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Morphology is a crucially important factor determining the efficiency of photocurrent generation in

bulk heterojunction polymer solar cells. Morphology, which depends on the characteristics of the

polymers as well as on the conditions of phase separation, affects the performance of solar cells by

influencing the rate of exciton dissociation and the efficiency of charge carrier transport. Using

Monte Carlo simulations, we investigate the effects of annealing time on the morphology of phase

separation and charge transfer behavior inside the active layers of polymer solar cells. We find that

a suitably defined correlation distance is an effective parameter that quantitatively characterizes

different morphologies and can be used to establish a direct link with transmission electron

microscopy images of real polymer solar cells. Optimal morphologies have been investigated,

showing results that are consistent with experimental data. © 2008 American Institute of Physics.

�DOI: 10.1063/1.2956689�

I. INTRODUCTION

The recent surge of interest in the science and technol-

ogy of solar cells can be attributed to a growing shortage of

fossil fuels, as well as to a need for environmentally friendly

clean sources of energy.
1

Polymer photovoltaics are particu-

larly attractive because of their ease of fabrication, flexibility,

low weight, and low cost.
2,3

Polymer solar cells with dem-

onstrated efficiencies of more than 5% are considered to be

promising alternatives to their inorganic counterparts.
4–7

Efficiency of polymer solar cells can be enhanced by the

bulk heterojunction structure, which consists of blends of

electron donor polymers and electron acceptor molecules.
8

The mechanism of photocurrent generation in these systems

involves a sequence of steps starting with the generation of

excitons by incident photons. Excitons are quasiparticles

having short lifetimes of several hundreds of picoseconds
9

and diffusion lengths of about 10 nm.
10

The photogenerated

excitons diffuse and, upon reaching the interface between the

electron donor and electron acceptor materials, separate into

electrons and holes. These charge carriers transfer inside the

active layer, under a built-in electric field and/or external

bias voltage, until they are extracted by the electrodes and

contribute to the photocurrent.

The morphology of the two phases in the active layer is

therefore of crucial importance for the performance of solar

cells.
4,11–15

A morphology that maximizes the interfacial area

between the materials will improve the dissociation rate of

the excitons, leading to higher efficiencies.
16

On the other

hand, too much interfacial area would increase the chances

for the electron-hole recombination, as well as make the con-

duction path longer, which would lead to a decrease in effi-

ciency.

Several models are available in the literature to treat this

problem.
17,9,18

Sylvester-Hvid et al. developed a two-

dimensional �2D� model, which was used to establish the

morphology dependence of the short circuit current.
17

How-

ever, morphology inputs were just ideal 2D matrices and the

possibility of network formation was not considered. The

Monte Carlo simulations of Watkins et al.
9

covered the full

sequence from morphology generation to electron transfer,

and the results showed that the quantum efficiency is a func-

tion of the donor-acceptor interfacial area. However, the

topic of quantitative characterization of the morphology and

its relation to the photovoltaic performance remains largely

unexplored.

In the present work, using Monte Carlo simulations of

morphology generation and carrier transport, we correlate the

annealing process in the fabrication stage with the photocur-

rent and use this relationship to evaluate different morpholo-

gies. We introduce the concept of correlation distance as a

simple experimentally accessible way of characterizing two-

phase morphologies, which allows us to describe the optimal

morphology quantitatively.

II. MONTE CARLO MODELING OF POLYMER SOLAR
CELLS

We use a 2D lattice system to model the solar cell de-

vice. The active layer of the solar cell is described as a 2D

matrix with each element representing an N-type �acceptor�
material or a P-type �donor� material at its position. The

cathode and anode are modeled as two extra rows appended

to the top and the bottom of the matrix.

A. Morphological evolution

The inherent properties of intermolecular interactions

and conformational entropies of the electron donor and ac-

ceptor molecules in polymer blends are such that molecules

of a given kind prefer to be surrounded by molecules of the

same kind. Therefore, upon annealing, the system tends to
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phase separate and decrease the degree of intermixing be-

tween the two phases; the degree of phase separation is com-

monly characterized by the total interfacial area between the

two polymers.

