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Abstract

Public health interventions have been implemented to mitigate the spread of

coronavirus disease 2019 (COVID-19) in Ontario, Canada; however, the quantification

of their effectiveness remains to be done and is important to determine if some of the

social distancing measures can be relaxed without resulting in a second wave. We

aim to equip local public health decision- and policy-makers with mathematical

model-based quantification of implemented public health measures and estimation

of the trend of COVID-19 in Ontario to inform future actions in terms of outbreak

control and de-escalation of social distancing. Our estimates confirm that (1) social

distancing measures have helped mitigate transmission by reducing daily infection

contact rate, but the disease transmission probability per contact remains as high as

0.145 and case detection rate was so low that the effective reproduction number

remained higher than the threshold for disease control until the closure of

non-essential business in the Province; (2) improvement in case detection rate and

closure of non-essential business had resulted in further reduction of the effective

control number to under the threshold. We predict the number of confirmed cases

according to different control efficacies including a combination of reducing further

contact rates and transmission probability per contact. We show that improved case

detection rate plays a decisive role to reduce the effective reproduction number, and

there is still much room in terms of improving personal protection measures to

compensate for the strict social distancing measures.

Keywords: COVID-19; Personal protection; Mathematical model; Control

reproduction number; Effective reproduction number; Parameter estimation

1 Introduction

Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses that usually

cause mild respiratory communicable disorders but can, sometimes, result in a severe

and even lethal infection [1]. Coronaviruses are considered re-emerging pathogens, due

to globalization, increasing urbanization, frequency of contacts andmixing of various ani-

mals in high-density areas [2, 3]. Due to their highly dynamicmutation and recombination
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rates and their ability to cross species, they can adapt to new hosts [4, 5], and, as such, in

the last decades they have caused different large-scale outbreaks and zoonotic spillovers,

including the 2003 “Severe Acute Respiratory Syndrome” (SARS) outbreak, and the “Mid-

dle East Respiratory Syndrome” (MERS) outbreaks occurred in 2012 in the Kingdom of

Saudi Arabia and in 2015 in South Korea [5].

The “Severe Acute Respiratory Syndrome-related Coronavirus type 2” (SARS-CoV-2),

initially termed as 2019-nCoV, is an emerging coronavirus, which has caused the latest

coronavirus outbreak, which from the first reported epicenter,Wuhan (province of Hubei,

People’s Republic of China), has spread out globally, becoming a pandemic [1]. SARS-

CoV-2 is highly contagious and quickly spreads among individuals, causing an infection in

which the severity varies from asymptomatic cases to a life-threatening disorder, known as

“coronavirus disease 19” (COVID-19) [1]. China adopted a package of strict public health

measures [6–8], including quarantine and lock-down of entire regions, these interven-

tions may be considered unfeasible/unsustainable in other countries, including the west-

ern societies, which have preferred a mitigation- rather than a suppression-based strat-

egy. Canada belongs to the countries which have chosen to mitigate the burden imposed

by the viral outbreak. In Canada, the first confirmed COVID-19 case was identified on

January 25th 2020. As of April 1st 2020, Canada has reported a total of 11,283 cases, with

173 deaths, including 2392 confirmed cases in Ontario. The Canadian government and

the province of Ontario has gradually implemented and increasingly enhanced a package

of public health control measures, including travel restrictions, closure of schools, uni-

versities and several business practices. Approximately one third of reported cases are

travel-related, with most of them being related to local transmission.

While controls have been implemented, their efficacy and the future trend of COVID-19

in Ontario is uncertain. We aim to equip local public health decision- and policy-makers

with mathematical model-based estimation of mitigation measure efficacy and projec-

tion of the trend of the COVID-19 epidemic in Ontario, in order to inform dynamic op-

timization of ad hoc measures in a fast developing epidemic. In particular, we develop a

transmission model taking full consideration of the mitigation strategies implemented in

Ontario: physical distancing, contact tracing and diagnosis. We parameterize this trans-

mission model by fitting to the reported incidence data. Using this parameterized model,

we assess the transmission risk and evaluate the effectiveness of interventions.

