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ABSTRACT. The supports of out-of-plane loaded unreinforced masonry walls 
in buildings are subjected to a motion that is filtered and amplified by the 
building structure and, in some cases, can be significantly different from the 
ground motion. Moreover, because these walls span one or several storeys, 
their top and bottom supports are subjected to motions that differ in phase and 
amplitude. In state-of-the-art assessment procedures for the out-of-plane 
stability of masonry walls any effect of a relative support motion is neglected. 
The objective of this paper is to study the effect of the relative support motion 
on the response of out-of-plane loaded vertically-spanning unreinforced 
masonry walls. The acceleration capacity of the walls is investigated by means 
of a discrete element model representative of different wall configurations. A 
set of ground motions covering a wide range of peak ground acceleration and 
peak ground displacement is used as input to the simulations. The relative 
motion between the wall supports is included in the model in a systematic way: 
firstly, through a motion that is non-synchronous but of equal amplitude; 
secondly, through a motion that is synchronous but of different amplitude. The 
effect of the relative support motion is studied on different wall configurations 
where the elastic modulus of masonry, the wall height-to-thickness ratio, the 
wall effective thickness and the overburden at the top wall are varied. The study 
shows that, because of the relative support motion, the acceleration capacity of 
the walls can drop by 20% and, in the cases where the overburden is high, by 
more than 50%. 
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INTRODUCTION  
 

nreinforced masonry (URM) walls are very vulnerable to the out-of-plane actions, even more so at the higher levels 
of a building where the accelerations are large and the walls relatively slender [1]. The supports of out-of-plane 
loaded masonry walls in a building are subjected to a motion that is filtered and amplified by the building structure 

