent hartree theory in sec-
ond quantization representation, J. Chem. Phys. 131,
024114 (2009).

[31] G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis,
Taming the dynamical sign problem in real-time evolu-
tion of quantum many-body problems, Phys. Rev. Lett.
115, 266802 (2015).

[32] Y. Tanimura, Numerically “exact” approach to open
quantum dynamics: The hierarchical equations of mo-
tion (heom), J. Chem. Phys. 153, 020901 (2020).

[33] F. Bloch, Nuclear induction, Phys. Rev. 70, 460 (1946).
[34] F. T. Hioe and J. H. Eberly, n-level coherence vector and

higher conservation laws in quantum optics and quantum
mechanics, Phys. Rev. Lett. 47, 838 (1981).

[35] K. Lendi, Entropy production in coherence-vector formu-
lation for n-level systems, Phys. Rev. A 34, 662 (1986).

[36] G. Kimura, The bloch vector for n-level systems, Phys.
Lett. A 314, 339 (2003).

[37] G. Kimura and A. Kossakowski, The bloch-vector space
for n-level systems: the spherical-coordinate point of
view, Open Sys. Information Dyn. 12, 207 (2005).
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Appendix A: Proof of the bound for δ1,2(t;O)

In the following we proof the bound for δ1,2(t;O) de-
fined as

δ1,2(t;O) = |tr{O(ρ1(t)− ρ2(t))}|, (A1)

where O is some observable. The difference between the
two density matrices ρ1(t) and ρ2(t) can be written as

ρ1(t)− ρ2(t) =
1

2

N2−1∑
n=1

(
a1
n(t)− a2

n(t)
)
Tn (A2)

We evaluate the trace in the eigenbasis of O yielding

δ1,2(t;O) =
1

2

∣∣N2−1∑
n=1

N∑
a=1

(
a1
n(t)− a2

n(t)
)
oa 〈oa|Tn|oa〉

∣∣.
(A3)

Using the triangular inequality and rearranging the sums
yields

δ1,2(t;O) ≤ 1

2

N2−1∑
n=1

∣∣(a1
n(t)− a2

n(t))
∣∣ N∑
a=1

|oa|
∣∣ 〈oa|Tn|oa〉 ∣∣

(A4)

Let omax be the eigenvalue of O with the largest absolute
value. The second sum is bounded by

N∑
a=1

|oa|
∣∣ 〈oa|Tn|oa〉 ∣∣ ≤ |omax|

N∑
a=1

∣∣ 〈oa|Tn|oa〉 ∣∣ (A5)

Similarly, it can be shown that the expectation value of
Tn in an eigenstate of O is bounded by the eigenvalue of
Tn with the largest eigenvalue, which in this case depends
on n: ∣∣ 〈oa|Tn|oa〉 ∣∣ ≤ tn,max (A6)

From the definition of the generators of SU(N), see [36],

it directly follows that tn,max is bounded by
√

2. Using
this, one obtains a bound for δ1,2(t;O) reading

δ1,2(t;O) ≤ 1

2
|omax|

√
2N

N2−1∑
n=1

|a1
n(t)− a2

n(t)| (A7)

where the factor N originates from the sum over the
eigenbasis of O. The remaining sum is the L1 norm of
the vector a1(t)− a2(t), i.e.

δ1,2(t;O) ≤ 1

2
|omax|

√
2N ||a1

n(t)− a2
n(t)||1. (A8)

To relate the distance between the time-dependent Bloch
vectors to the initial distance we first employ that the L1

norm of a vector x is bounded by the Euclidean norm as

||x||1 ≤
√
N ||x||2. Using the singular value decomposi-

tion of M(t) one can write

||a1
n(t)− a2

n(t)||2 = ||V(t)S(t)WT (t)
(
a1
n(0)− a2

n(0)
)
||2.

(A9)

Using the fact that S is a positive semidefinite diagonal
matrix, it is easy to show that ||Sx||2 < smax||x||2, where
smax is the largest diagonal element of S. Using this, to-
gether with the fact that the Euclidean norm is invariant
under orthogonal transformations one can write

δ1,2(t;O) ≤ N3/2

√
2
|omax| smax(t) ||a1(0)− a2(0)||2,

(A10)

which finishes the proof of Eq. (13).

Appendix B: Gapped spectral density

The gapped spectral density originates from an experi-
mental realization of the spin-boson model using trapped
ions [49]. Using a linear Paul trap a spin-boson model
with up to five bosonic degrees of freedom was realized.
The distinct feature of the experiment is that the small-
est frequency of the bosonic environment is determined
by the frequency of the trap, and is thus always larger
than zero. We consider the continuum limit of the exper-
imental spectral density which is derived as follows. The
spectral density of the five ion model is given by

J5(ω) =
π

4
α

5∑
n=1

ωnM2
nδ(ω − ωn), (B1)

where ωn andMn are determined from experimental pa-
rameters and the geometry of the trap [49, 60, 61]. α
denotes the coupling strength between the spin and the
environment. To study the dynamics for different cou-
pling strengths α, we fit the experimental parameters for
J5(ω)/α with the function

Jfit(ω) =
π

4
a(ω − b)e−

(
ω−b
c

)3
, (B2)

where a, b and c are fitting parameters. The gapped
spectral density we consider is thus given by

JG(ω/ω1) = α
π

4
a(ω − b)e−

(
ω−b
c

)3
, (B3)

where α denotes the coupling strength, and (a, b, c) =
(0.677, 0.541, 1.280).