2 Material andmethods

2.1 Model

Weuse themodeling framework of COVID-19 transmission developed in previous studies

[6–8] to describe the COVID-19 transmission dynamics in Ontario, Canada. The popu-

lation is divided into susceptible (S), exposed (E), asymptomatic infectious (A), infectious

with symptoms (I), and recovered (R) compartments according to the epidemiological

status of individuals, and further into diagnosed (D), quarantined susceptible (Sq), and

isolated exposed (Eq) compartments based on control interventions. We also account for

contact tracing, where a proportion, q, of individuals exposed to the virus are quarantined.

The quarantined individuals can either move to the compartment Eq or Sq, depending on

whether they are effectively infected or not, while the other proportion, 1 – q, consists

of individuals exposed to the virus who are missed from contact tracing and, therefore,
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Figure 1 An illustration of the model describing the

transmission of novel coronavirus (COVID-19)

infection under control measures-contact tracing

and isolation (red line), diagnosis (blue line) and

treatments (green line). The fundamental model

framework can refer to the studies [6, 7]

move to the exposed compartment E once effectively infected, or stay in the compart-

ment S otherwise [6]. The transmission diagram is shown in Fig. 1 and the transmission

dynamics model is given by [7]

S′ = –
(

βc + cq(1 – β)
)

S(I + θA)/N + λSq,

E′ = βc(1 – q)S(I + θA)/N – σE,

I ′ = σρE – (δI + α + γI)I,

A′ = σ (1 – ρ)E – γAA,

S′

q = (1 – β)cqS(I + θA)/N – λSq,

E′

q = βcqS(I + θA)/N – δqEq,

D′ = δII + δqEq – (α + γH )D,

R′ = γII + γAA + γHD.

(1)

where N = S + E + I +A + Sq + Eq +D + R is the total population, and N ′ = –α(I +D). The

definitions of all the parameters are listed in Table 1. Using the next generation matrix

method [9], we obtain the control reproduction number of model (1) as the following:

Rc =
(

βρc(1 – q)
)

/(δI + α + γI) +
(

βcθ (1 – ρ)(1 – q)
)

/γA.

Here, the control reproduction number means the basic reproduction number with con-

trol interventions as the Ontario government adapted a series of control measures since

March 14.

2.2 Data and parameter estimation process

We obtained the data of cumulative reported COVID-19 infected cases in Ontario,

Canada, from the Government of Canada [11], as shown in Fig. 2. The data were released

and analyzed anonymously.

When carrying out the parameter estimations, we fixed several of themodel parameters

from the literature or based on the available information in order to reduce the complexity

of the parameter space needing estimation. In detail, the incubation period is fixed as 5

days [10], i.e. σ = 1/5, the rate at which the quarantined uninfected contacts were released

into the wider community is fixed as λ = 1/14 [7], while the recovery rate of the asymp-

tomatic infections is fixed as γA = 0.139 [7]. As we did not use the data of death cases

and the recovered population, we fixed the recovery rate of the diagnosed population as

γD = 0.2 and the disease-induced death rate as α = 0.008 following the estimations in the
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Table 1 Parameter estimates for COVID-19 in Ontario, Canada

Parameter Definitions Feb 26 to

Mar 21

Feb 26 to

Mar 25

Feb 26 to

Mar 29

Feb 26 to

Apr 13

Source

c Contact rate 11.7905 11.5539 9.1586 – Estimated

c(t) c0 Constant contact rate before Ts – – – 10.0005 Estimated

r1 Exponential decreasing rate of contact

rate

– – – 0.0632 Estimated

cb Minimum contact rate after Ts – – – 3.4999 Estimated

β Probability of transmission per contact 0.1450 0.1450 0.1452 0.1438 Estimated

q Quarantined rate of exposed individuals 0.0810 0.1479 0.1754 0.1003 Estimated

σ Transition rate of exposed individuals to

the infected class

1/5 1/5 1/5 1/5 [10]

λ Rate at which the quarantined uninfected

contacts were released into the wider

community

1/14 1/14 1/14 1/14 [7]