and, in some cases, can be significantly different from the ground motion. Moreover, because these walls span one or several 
storeys, their top and bottom supports are subjected to motions that differ in phase and amplitude. Relative support motion 
is reportedly due to two factors affecting the path of the seismic action from the ground to the walls located at the upper 
storeys of a building [2]: first, the diaphragm response, notably the in-plane or membrane flexibility of the diaphragm, see 
e.g. [3,4], and, second, the filtering and amplifying effect due to the building structure and, in particular, the shear walls. 
The performance of unreinforced masonry walls subjected to out-of-plane support motion including these two factors has 
been the topic of only few numerical studies so far. Landi et al. [5] investigated the response of pinned-clamped walls 
undergoing vertical bending. The walls were modelled as assemblies of two axially-loaded rigid macro-blocks fully separated 
by a crack at a certain wall height and laterally restrained at the top by a spring. The wall motion was described by a 
Lagrangian system of equations based on two degrees of freedom and integrated on a series of gaussian impulses and natural 
records. Penner et al. [6] performed a parametric study on pinned-clamped vertically-spanning walls by using the software 
Working Model 2D [7]. The study extended the one by Sharif et al. [8], who analysed two rigid macro-blocks subjected to 
equal input support motion, to two rigid macro-blocks subjected to relative support motion. This was achieved by 
connecting two lateral springs to the macro-block ends. The study included variations of the spring stiffnesses, wall thickness 
and slenderness and axial load magnitude and eccentricity. Code-based records were used as input to the numerical model. 
Derakhshan et al. [9] investigated the response of walls with pinned-pinned elastically-restrained supports. The wall response 
was captured by means of a tri-linear force-displacement model built upon a two-rigid-macro-block description. With 
respect to the two above-mentioned works [5,6], in this work the filtering action played by the structure was considered in 
the implementation of the input ground motions. As a result of the adopted filtering process, the input code-compatible 
records applied to the wall supports had a dominant period close to that of the building [9]. The out-of-plane response of 
URM walls was also studied by Tondelli et al [10], who included as input to the out-of-plane wall support motion not only 
the effect of filtering due to the mixed unreinforced masonry – reinforced concrete wall structure but also the effect of 
rocking and therefore elongation of adjacent in-plane loaded URM walls on the top restraint of the out-of-plane loaded 
wall. Both effects were experimentally observed [11] and simulated by means of the software UDEC 6.0 [12], where each 
brick row was modelled as a discrete rigid block. 
The above-mentioned numerical studies all show that URM walls appear to be more vulnerable when they are subjected to 
relative out-of-plane support motions [5,6,9,10]. Providing some degree of flexibility to the wall supports by means of 
springs, which allows mimicking the situation in which the supports do not move simultaneously, leads in fact to a 
displacement demand that is higher than that of a wall with ‘fixed’ or highly stiff supports. While a wall with fixed supports 
collapses because of the excessive mid-height displacement [13–15], a wall with flexible supports can also collapse due to 
the excessive support displacement [9,16]. Furthermore, the more the supports are flexible and have a different degree of 
flexibility, the higher can be the difference between the top and the bottom motions and the more vulnerable becomes the 
wall [6,16]. In the case of a very flexible top support, the upper macro-block behaves similarly to a parapet wall elastically 
restrained at the top and rocking on the lower macro-block, which, in turn, rocks on the fixed bottom support. In this 
situation, the support motion can give rise to a deformation pattern that is characterized by both macro-blocks rocking in 
the same direction, see e.g. [17]. This pattern is unfavourable when compared to the one experienced by a wall spanning 
vertically on fixed supports, since it results in a reduced wall force capacity [18] and displacement capacity [9]. The wall 
acceleration capacity consequently reduces. Depending on the wall configurations, flexible supports were found to reduce 
the wall capacity by up to 1.3 times [6], but a systematic study quantifying the vulnerability of out-of-plane walls subjected 
to the relative support motion based on the input motion characteristics is missing. 
In the above-mentioned studies, the URM walls are modelled as vertical strips undergoing vertical one-way bending. Such 
wall layout is simple yet representative of many wall configurations that are vulnerable to out-of-plane loading. During 
earthquakes, the effectiveness of wall side restraints, which would cause two-way bending, could in fact decrease, e.g. due 
to the weakening of the wall corners, which finally comes to trigger vertically-spanning overturning mechanisms. Such wall 
configurations have also been tested on shake tables. Among these tests, [15,16,19,20] include observations on the relative 
motion of the wall supports. When subjected to relative support motions the walls exhibit an acceleration profile varying 
piecewise linearly along the wall height [15]. Furthermore, the motion of the top and bottom connections may not necessarily 
be in-phase [16,19,20]. These are certainly two sources of wall collapse that are, nonetheless, difficult to predict and quantify 
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[15]. Moreover, test results [15] have shown a significant decrease in the initial lateral wall stiffness when cracking occurs. 
The stiffness also decreases through subsequent tests due to damage, that is, even if no new major cracks appear. The 
influence of the elastic modulus of masonry was, however, not included in previous numerical studies [5,6,9,10] and needs 
therefore to be investigated in a more systematic way. 
The objective of the here presented study is to quantify the vulnerability of walls subjected to the relative support motion 
by investigating the influence of the two fundamental input motion characteristics, which are (i) the relative amplitude and 
(ii) the phase shift between the top and bottom support motions. The numerical modelling of rocking masonry structures 
is a challenging task and many numerical modelling techniques based on e.g. finite element [21–23], discrete element [24–
28], applied element [29,30] and rigid-block models [31] have been put forward in the recent years. In this study, the URM 
walls are modelled by means of a discrete element model, which was already validated and employed in a previous work on 
walls with fixed support motions [32]. Unlike the models used in previous numerical studies analysing URM walls under 
relative support motions [4,5,8] – except [10] – the here presented study makes no assumption on the height at which the 
macroscopic crack forms dividing the one-way spanning wall into a lower and an upper rocking body. This more versatile 
modelling approach allows some essential features of the out-of-plane behaviour of URM walls to be captured, namely, the 
opening/closure of the interfaces following the impacts and the change in height of the macroscopic crack during the shake 
due to the activation of ‘modes’ of rocking other than the two-macro-block mechanisms usually investigated [15]. Relative 
support motions are generated from a suite of natural records. Starting from these records, support motions are derived by 
changing, on the one hand, the phase shift, and, on the other hand, the relative amplitude. This is done by applying 
appropriate signal processing techniques. The strategy followed in this paper to produce records with relative amplitude 
formalises and extends the one already adapted by Tondelli et al. [10]. In this paper, this strategy is applied for different wall 
configurations and, as a novelty, a strategy to produce out-of-phase motions is introduced. The resulting support motions 
are not necessary representative of the real floor motions, as these latter are usually amplified around the building frequency 
[2,9,33,34]. The reason of using synthetically-generated instead of experimentally-derived floor motions is that the former 
allows us examining a wide range of configurations controlling precisely the input motion characteristics. The vulnerability 
of the walls against relative support motions is quantified for different wall configurations through fragility curves. A 
parametric study investigates the acceleration capacity and the failure mechanisms of URM walls in which the masonry 
elastic modulus, wall height-to-thickness ratio, wall effective thickness and applied axial load (overburden) are varied. Godio 
and Beyer [32] carried out a parametric study on the same wall configurations and records, but for wall with identical support 
motions. 
 
