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Abstract

Using local sinusoidal features in a standard statistical testing framework, we propose a definition 

of local resolution for 3D density maps. The resulting algorithm has no free parameters and may 

be extended to other imaging modalities. Evaluating the local resolution of single particle 

reconstructions and sub-tomogram averages shows variable resolution across a 4 to 40Å range.

Various resolution measures for electron cryo-microscopy (cryo-EM) have been proposed in 

the past three decades1. Unlike the classical “Rayleigh” resolution which characterizes 

instruments, these measures characterize features present in the data. A commonly used 

cryo-EM resolution measure is the Fourier shell correlation (FSC) procedure. It quantifies 

the strength, relative to noise, of sinusoidal features across the entire density map. FSC 

produces a single resolution for the entire density map. FSC cannot assess locally varying 

resolution, which may be caused by sample heterogeneity and image processing errors2. The 

goal of this paper is to overcome this limitation of FSC by presenting a definition of local 

resolution which can assess variable resolution.

As a resolution measure, FSC has other limitations, too. FSC resolution depends on the 

computational stage where the data are split3. Further, calculating the resolution from FSC 

requires a threshold, whose value and interpretation has been debated1. Alternative 

approaches4;5 address some of these shortcomings, but do not define local resolution.

Recent structural studies6;7 use windowed FSC for local resolution8. Windowed FSC masks 

the split-dataset density maps with a window and calculates FSC resolutions as the window 

moves through the map. This requires a window size parameter, whose value is often 

arbitrary. While this approach implicitly conducts multiple tests on the density map, it does 

not control the false discovery rate (FDR) in the thresholding of the FSC. FDR control is 
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critical because local resolution tests are repeated at many points in the volume. 

Additionally, there is data dependency between neighboring points which windowed FSC 

does not account for.

We propose a mathematical theory and an efficient algorithm for measuring local resolution 

that address all of the above limitations. The theory is based on the following idea: A λ Å 

feature exists at a point in the volume if a 3D local-sinusoid of wavelength λ is statistically 

detectable above noise at that point. A likelihood-ratio hypothesis test of the local-sinusoid 

vs. noise can detect this feature at a given p-value (typically p = 0.05). We define the local 

resolution at a point as the smallest λ at which the local-sinusoid is detectable, accounting 

for multiple testing with an FDR procedure.

Our algorithm, named ResMap, implements this theory. ResMap begins by initializing a 

local-sinusoid model at λ = 2μ, where μ is the voxel spacing in Å. Likelihood ratio tests are 

conducted at all voxels in the volume, with explicit FDR control that accounts for data 

dependency. Voxels that pass the test are assigned resolution λ, while those that fail are 

tested at a larger λ. The algorithm produces a local resolution map with a number assigned 

to every voxel in the density map (Fig. 1a). There are no algorithm parameters to tune and 

we may unambiguously speak of finding local resolution at the given p-value.

In ResMap, local-sinusoids of wavelength λ are approximated by a set of functions called 

H2. This set is derived from Gaussian windowed second-order Hermite polynomials9;10, 

with window size proportional to the wavelength λ (Fig. 1b and Online Methods). ResMap 

results with H2 are specifically denoted as ResMap-H2. H2 functions are steerable, so their 

linear combination can locally model any arbitrarily oriented local-sinusoid in 3D 

(Supplementary Note 1).

At a fixed wavelength λ, the standard likelihood-ratio test11 can detect whether a local-

sinusoid is present in the steerable function approximation. The test requires an estimate of 

the noise variance, which we obtain from the region surrounding the particle. The 

likelihood-ratio test does not depend on how this variance is estimated. Other noise 

estimates, such as those obtained by analyzing split-dataset reconstructions, can also be 

used. The smallest λ at which the likelihood-ratio test passes at a given p-value defines the 

resolution. We control for false discoveries using a method that takes into account the 

dependencies between tests12 (Online Methods).

We first evaluated ResMap using a simulated density map of a radially symmetrical ‘chirp 

signal’ whose wavelength decreased with radius. We added white and non-white noise with 

two different variance levels (Supplementary Fig. 1). ResMap-H2 estimates show an 

intuitive relation to the underlying signal features (Fig. 1c). Further, increasing the noise 

worsens the resolution at every point. ResMap-H2 results for this simulation exhibit a ripple 

in the transitions between the peaks and valleys of the signal. This is because transitions 

have more energy in the higher frequencies and are thus detectable with local sinusoids of 

smaller scale.