Since the phase separation in polymer systems is usually

a process driven by entropy �which is larger in the phase-

separated state than in the mixed state�, we calculate the total

free energy, F=E−TS, as a product of temperature and en-

tropy only, neglecting the energy term altogether. In our 2D

model, each grid point on a simple square lattice stands for a

site, which can be occupied either by an N- or a P-type

molecule. The entropy and free energy associated with a site

i are calculated using the nearest-neighbor Ising model ex-

pression:

Si = J�
j

N

sis j ,

Fi = − TS = − TJ�
j

N

sis j , �1�

where J is the coupling constant and the discrete spinlike

variables si and s j denote the identities of phases for sites i

and j, taking the values of +1 and −1 for the N- and P-type

phases, respectively. Since molecules beyond the nearest

neighbors will have a relatively small effect on the entropy

of site i, their effect is not included in Eq. �1�. Then the total

free energy is calculated as

Fi = − TJ�
i

�
j�NNi

sis j . �2�

A standard nearest-neighbor exchange Monte Carlo

method �Kawasaki dynamics� is used to simulate the kinetics

of phase separation. We start from a random distribution of

the two phases on the lattice sites. At each Monte Carlo step,

we randomly pick two nearest-neighbor sites, swap them,

and calculate the change in the total free energy, �F. The

acceptance probability depends on the change in the total

free energy as

P��F� =
1

1 + exp� �F

kBT
�

. �3�

The main simplification of our model is the linear tem-

perature dependence of the free energy in Eq. �2�, which

results in a temperature-independent Boltzmann weight in

Eq. �3�. This leads to computer-generated morphologies that

depend only on the number of Monte Carlo steps. Tempera-

ture enters the kinetics of diffusion via the actual time rep-

resented by each Monte Carlo step. However, in real experi-

ments, variations in the temperature will influence not only

the diffusion rate but also the evaporation rate of solvent,

crystallinity of the polymer, and many other factors that are

difficult to treat within the simple Ising model. Future studies

considering the solvent annealing and evaporation effects

will give a more realistic temperature dependence of mor-

phologies. Nevertheless, Eqs. �1�–�3� provide sequences of

prototypical morphologies, which are sufficient for our pur-

pose of establishing the relation between the degree of phase

separation and the performance of polymer solar cells.

B. Exciton generation and diffusion

For each generated morphology, the established four-

step mechanism of photocurrent generation �exciton genera-

tion, exciton migration, exciton dissociation into an electron-

hole pair, and free carrier transport� is simulated to assess the

efficiency of the solar cell. We assume that, under a fixed

light intensity, the excitons are generated at a constant rate

and their transport within the cell occurs through diffusion.

In our simulation, the diffusion of excitons is simulated using

the random walk model. The jump frequency of the random

walk is proportional to the diffusion coefficient D, resulting

in an average diffusion distance l that is proportional to the

square root of the diffusion time t:

l = �4Dt . �4�

C. Transport of charge carriers

It is generally accepted that the free carrier transport in

polymers follows hopping dynamics, which can be simulated

as the hopping of an electron or a hole from one site to

another with a rate decided by the energy difference and

hopping distance. We adopt the Gaussian disorder model
19

for the distribution of energy states and the Miller–Abraham

model
20

for calculating the hopping rates. The hopping rate

can be written in the following form:

W = W0 exp�−
�E

kBT
� , �5�

where W0 is a coefficient decided by the carrier mobility and

by the distance between the initial and final sites. In the

absence of an electric field, �E is determined by the energy

difference between the initial and the final site; in this case,

the carrier transport is dominated by diffusion. The hopping

rate can be calculated in a manner similar to the excitonic

diffusion considered in the previous section, while the diffu-

sion coefficient can be obtained from the Einstein relation:

D = �
kBT

q
, �6�

where � is the carrier mobility and q is the charge of an

electron. In the presence of an electric field, which can be

introduced by a work function difference between the elec-

trodes and/or by an external bias, the energy change also

depends on the field and is given by

�E = U2 − U1 − qEd , �7�

where U1 and U2 are the initial potential energies of sites 1

and 2, E is the electric field from site 1 to site 2, d is the

hopping distance, and q is the carrier charge, which is posi-

tive for holes and negative for electrons.

The bimolecular recombination rate of electrons and

holes is given by the following relation:
21
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R = ��np − nintpint� , �8�

where n and p are the total carrier concentrations, nint and pint

are the intrinsic carrier concentrations, and � is a constant

determined by the mobilities of electrons and holes. The in-

trinsic carriers are neglected here because their concentration

is small in comparison with the concentration of photogener-

ated carriers. At every step of the Monte Carlo simulation,

each electron is assigned a probability for recombination that

is proportional to the number of holes. Therefore, the overall

recombination rate is proportional to the product of n and p.

A kinetic Monte Carlo approach is used to simulate the

movement of electrons and holes in the active layer. At each

time step, a random move is attempted for each carrier, and

the probability of accepting this move is decided by the

change in the carrier energy according to Eq. �5�. The pho-

tocurrent is calculated from the extraction rate of holes and

electrons at the electrodes.

D. Model parameters

In the morphology generation, we set J /kB, the nearest-

neighbor interaction in the Ising model, to 1. The value of J

is strongly material dependent and accurate data are difficult

to obtain. As discussed in Sec. II A, the morphological evo-

lution in our study depends only on the number of Monte

Carlo steps and is insensitive to the numerical value of this

parameter.