 
RESPONSE OF URM WALLS UNDER RELATIVE SUPPORT MOTION 
 

bservations from shake table test show that uncracked URM walls undergo a uniform or a linearly varying 
acceleration profile along their height, depending on whether the input motions at the top and bottom of the wall 
are the same, i.e. have equivalent amplitude and are in-phase, or not [15]. When the walls are cracked, the 

acceleration profile becomes piece-wise linear between the cracks [15], and, for the general case in which the supports 
undergo relative motion, consists of three components (Fig. 1): (a) a constant one, generated by the overall support motion; 
(b) a linear one, provided by the relative motion between the top and bottom supports, as a result, for instance, of the 
diaphragm flexibility; (c) a piece-wise linear one, engendered by the inertia of the macro-blocks separated by the cracked 
middle section undergoing rigid-body rocking motion. As illustrated by Meisl et al. [15], the components (b) and (c) may 
not be necessarily in phase with the overall support acceleration (a), which can be a source for wall collapse [15].  
The acceleration profile given by the support motion only is given by the sum of the components (a) and (b). The sum of 
these two components gives a trapezoidal acceleration profile. Denoting with üT(t) and üB(t) respectively the top and bottom 
support accelerations, the overall support acceleration results in the average value: 
 

 
T Bu (t ) u (t )

u(t )
2




   (1) 

 
The relative support acceleration, which is also a useful parameter in the present work, is defined as: 
 

    T Bû(t ) u t u t     (2) 
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Figure 1: Acceleration profile components of cracked URM walls subjected to out-of-plane relative top and bottom support motion: (a) 
component generated by the overall support motion; (b) component provided by the relative motion between the top and bottom 
supports; (c) component engendered by the inertia forces of the two rocking macro-blocks. 
 
Since in the experimental tests the out-of-plane walls are excited at their base, usually the overall support motion corresponds 
to the motion applied at the wall base and the diaphragm flexibility is concentrated at the wall top support. In that case, the 
trapezoidal acceleration profile of the support, i.e. the components (a)+(b) of the acceleration, can experience variation of 
the acceleration at the top of the wall only [15]. The URM walls tested in this study undergo generic out-of-plane relative 
support motions where both the top and the bottom supports can move. 
 
 
WALL MODEL 
 

he numerical model used in this study consists of a discrete element model of an URM wall of unitary length 
spanning vertically between the top and the bottom supports (Fig. 2).  The model is built by means of the commercial 
software UDEC 6.0 [12] and is the same model previously used and validated by Godio and Beyer [32]. In what 

follows, the model is briefly recalled. As a novelty, in this study the displacement histories applied to the wall top and bottom 
supports are different, as illustrated in Fig. 2. 
The discrete element model falls within the class of simplified micro-models for masonry, according to which each masonry 
unit has an effective height hb that is equivalent to the nominal unit height plus the mortar joint thickness (Fig. 2). The 
numerical model used in this study consists of a 2.8 m-high masonry wall made up of 14 units of effective height 0.2 m 
each, laying on a 0.6 x 0.3 m² discrete element representing the bottom wall support and in contact with a 0.5 x 0.1 m² 
discrete element representing the top wall support. This top block exerts a permanent, or dead, load of 0.88 kN. In addition, 
a vertical stress σv is applied to the top support. The axial force, or overburden, O is the resultant of the vertical stress plus 
the dead load. 
Each masonry unit is modelled as an element of infinite stiffness and strength [12]. The wall deformation is therefore 
included in the constitutive law used for contact. As in [32], a Coulomb slip model with integration over the contact area is 
adopted as joint material model [12]. The elastic joint stiffness coefficients are calculated as [10,32] 
 