We then tested ResMap with four different density maps ranging from near-atomic (~4Å) 

single particle reconstructions to typical sub-tomogram averages (~40Å). All results were 
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obtained with a p-value of 0.05. We compare ResMap-H2 results to regular and gold-

standard3 FSC plots, and windowed FSC maps.

First, we analyzed a single particle 80S ribosome reconstruction (EMD-2275)13. The 

original publication estimates a resolution of 4.5Å (gold-standard FSC at 0.143) and notes 

the blurring from the heterogeneity in the 40S subunit (Fig. 2a). ResMap-H2 resolution 

estimates fall between 4.5 and 5.5Å in the 60S subunit and between 4.5 and 9Å in the 40S 

subunit. Some parts of the 40S are just as resolved as the 60S, which ResMap-H2 results 

show in the portion of 40S adjacent to 60S. The median ResMap-H2 resolutions in the 40S 

and 60S subunits are 6.5 and 5Å, respectively, which agree with a map-vs-atomic-model 

FSC plot (Fig. 3J in the original publication13). ResMap-H2 results additionally point to a 

decrease in resolution near the edges of the particle. This may be due to image alignment 

errors or the interaction of the ribosome with the solvent.

Second, we analyzed a single particle Tulane virus reconstruction (EMD-5529)14. The 

original publication estimates a 6.3Å (gold-standard FSC at 0.143) resolution for the entire 

particle and highlights the significant flexibility of the protruding domains of the virus. 

ResMap corroborates these findings, estimating the resolution of the shell between 6 and 7Å 

and the resolution of the protruding domains between 7 and 9Å (Fig. 2b).

Third, we analyzed a sub-tomogram average of GroEL (EMD-2221)15. The original 

publication reports a 8.4Å (FSC at 0.5) resolution. ResMap-H2 estimates suggest that many 

α-helices are resolved up to 7.5Å (Fig. 2c). This is evident in the close-up rendering that 

displays the central part of a helix at 7.5Å but the end and adjoining loop at about 9.5Å. 

These results are corroborated in Supplementary Video 1 where the central part of the helix 

is shown to maintain its tubular structure under a range of surface threshold values.

Finally, we analyzed a sub-tomogram average of ATP synthase dimers (EMD-2161)16. The 

original publication estimates a 37Å (FSC at 0.5) resolution. ResMap-H2 resolution 

estimates are between 30 and 42Å in the central dimers, which are better resolved than the 

neighboring dimers and membrane (Fig. 2d). The edges of the central dimers appear to be at 

a higher resolution than their cores. This is likely due to the strong dark bands surrounding 

the particle, as is typical in particles reconstructed without contrast transfer function 

correction.

ResMap is consistent with windowed FSC, but differs in some important aspects. Windowed 

FSC can be slow, taking anywhere between 25 minutes and 4 hours to compute, depending 

on the window size. ResMap usually requires a few minutes. More importantly, windowed 

FSC results appear to be sensitive to the fixed size of the user-defined window 

(Supplementary Fig. 2). Too large a window size may include the solvent in the FSC 

computation and lead to underestimation of resolution (Supplementary Fig. 3). ResMap does 

not suffer from this effect because the spatial-frequency domain localization uncertainty is 

minimized by the adaptively varying widths of the H2 functions. The behavior of ResMap 

for typical p-values is shown in Supplementary Figure 4.

For all cases above, ResMap-H2 local resolutions within the reconstructed particle are 

almost always between the 0.5 and 0.143 threshold of the FSC in the original publications. 
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This is consistent with the idea that the 0.5 threshold may be too conservative while the 

0.143 threshold too optimistic 3;13. Moreover, ResMap-H2 results agree with published 

flexibility analyses and also visually match the level of detail in the density maps.

We have released ResMap as a cross-platform executable package with a simple graphical 

user interface (Supplementary Fig. 5). The software and test data are publicly accessible 

(Supplementary Software; http://resmap.sourceforge.net). ResMap can also be applied to 

other fields by choosing features other then local sinusoids. For instance, a 2D Gaussian 

feature may be appropriate for optical nanoscopy, while rotated 2D arcs may be of use in 

radio telescopy.

The anticipated2 recent increase in heterogeneity studies6;7;13 highlights the pressing 

challenge of evaluating the local resolution of cryo-EM density maps. A local resolution 

method that is both statistically rigorous and practical is therefore a critical step in enabling 

researchers to assess the quality of cryo-EM density maps.