Appendix C: Weak coupling solution

In the weak coupling limit a perturbative approach can
be used to analyze the connection between the dynamics
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of the spin and the singular values of M(t) analytically.
The starting point is the second-order time convolution-
less (TCL2) master equation [62–64]. Within the TCL2
approach, the equations of motion for the three expecta-
tion values read [25]

∂t 〈σx〉 (t) = −Γxx(t) 〈σx〉 (t)− Γx(t) (C1)

∂t 〈σy〉 (t) = −2∆ 〈σz〉 (t)− Γyz(t) 〈σz〉 (t)− Γyy(t) 〈σy〉 (t)
(C2)

∂t 〈σz〉 (t) = 2∆ 〈σy〉 (t), (C3)

where the time-dependent rates Γij(t) are determined by
the spectral density J(ω) and ∆, and are defined in [25].
To solve the equations (C1), (C2), and (C3) analytically,
we consider the stationary rate approximation, i.e. we
replace the time-dependent rates with their long time
limit, in the following denoted with Γij := limt→∞ Γij(t).
The resulting equations of motion read

∂t 〈σx〉 (t) = −Γxx 〈σx〉 (t)− Γx (C4)

∂t 〈σy〉 (t) = −2∆ 〈σz〉 (t)− Γyz 〈σz〉 (t)− Γyy 〈σy〉 (t)
(C5)

∂tz(t) = 2∆ 〈σy〉 (t). (C6)

Equations (C4), (C5), and (C6) constitute a system of
first order autonomous differential equations, and thus,
can be solved analytically. Their solution read

〈σx〉 (t) =e−Γxxt 〈σx〉 (0)− Γx

Γxx
(1− e−Γxxt) (C7)

〈σy〉 (t) =e−Γyy/2t

(
cos(∆̃t) 〈σy〉 (0)− Γyy

2∆̃
sin(∆̃t) 〈σy〉 (0)

− 2∆− Γyz

∆̃
sin(∆̃t) 〈σz〉 (0)

)
(C8)

〈σz〉 (t) =e−Γyy/2t

(
2∆

∆̃
sin(∆̃t) 〈σy〉 (0) + cos(∆̃t) 〈σz〉 (0)

+
Γyy

2∆̃
sin(∆̃t) 〈σz〉 (0)

)
, (C9)

where ∆̃ denotes the renormalized frequency of the spin

and is given by ∆̃ = 1
2

√
8∆(2∆− Γyz)− Γ2

yy. From

equations (C7), (C8), and (C7) the quantities b(t) and
M(t) can be identified as

b(t) =
(

Γx

Γxx
(1− e−Γxxt) 0 0

)T
(C10)

M(t) =

e−Γxxt 0 0

0 e−Γyy/2t
(

cos(∆̃t)− Γyy

2∆̃
sin(∆̃t)

)
− 2∆−Γyz

∆̃
e−Γyy/2t sin(∆̃t)

0 2∆
∆̃

e−Γyy/2t sin(∆̃t) e−Γyy/2t
(

cos(∆̃t) +
Γyy

2∆̃
sin(∆̃t)

)
 . (C11)

Note that in this perturbative treatment, the time-
evolution of 〈σy〉 (t) and 〈σz〉 (t) is independent of
〈σx〉 (t), and thus M(t) is block diagonal. The singular
values of M(t) are given by the square root of the eigen-
values of MT (t)M(t). Thus, the singular value which is
associated to the dynamics of 〈σx〉 is given by e−Γxxt.
The other two singular values are obtained by diagonal-
izing the 2 × 2 block associated to the dynamics of 〈σy〉
and 〈σz〉. The two singular values S±(t) are given by

S±(t) =
e−Γyy/2t

2

(
A(t)±

√
A2(t)− 4 B(t)

)
, (C12)

where we defined

A(t) =

(
Γ2
yy

2∆̃2
+

4∆2

∆̃2
− (2∆− Γyz)2

∆̃2

)
sin2(∆̃t)

+ 2 cos2(∆̃t)

B(t) =
Γ4
yy

8∆̃4
sin4(∆̃t)− 2

Γ2
yy

4∆̃2
sin2(∆̃t) cos2(∆̃t)

− 4∆2

∆̃2

(2∆− Γyz)2

∆̃2
sin4(∆̃t) + cos4(∆̃t)

Since A(t) and B(t) are periodic with period 2∆̃, it fol-
lows that S±(t) are described by damped oscillations,
where the damping is given by e−Γyy/2t and the period
of the oscillation is 2∆̃. These two singular values de-
scribe the coherent decay of 〈σy〉 (t) and 〈σz〉 (t).
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