w
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 (3) 

 
where Em is the elastic modulus of masonry and ν is its Poisson’s ratio. The joints are also characterised by a tensile strength 
ft, a cohesion c, a friction angle φ, and a dilatation angle ψ. The masonry units have rounded corners [12]. Contact between 
the units consequently occurs over an effective thickness tw,eff defined as 
 

 w,eff w bt t 2r    (4) 

 
with rb the radius of the rounded corner of the units. Contact is discretised in such a way that 10 contact points are placed 
across the effective wall thickness [32], which enables a realistic simulation of the contact forces exchanged by the blocks 
during the wall bending and rocking [35,36]. The parametric study carried out in this paper aims at studying the influence  
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Figure 2: Discrete element model of a vertically-spanning URM wall with different top and bottom support motions used in the study. 
 
on the wall response of the elastic modulus of masonry, the wall height-to-thickness ratio, effective thickness and the vertical 
stress applied at the wall top. The parameters Em, tw, rb and σv are therefore changed during the study, as explained later in 
the paper - see Tab. 2. The other parameters are defined as follows [32]: ν=0, ft=0 MPa, c=2 MPa, φ=35° and ψ=0°. 
A stiffness-proportional Rayleigh damping model is used in the numerical simulations [12]. Following the strategy validated 
in [32], the damping centred on the first flexural frequency of the wall, which is also reported in Tab. 2, is obtained 
considering the wall as a double-clamped Euler’s beam: 
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m w
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w w w
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 (5) 

 
with ρ the wall density and Iw=1/12Lwtw3 the moment of inertia of a generic cross-section of the wall. A damping ratio ζ of 
20% operates at the above frequency [32].   
Time-history analyses are carried out through the numerical model by applying velocity histories in the out-of-plane direction 
of the wall. The velocity histories that are applied to the top and the bottom wall supports are different and are implemented 
following the strategies described in the next section.  
 
 
RELATIVE SUPPORT MOTION GENERATION 
 

ab. 1 contains the suite of records used in this study. The records are the same as those used by Godio and Beyer 
[32] and introduced by Sorrentino et al. [37]. The set of selected records covers a wide window of peak ground 
acceleration (PGA), velocity (PGV) and displacement (PGD), which is thought to diminish the record-to-record 

variability of the results obtained in the study. Starting from these records, synthetic relative support motions are generated 
by introducing a phase shift and a relative amplitude. 
 
Generation of support motions with phase shift 
The Hilbert transform is a convenient method for generating signals that have the same amplitude but are phase-shifted, or 
asynchronous. The Hilbert transform is the integral transform [39]: 
 

  (6) 

 
in which s(t) is the original signal and PV is the Cauchy principal value of the integral [39]. The Hilbert transform operates 
on the signal as a filter and allows the analytical signal z(t) [40] to be generated starting from the original one: 
 

  (7) 

 
In this study, the Hilbert transform is used to introduce a phase shift between the input motions of the top and bottom wall 
supports. Since the numerical model used in this study requires as input the velocity histories at the wall supports, the Hilbert 
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Earthquake Year Station Label* Mag. Duration**  
(s) 

PGA  
(g) 

PGV  
(cm/s)

PGD 
(cm) 