Methods

Methods and any associated references are available in the online version of the paper.

Online Methods

This section presents mathematical details of the theory and algorithm. The mathematical 

formulation is in 3D, but actual computations are performed on column vectors, where the 

elements in 3D are inserted in order into the vector. To highlight this difference, 3D 

variables are displayed in ordinary type (A) and their vectorized counterparts in bold type 

(A).

Modeling the signal locally

We first describe how the density map can be approximated locally by any basis. Then, we 

introduce the 3D sinusoid-like feature basis used in our algorithm.

The 3D density map S is in a V × V × V voxel array. The voxels are indexed by discrete-

valued coordinates x, y, z. We refer to a voxel in the array as v = (vx, vy, vz) where vx, vy, vz 

are its coordinates. The vectorized density map of S is a V3 × 1 column vector S.

Suppose Wv, α is a spherically symmetric Gaussian function centered at voxel v with scaling 

parameter α,

(1)

and that φk
v, α, k = 1, … , K are basis functions centered at v. We then have

(2)
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which locally approximates the density map S by basis functions φk
v, α. Here √WD

v, α is a 

diagonal matrix with √Wv, α along the principal diagonal, Φv, α is a matrix whose columns 

are the basis functions φk
v, α, β is a column vector of the coefficients of the basis functions, 

and η is zero-mean Gaussian noise with variance σ2. Note that the weighting function Wv, α 

determines the spatial extent of the local model.

To fit the local model to S we minimize the weighted residual sum of squares (WRSSv, α)

(3)

with respect to β. The minimizing coefficient vector is denoted as .

3D sinusoid-like features

A natural basis for density maps is one containing rotated 3D sinusoids with wavelength λ 

Å. Unfortunately, describing all orientations in 3D requires an infinite number of basis 

functions. A computationally tractable alternative is to use steerable filters9;10, which we 

refer to as “steerable functions”. Steerable functions are a finite set of functions with the 

property that every 3D rotation of any of the functions is produced by linear combinations of 

the functions9 (Supplementary Note 1).

The steerable functions we use are the second-order Hermite polynomial and its 

approximate quadrature, multiplied by a Gaussian function. We call this set H2. The 

elements of H2 match cosine and sine functions up to their second order Taylor expansion 

terms. They can also be scaled such that their spectral peak occurs at any desired 

wavelength. The H2 steerable functions are constructed from a pair of functions

(4)

where Gv, α is the cosine-like function, Hv, α is the sine-like function. The scalar α controls 

the peak frequency and the width of the Gaussian function. Setting α = 2π/λ √2/√5 gives a 

spectral peak for Gv, α and Hv, α at wavelength λ (Supplementary Note 2).

The functions in Equation (4) are each composed of the Hermite polynomial (PGv,α) or its 

quadrature (PHv,α) multiplied by Wv, α, the spherically symmetric Gaussian weighting 

function. Their spectral peak occurs on the x-axis of the frequency domain because the 

functions are oriented along the the spatial x-axis. Rotating Gv, α and Hv, α so that their 

spectral peaks occur along the vertices and faces of an icosahedron respectively gives 6 + 10 

3D steerable functions. The linear combination of these 16 functions produces all possible 

rotations of Gv, α and Hv, α in 3D10, thereby covering a shell in the 3D Fourier domain 

(Supplementary Note 1).
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We denote the rotated Hermite polynomials as , i = 1, ⋯, 6 and , j = 1, ⋯, 10. 

These polynomials and the constant function 1 are our local-sinusoid signal model. Because 

the weighting function Wv, α appears outside of the basis matrix Φv, α in Equation (2), the 

Φv, α matrix need only contain the vectorized polynomials,

(5)

where the bold face denotes vectorization.

Likelihood ratio testing

Testing whether the data in the neighborhood of voxel v support the local-sinusoid model is 

equivalent to testing the two hypotheses,

(6)

where the null hypothesis ℋ0 states that the data do not support the local-sinusoid model 

(the coefficients of all local-sinusoid terms are zero). The alternate hypothesis ℋ1 allows the 

coefficients to take on any finite value.

The likelihood ratio test11 is a standard procedure for comparing such hypotheses. The test 

works by calculating the β’s that maximize the likelihood (probability) under each 

hypothesis and then taking the logarithm of the ratio of the maximized likelihoods. The β’s 

that maximize the likelihood are found by minimizing the WRSS from Equation (3) under 

ℋ0 and ℋ1, respectively. Many common statistical tests such as the Pearson χ2 test and the 

F-test are derived from the likelihood ratio test (Supplementary Note 3).