In our simulations of carrier transport, we used typical

experimental data for the poly�3-hexylthiophene�/�6,6�-
phenyl-C61-butyric acid methyl ester �P3HT/PCBM� sys-

tem. Indium in oxide �ITO� is used for anode and calcium is

used for cathode. The rate of exciton generation is based on

100 mW light injection, and the device thickness is set to

100 nm. Input data for our simulations are listed in Table I.

In both morphology generation and charge transport situ-

ations, each grid point in the 2D map stands for 1 nm, which

means that each site has the statistical properties over a re-

gion with side length of 1 nm. The length scale of several

nanometers will be enough for characterizing nanoscale

phase separation, as suggested by typical transmission elec-

tron microscopy �TEM� or scanning electron microscopy im-

ages.

III. RESULTS AND DISCUSSION

A. Phase separation

Figure 1 shows the effect of annealing conditions on the

morphology due to different annealing times, as measured by

the number of Monte Carlo steps. Comparison of Figs. 1�a�
and 1�b� shows that increasing the annealing time leads to

more phase-separated morphologies. The degree of phase

separation can be measured quantitatively using the total en-

tropy of the Ising model and the interfacial area between the

phases �or the interface length in two dimensions�. The in-

terface length is measured by simply adding up the side

lengths of cell borders where different phases lie on two

sides. Due to the assumptions of our model, the total entropy

correlates very well with the total length of the interface.

Figure 2 shows the relation between the area and entropy,

exhibiting a highly linear behavior.

TABLE I. Experimental setting for simulation.

Parameter Value Unit

Exciton generation rate 4�1027 m−3 s−1

Exciton lifetime 0.5 ns

Exciton diffusion length 10 nm

Carrier mobility 0.001 cm2 s−1 V−1

Work function of ITO/PEDOT −5.1 eV

Work function of Ca −2.9 eV

HOMO of P3HT −4.9 eV

LUMO of P3HT −3.0 eV

HOMO of PCBM −6.3 eV

LUMO of PCBM −3.7 eV

FIG. 1. �Color online� Typical simulation results for morphology genera-

tion, showing the influence of annealing time: �a� 108 Monte Carlo steps; �b�
109 Monte Carlo steps.

FIG. 2. Relation between the Ising model entropy and the interfacial area.
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B. Carrier transport

We have compared the carrier transport behavior for all

generated morphologies. Figure 3 shows I-V curves for two

typical samples with different morphologies. Since we did

not consider the dark current, i.e., the injection of holes and

electrons from the circuit, the current saturates because of the

limit on the exciton generation. The two curves in Fig. 3

correspond to simulations on two cells with different mor-

phologies. Obviously, the one with the larger current �mor-

phology 2� is more desired.

Figure 4 shows the dependence of the short circuit cur-

rent on the interfacial area for all our generated morpholo-

gies. There is a clear trend of an optimal range for the inter-

facial area, which produces the highest photovoltaic current.

Below the optimal range, we have systems with smaller in-

terfacial area �higher degree of phase separation� where the

rate of the electron-hole pair generation constrains the cur-

rent. Above the optimal range lie systems with too much

interface, which are limited by inefficient conducting paths

and high electron-hole recombination rates.
9

The error bars

in Fig. 4 give the standard deviations of the current and

interfacial area for different runs with the same number of

Monte Carlo steps. The scatter in the simulated photocurrent

values is due to finite-size effects and morphological infor-

mation that is not contained in the interfacial area, i.e., with

the same degree of phase separation, two solar cells may

have different behaviors depending on the higher-order de-

tails of phase distribution in the finite area between the elec-

trodes.

C. Correlation distance

Results of the preceding section show that the interfacial

area can be used to characterize the efficiency of solar cells.

However, the interfacial area is not a convenient parameter

to adopt in practice since it is difficult to measure using

microscopy, especially for a three-dimensional system. Here

we introduce a simple scalar function that can be easily cal-

culated from a 2D image and assess its efficiency for predict-

ing the performance of solar cells.

The correlation distance is obtained from the pair corre-

lation function �,
22

which is defined as

�ij =
	sis j
 − 	si
	s j


�si
�sj

= 	sis j
 , �9�

where �si
is the rms fluctuation of the spin variable si. The

correlation function �ij is a function of the distance between

sites i and j, and in practice, it is obtained by averaging the

product si s j over all pairs separated by a certain distance

�Ri−R j�.
Figure 5 shows the correlation function for a sample

morphology, which was obtained after 1�1010 Monte Carlo

steps. It shows that for a phase-separated morphology, the

correlation drops as distance increases, exhibiting a rela-

tively long oscillatory tail. Choosing a threshold in the cor-

relation value ��=0.5 in Fig. 5�, we define a correlation dis-

tance �, meaning that pairs at distances smaller than this

value are strongly correlated. In other words, the correlation

distance gives the characteristic average radius of regions

with high probabilities of finding molecules of one type.