Kern County 1952 Taft Lincoln School TAF111 7.36 20 0.18 19 9 

San Fernando 1971 Pacoima Dam (upp. left abut) PUL164 6.61 12 1.22 114 39 

Friuli 1976 Tolmezzo TMZ000 6.5 10 0.36 23 5 

Imperial Valley 1979 Bonds Corner BCR230 6.53 15 0.78 45 15 

Imperial Valley  1979 El Centro (Array #7) E07230 6.53 15 0.47 113 47 

Nahanni 1985 Site 1 S1280 6.76 10 1.2 41 10 

Loma Prieta 1989 Los Gatos (Lexington Dam) LEX000 6.93 10 0.44 86 17 

Northridge 1994 Rinaldi (Receiving Stat.) RRS228 6.69 10 0.87 148 42 

Northridge  1994 Sylmar (Olive View Med FF) SYL360 6.69 10 0.84 129 32 

Kobe 1995 Takatori TAK000 6.9 15 0.62 121 40 

       *The records were downloaded from the PEER-NGA database [38] 
       **The original records were shortened by cutting the parts preceding and succeeding the main shock 

 

Table 1: Natural records used in the parametric study. 
 
transform operates on the input velocities, which are expressed in the following form: 
 

           T 1 β 1 β
u t u t u t

2 2

 
                     B 1 β 1 β

u t u t u t
2 2

 
     (8) 

 
with u(t) the original input ground motion considered for the study and β a factor enabling to control the phase shift between 
the support motions. Fig. 3 shows for one of the input ground motions used in this study the displacement histories and 
the Lissajous diagrams of the top and bottom support displacements resulting from Eqn. (8). In the figure, umax is calculated 
as max{u(t)}. Lissajous is the name used in signal processing to designate diagrams where two signals are plotted on the 
two axes. This representation is very handy for comparing the two signals. If the signals have equal amplitude and frequency, 
as in the case of two sinusoidal signals, which are represented by dashed lines in the Lissajous diagrams of Fig. 3, the 
diagrams will take the shape of an ellipse. The shape and orientation of the ellipse will change according to the phase 
difference, or phase-shift, between the two signals. As apparent from these diagrams, by using Eqn. (8) for β=0, the top 
and bottom support motions are identical and therefore of equal amplitude and in-phase; for non-zero values of β, the 
support motions have same amplitude but are out-of-phase with a phase shift that increases as β increases: in particular, for 
β=0.5 the phase shift amounts to 45°, whereas for β=1 the support motions are in quadrature, i.e. with a phase shift of 90°.  
For all values of β, the overall support velocity, i.e. the average velocity of the top and bottom supports, due to phase shift 
is (Eqn. (1)) 
 

 
    

β
u t u t

u (t )
2




  
 (9) 

 
and the relative velocity between the top and bottom supports is (Eqn. (2)) 
 

      βû (t ) β u t u t     (10) 

 
Generation of support motions with relative amplitude  
A relative amplitude is introduced between the top and bottom wall support input motions as follows [10]: 
 

   (11) 
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 β=0 

 

 β=0.5 

 

 β=1 

 

Figure 3: Displacement history (left-hand side) and Lissajous diagrams (right-hand side) of top and bottom wall support motions with 
phase shift, Eqn. (8) - Nahanni record (Tab. 1). In dashed gray line: equal-amplitude sinusoidal motions shifted of 0° (top), 45° (center) 
and 90° (bottom). 
 
 
 
The input motions generated by the above expressions are synchronous but have unequal amplitude. Starting from  
Eqn. (11) it is easy to show that for any value of α, the overall support velocity is (Eqn. (1)) 
 

    αu t u t   (12) 

and the relative velocity between the top and bottom supports is (Eqn. (2)): 
 

    αû t 2αu t   (13) 

The factor α controls therefore the difference between the amplitude of the top and bottom support motions. As illustrated 
in Fig. 4, for α=0 the motion of the top and bottom supports are equal and therefore have all the same amplitude than the 
original input ground motion; for α=1 the bottom support is fixed and the top support moves with an amplitude that is 
twice the amplitude of the original input ground motion; intermediate values of α result in support motions with intermediate 
relative amplitude. 
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α=0 

 

α=0.5 

 

α=1 

 

Figure 4: Displacement history (left-hand side) and Lissajous diagrams (right-hand side) of top and bottom wall support motions with 
relative amplitude, Eqn. (11) - Nahanni record (Tab. 1). 
 