A simple calculation shows that the negative logarithm of the log-likelihood ratio, called the 

likelihood ratio statistic (LRS), is given by

(7)

The LRS is a difference of weighted residuals between the null model fit and the local-

sinusoid model fit. It takes large values when the local-sinusoid model is a better fit than the 

null model.

The likelihood ratio test is applied by comparing the LRS to a number c, defined by
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(8)

for some p-value p, usually 0.05. If LRS < c, then the data do not support the model and we 

accept the null hypothesis. Otherwise, we accept the hypothesis that the local-sinusoidal 

model fits the data.

Calculating the threshold c requires the statistical distribution of the LRS. Unfortunately, 

because of the weighting function Wv, α, the LRS does not have a closed form statistical 

distribution. However, ST(Γ0 − Γ) S asymptotically tends to a weighted sum of χ2 random 

variables Σr γrχ
2 where γr are the eigenvalues18 of Γ0 − Γ. Fast and accurate numerical 

methods are available to compute such distributions19.

The LRS computation requires the value of the noise variance σ2. We estimate this variance 

accurately by taking non-overlapping cubes of voxels from the region of the density map 

surrounding the particle. We use the following variance estimator recommended for local 

signal modeling18

(9)

where Cb is a cube of voxels from the background and B is the number of non-overlapping 

cubes that are available in the background. This estimator is robust to non-white noise as it 

only requires the noise spectrum to be relatively flat within the shell in 3D Fourier space that 

the local-sinusoid model, implicitly indicated by Γ, is approximating.

The noise variance may also be estimated from the difference map between split-dataset 

reconstructions. In this case, the estimator from Equation (9) is adjusted to accept cubes of 

voxels from the region inside the particle. The noise statistics inside and outside the particle 

are nearly identical (Supplementary Note 4). Both noise variance estimators are 

implemented in the accompanying software package (Supplementary Software; http://

resmap.sourceforge.net).

Multiple testing correction

The likelihood ratio test chooses between two hypotheses at each voxel. Since this test has 

to be repeated for many voxels in S, some sort of false discovery rate (FDR) control is 

necessary. The tests in neighboring windows are not independent from each other, therefore 

we use the Benjamini-Yekutieli FDR procedure12 that accounts for dependencies between 

tests.

Summary

ResMap works by applying a hypothesis test at every voxel. The null hypothesis is that the 

data in the neighborhood of a voxel do not support a local sinusoid. The alternative 

hypothesis is that the data describe a local sinusoid. These features are modeled by 3D 

steerable functions. The likelihood ratio statistic is used to decide between the the 
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hypotheses at a given p-value. Noise variance is estimated from the area surrounding the 

particle and multiple testing correction is applied to carry out the test at many voxels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Local resolution. (a) The ResMap algorithm. Wavelength λ is initialized to twice the voxel 

spacing. Likelihood ratio tests decide whether the local-sinusoid model is detectable at each 

voxel. Voxels that pass the test are controlled for false discoveries. Voxels that fail the test 

are tested again after increasing λ (Online Methods). (b) Cosine- and sine-like H2 functions 

oriented along an axis. White and black indicate negative and positive parts, respectively 

(Supplementary Note 1). (c) Left, slice through noisy simulated density maps with voxel 

spacing 1Å. Right, radial plots. ResMap-H2 resolution estimates show a steady 

improvement as the simulated signal becomes more finely varying. Bottom, corresponding 

results for 1/f noise display robustness against non-white noise (Supplementary Fig. 1).
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Figure 2. 
ResMap-H2 results using experimental density maps. Color bars apply to both volumes and 

slices. 3D visualizations are rendered using UCSF Chimera17. White dotted lines in color 

bars indicate FSC 0.143 and 0.5 thresholds from the original publications. (a) 80S ribosome 

(EMD-2275). ResMap-H2 results indicate a decreased resolution within the 40S subunit and 

near the edges of the particle. (b) Tulane virus (EMD-5529). ResMap estimates lower 

resolutions in the protruding domains while the shell appears well-resolved. (c) 
Subtomogram GroEL (uncropped version of EMD-2221). ResMap-H2 results show an α-

helix with varying levels of resolution (Supplementary Vid. 1). (d) Subtomogram ATP 

synthase dimer (uncropped version of EMD-2161). ResMap delineates the central dimer as 

better resolved than the neighboring dimers and membrane.
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