The correlation distance can be used to correlate the

simulated morphologies with TEM images of solar cells.

Figure 6 shows TEM images of a solar cell before and after

annealing. This solar cell was found to be one of the most

highly efficient ones produced in our group.
23

After filtering

the low- and high-frequency portions, which are due to non-

uniformity of light and due to noise and aliasing,
24

respec-

tively, we can determine the correlation distance using the

same definition as in the simulation. The results are 2 nm

before annealing and 3 nm after annealing. The latter value

is close to the optimal correlation distance from our simula-

tion, as calculated in the next section.

FIG. 3. �Color online� Simulated photocurrent curves for solar cells with

different morphologies.

FIG. 4. Relation between the short circuit current and the interfacial area.

FIG. 5. Correlation function of a sample morphology.
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D. Using the correlation distance

The relation between the correlation distance and the

interfacial area is shown in Fig. 7. There is an approximate

inverse relationship between the two, which implies that, for

a 2D system of a given size, the product of these parameters

is constant. In other words, the reciprocal correlation dis-

tance contains almost the same information as the interfacial

area. However, the correlation distance is more useful since

�a� the correlation distance can be easily determined from

TEM images, while the interfacial area is difficult to measure

from microscopy, and �b� the correlation distance is not only

a description of the phase boundaries but also a statistical

parameter considering both the interface and bulk sites. As

shown in Fig. 8, the two morphologies have exactly the same

interfacial area, but Fig. 8�a� generates more photocurrent

than Fig. 8�b� as a result of a better conduction path. This

important difference is well characterized by the correlation

distance �4.4 nm in �a� and 9.4 nm in �b��.
The correlation distance can also be used to characterize

the kinetics of phase separation. Figure 9 shows the Monte

Carlo time dependence of the correlation distance. At long

times, the rate of increase in � follows the relation

� � t1/2, �10�

which is consistent with theoretical predictions for the kinet-

ics of phase separation in two dimensions.
25

These results

show that by measuring the correlation distance of real sys-

tems over time, it should be possible to correlate the degree

of phase separation in experiments with our simulation re-

sults.

Figure 10 shows the relation between the short circuit

current and the correlation distance. This figure tells a story

that is similar to the plot of the current versus the interfacial

area in Fig. 4, except that we can draw a further quantitative

conclusion that in this case the optimal degree of phase sepa-

ration can be characterized by a correlation distance of ap-

proximately 4 nm.

FIG. 6. TEM images of a typical PCBM/P3HT solar cell �a� before and �b�
after annealing.

FIG. 7. Relation between the correlation distance and reciprocal interfacial

area.

FIG. 8. �Color online� Morphologies with the same interfacial area but

different correlation distances.

FIG. 9. Correlation distance as a function of the number of Monte Carlo

steps.
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Figure 11 shows that the short circuit current as a func-

tion of the correlation distance strongly depends on the ex-

citon lifetime and diffusion coefficient. Our results demon-

strate that longer exciton lifetimes and/or higher exciton

diffusion coefficients favor morphologies with longer corre-

lation lengths and higher degrees of phase separation. Other

parameters, such as the charge recombination rate and the

variance of the energy distribution, are also predicted to have

an impact on the relation between the current and correlation

distance. Generally, changes in parameters that improve the

dissociation of excitons into electrons and holes �e.g., longer

exciton lifetimes� will increase the optimal correlation dis-

tance, while changes that improve carrier transport �e.g., re-

sulting in lower recombination rates� will favor shorter cor-

relation distances.

IV. CONCLUSIONS

It has been shown that the morphology has a large influ-

ence on the short circuit current of a polymer solar cell. An

optimal range of phase separation exists due to competition

between better electron transport in more phase-separated

structures and better rates of exciton creation in less phase-

separated ones. The morphology in turn can be controlled by

annealing conditions.

We suggest that the correlation distance is a convenient

quantity that can be used to accurately characterize the mor-

phology of polymer solar cells. Our simulation results for

computer-generated morphologies show that the optimal cor-

relation distance varies with parameters describing the be-

havior of excitons and charge carriers. Predictions for opti-

mal morphologies in the PCBM/P3HT system are consistent

with the values of correlation distances derived from TEM

images of optimized solar cells.

In the future, more accurate approaches for simulating

morphology generation, such as considering the effect of sol-

vent annealing, should be studied. On the other hand, factors

other than correlation distance affecting photocurrent genera-

tion through various mechanisms should be characterized

further, for example, finite-size effects associated with the

higher-order details of polymer distribution and ordering in

the finite area between the electrodes. Carrying out three-

dimensional simulations would also be a promising direction

for further improvement.
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