 
 
PARAMETRIC STUDY 
 

 parametric study is carried out on the 16 URM wall configurations already used in [32]. The wall configurations 
(Tab. 2) are obtained starting from the reference configuration, denoted with C0, by changing at a time one of the 
following parameters: in C1-C4, the elastic modulus of masonry Em; in C5-C8, the wall thickness tw, determining 

the height-to-thickness ratio of the wall; in C9-C12, the rounding of the masonry units rb, determining the effective thickness 
of the walls; in C13-C16, the vertical stress σv applied to the top  support, giving a different overburden ratio O/W, where 
W is the wall body weight.  
In [32], 10 incremental dynamic analyses (IDA) were run for each of the 16+1 configurations, by using the records of  
Tab. 1. In the present study, 4 sets of (16+1) x 10 IDA are run, resulting in 680 IDA in total. Two sets investigate the 
dynamic wall response when the top and the bottom support motions have the same amplitude but are phase-shifted; for 
these 2 sets, Eqn. (8) is used for the generation of the input support motions, with β being set to 0.5 and 1. The other two 
sets investigate the wall response when the top and the bottom supports are in-phase but have different amplitude; in this 
case, the support motions are generated by using Eqn. (11) setting α equal to 0.5 and 1. In the IDA presented in [32], the 
input support motions were equal, which corresponds here to the case in which either β is set to 0 in Eqn. (8) or α is set to 
0 in Eqn. (11) (c.f. Fig. 3-Fig. 4). 
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Configuration 
wt  (mm) w wH /t  ( - )  br   w(%t ) w,eff wt /t   ( - ) mE   (MPa) O/W ( - )  

If   (Hz)

C0* 200 14 2 0.96 500 0.09 6.91 

C1 200 14 2 0.96 125 0.09 9.77 

C2 200 14 2 0.96 250 0.09 19.54 

C3 200 14 2 0.96 1000 0.09 27.64 

C4 200 14 2 0.96 2000 0.09 6.91 

C5 100 28 2 0.96 500 0.18 13.82 

C6 150 19 2 0.96 500 0.12 17.28 

C7 250 11 2 0.96 500 0.07 20.73 

C8 300 9 2 0.96 500 0.06 13.82 

C9 200 14 0.5 0.99 500 0.09 13.82 

C10 200 14 1 0.98 500 0.09 13.82 

C11 200 14 1.5 0.97 500 0.09 13.82 

C12 200 14 3 0.94 500 0.09 13.82 

C13 200 14 2 0.96 500 1.40 13.82 

C14 200 14 2 0.96 500 2.06 13.82 

C15 200 14 2 0.96 500 4.03 13.82 

C16 200 14 2 0.96 500 6.01 13.82 

         *Reference configuration 
 

Table 2: Walls analysed in the parametric study. Properties in bold are varied with respect to the reference configuration. 
 
 
RESULTS OF THE STUDY 
 
Results for support motions with phase shift 
Fig. 5 shows the fragility curves for each of the configurations analysed in the parametric study and for support motions 
with different phase-shift, i.e. generated by Eqn. (8) for β equal to 0, 0.5 and 1. The fragility curves are built from the results 
of the IDA, as cumulative distributions of the limit PGA, denoted here as PGAlim. This latter corresponds to the PGA of 
the time history in which the wall attains failure for the first time along the IDA and it is defined from Eqn. (9), as the 
average acceleration of the top and bottom supports: 
 

 
   T B

lim β
t t

u t u t
PGA max max u

2


 

    (14) 

 
The condition used for wall failure is that the wall undergoes a mid-height displacement d equal or larger than the limit 
displacement d0. The probability of wall failure is therefore P(|d|≥d0). This displacement is calculated as the maximum 
displacement that the wall attains under a uniformly distributed lateral load, assuming a failure mechanism similar to the one 
depicted in Fig. 2, but with fixed wall supports. The expression for d0 is obtained in [41] and, for clarity, is reported here: 
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where ξ denotes the position of the middle masonry cracked joint, which can be calculated as: 
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Figure 5: Fragility curves based on log-normal distributions obtained from the incremental dynamic analyses (IDA) carried out on URM 
walls subjected to phase-shifted support motions. For β=0, in-phase motions; for β=0.5, motions with phase shift of 45°; for β=1: 
motions with phase shift of 90°. Real discrete distributions based on the set of 10 ground motions are in dotted line and fitted log-
normal distributions are in dashed, dashed-dotted or solid lines. PGA values are in units of g. 
 
 
 

 
 

Figure 6: Median values of PGAlim for all studied configurations and for different values of β. 
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Cases of structural resurrection, i.e. cases where the wall can sustain levels of PGA higher than those leading to collapse for 
the first time along the IDA [42], have already been observed in rocking masonry structures [43], but are here neglected. As 
observed in [32], they may occur occasionally but it would be unsafe to consider them in the evaluation of the wall collapse, 
since from a practical point of view the first onset of failure is of interest. 
The figure shows both real distributions, in dotted line, and fitted log-normal distributions, using the line type indicated in 
the legend. Comparing the curves obtained for all the studied configurations and for a given value of β, it can be noticed 
that increasing the wall thickness, which for a fixed wall height comes to decreasing the height-to-thickness ratio (C5-C8), 
the effective wall thickness over the nominal thickness (C9-C12) and the overburden ratio (C13-C16) increases the 
acceleration capacity of the wall. On the contrary, changes in the elastic modulus (C1-C4) have almost no effect on the 
acceleration capacity. An analogous outcome was obtained in [32] for walls subjected to identical support motion.  
Comparing the wall capacity for a given configuration and for all values of β, it appears that increasing β from 0 to 1, i.e. 
increasing the phase-shift between the top and the bottom wall supports, the fragility curves shift to the left, leading to a 
decrease of limit PGA for almost all probability levels and configurations. To better quantify the effect of a phase shift in 
the support motion, the median values PGAlim(50) are plotted in Fig. 6 for all configurations and all values of β. For the 
configurations C1 to C12, a phase-shift between the top and the bottom wall supports engenders a decrease of acceleration 
capacity of about 10% with respect to the in-phase case for β=0.5, which goes up to 20% when the phase-shift is maximum, 
i.e. for β=1. No significant difference between the configurations C1-C4 and C5-C12 is observed. For the configurations 
C13 to C16, the increase of overburden ratio at the wall top leads to a further reduction of the wall capacity. For the 
configuration C16, where O/W=6, the wall capacity is reduced to less than 40% of its initial value.  
The phase-shift of the support motions has therefore a detrimental effect on the wall acceleration capacity. This conclusion 
is supported by the observation of the wall failure mechanisms: even though the majority of the failure mechanisms is given 
by the formation of two macro-blocks spanning as illustrated in Fig. 1, for the 34% and 31% of the studied configurations 
and records, deformation patterns corresponding to higher rocking ‘modes’, i.e. deformation patterns characterized by the 
formation of more than two macro-blocks, are activated for β=0.5 and β=1, respectively. Unfavorable patterns as those 
discussed in [9], characterized by two macro-blocks rocking in the same direction, are observed for about the 0% and 3% 
of the cases, respectively. It appears, nonetheless, that the P-Δ effect engendered by the relative support motion due to the 
phase-shift combined with a relatively high axial load creates the worst-case scenario for the wall. 
 
Results for support motions with relative amplitude 
Fig. 7 shows the fragility curves for each of the configurations analysed in the parametric study and for support motions 
with relative amplitude, i.e. generated for different values of α, namely 0, 0.5 and 1. The fragility curves are built as for Fig. 
5, as cumulative distributions of the limit PGA obtained from the IDA. Fig. 8 sums up the results, by showing the median 
values of the obtained limit PGA for all configurations and all values of α.  
Overall, the figures show how introducing relative amplitudes in the wall support motions has a detrimental effect on the 
wall acceleration capacity. More specifically, for the configurations C1 to C12, the relative amplitude between the top and 
the bottom wall supports engenders a decrease in acceleration capacity with respect to the equal amplitude case of about 
10% for α=0.5, and of about 20% for α=1. For the configurations C13 to C16, the decrease in acceleration is much more 
important and peaks at 85% for configuration C16 for α=1.  
From the comparison of these results with those obtained from the first two sets of simulations (Fig. 6), it can be concluded 
that introducing relative amplitudes in the wall support motions has a detrimental effect on the wall acceleration capacity, 
which is comparable to the effect of introducing a phase-shift. It appears that the P-Δ effect engendered by support motions 
of relative amplitudes combined a relatively high axial load creates the worst-case scenario for the wall. The failure 
mechanisms activated on the walls are for 16% and 19% of the cases, respectively for α=0.5 and =1, higher ‘rocking modes’ 
and for 1% and 15% of the cases unfavorable patterns. 
 

O(O W) Oξ
W
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Figure 7: Fragility curves based on log-normal distributions obtained from the incremental dynamic analyses (IDA) carried out on URM 
walls subjected to relative-amplitude support motions. For α=0, motions of same amplitude; for α=0.5, motions with relative amplitude 
equal to the original input motion; for α=1, motions with relative amplitude equal to two times the original input motion and with fixed 
bottom support. Real discrete distributions based on the set of 10 ground motions are in dotted line and fitted log-normal distributions 
are in dashed, dashed-dotted or solid lines. PGA values are in units of g. 
 
 

 
 
 

Figure 8: Median values of PGAlim for all studied configurations and values of α. 
 

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0 3.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0 3.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0 3.0

0.0

0.3

0.5

0.8

1.0

0.0 1.0 2.0 3.0

0.0

0.3

0.5

0.8

1.0



 

M. Godio et alii, Frattura ed Integrità Strutturale, 50 (2019) 194-208; DOI: 10.3221/IGF-ESIS.50.17                                                                                          

 
 

206 
 
 

CONCLUSIONS 
 

his study shows by means of numerical simulations that the acceleration capacity of vertically-spanning URM walls 
decreases when the walls are subjected to a relative motion between the top and bottom supports. The study 
quantifies this in a systematic way, by looking at two fundamental input motion characteristics: firstly, by including 

motions that are phase-shifted, i.e. non-synchronous but of equal amplitude; secondly, through motions that are 
synchronous but of relative amplitude. 
The effect of the phase-shift and relative amplitude of the support motions have been studied for different wall 
configurations and by a model where the masonry components are modelled with infinite compressive strength and zero 
tensile strength. The effect of a limited compressive strength can be taken into account in the model by relating it to the 
effective wall thickness, see e.g. [10]. The assumption of zero tensile strength, which is not always verified in real situations, 
allows making a comparison with the results of a previous study [32]. As already observed in [32] for walls subjected to 
equal support motions, it appears here that for a given phase-shift or relative amplitude, variations in the masonry elastic 
modulus do not have a significant influence on the acceleration capacity of the URM walls. On the other hand, the wall 
height-to-thickness ratio, the wall effective thickness and, especially, the vertical stress, or overburden, applied at the wall 
top appear to be critical parameters that should be carefully evaluated because of their influence on the wall capacity [32]. 
As a novelty, the study further shows that, because of the relative support motion, the acceleration capacity of URM walls 
can drop by 10 to 20% for wall configurations with low to moderate overburden ratios and, in cases where the overburden 
ratio is high, it can drop by more than 50%.  
In conclusion, the strategies reported in this study allows quantifying the difference in shift and amplitude between the top 
and bottom wall support motions in efficient way. The support motions used in this study are nonetheless not yet 
representative of real building configurations as they do not contain any filtering effect due to the shear walls, which provide 
the wall supports with an input motion whose main period is close to the fundamental period of the structure [2,33,34]. 
Further studies characterizing the input motion characteristics, i.e. phase shift and relative amplitude, of consecutive floor 
motions in URM buildings are necessary to put the present study into a real context and decide whether the extension of 
existing assessment methods to capture the effect of relative support motions is a step to be envisaged.  
 
 
REPRODUCIBILITY OF THE ARTICLE CONTENT 
 

he content of this paper can be reproduced with the files provided at the following permanent repository: 
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