ρ Probability of having symptoms among

infected individuals

0.6 0.6 0.7847 0.6201 Estimated

δI Transition rate of symptomatic infected

individuals to the quarantined infected

class

0.1 0.1 0.1 – Estimated

δI(t)δI0 Constant transition rate of symptomatic

infected individuals to the quarantined

infected class before Ts

– – – 1/9.2 Data

r2 Exponential increasing rate of the

detection rate

– – – 0.7174 Estimated

δIf Fastest transition rate of symptomatic

infected individuals to the quarantined

infected class after Ts

– – – 0.5642 Estimated

δq Transition rate of quarantined exposed

individuals to the quarantined infected

class

0.1 0.1 0.1 0.1 Estimated

γI Recovery rate of symptomatic infected

individuals

0.2 0.2 0.1999 0.1830 Estimated

γA Recovery rate of asymptomatic infected

individuals

0.139 0.139 0.139 0.139 [7]

γH Recovery rate of quarantined diagnosed

individuals

0.2 0.2 0.2 0.2 [6]

α Disease-induced death rate 0.008 0.008 0.008 0.008 [6]

θ Modification factor of asymptomatic

infectiousness

0.0429 0.0465 0.0308 0.0494 Estimated

Rc Control reproduction number 3.2546 2.9720 2.8464 – Estimated

Initial

values

Definitions Feb 26 to

Mar 21

Feb 26 to

Mar 25

Feb 26 to

Mar 29

Feb 26 to

Apr 13

Source

S(0) Initial susceptible population 1.999× 106 1.999× 106 1.999× 106 1.993× 106 Estimated

E(0) Initial exposed population 10 12 10 10 Estimated

I(0) Initial symptomatic infected population 7.6 7 8.5 10 Estimated

A(0) Initial asymptomatic infected population 15 24 23 24 Estimated

Sq(0) Initial quarantined susceptible population 0 0 0 0 Data

Eq(0) Initial quarantined exposed population 0 0 0 0 Data

D(0) Initial quarantined diagnosed population 5 5 5 5 Data

R(0) Initial recovered population 0 0 0 0 Data

study [6]. Based on the data information, the initial quarantined suspected population,

quarantined exposed population, and the recovered population were all set as 0, while the

initial diagnosed population is fixed as 5. In this study, we used the least square method

with a priori distribution for each parameter to fit the model to the confirmed cases data

usingMatlab. The objective function is defined as the residual sum of squares between the

real data of the time series of cumulative reported cases and the predicted number by solve
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Figure 2 Best model fitting results and model predictions. Here, the blue curves are the best fitting curves

while the red curves are the predicted curves from the best fitting model. The circles denote the real data

system (1), which is solved by the “ODE45” function. And the “fmincon” function in Mat-

lab is used to search the optimal solutions. The seminal work on social contact modelling

(under normal societal conditions) fromMossong et al. found that 7290 study participants

had an average of 13.4 contacts per day per person [12]. The estimated contact rate in our

study, we expected to be lower than this count, as the model definition for contact rate is

contacts per day among the participating group of individuals in Ontario. Therefore, we

account for a priori contact information and set the bounds of contact rate as (10, 14) in

the first phase with insignificant public health control interventions. As a series of control

measures were taken, we do believe that there was a decreasing of the contact rate, and

we set the bounds on the contact rate interval to (7, 13).

3 Results

Retroactive analysis: Using the least squares method, we fitted the model to the data of

cumulative reported cases in Ontario, Canada, during the periods from February 26th

to March 21st (Fig. 2(A)), February 26th and March 25th (Fig. 2(B)), and February 26th

to March 29th (Fig. 2(C)), respectively. The best fit parameters and initial conditions are

listed in Table 1.

We estimated the control reproduction number of the COVID-19 epidemic in Ontario

to be 3.25 between February 26 and March 21, 2.97 between February 26 and March 25,

and 2.84 between February 26 andMarch 29 (Table 1). Other estimated parameter values

measuring the effectiveness of contact tracing, quarantine, testing average daily contact

rates, and transmission efficacy per contact will be described in next section to identify

important gaps in effective mitigation.

We also made a short-term prediction on the cumulative reported cases until April 7,

based on the parameter identification using data until March 29. We used this short-term

projection to demonstrate the impact of randomness of data on the COVID-19 epidemic

in Ontario, shown in Fig. 3(A). Here, we assumed that the number of confirmed cases



Wu et al. Journal of Mathematics in Industry           ( 2020)  10:15 Page 6 of 12

Figure 3 (A) The impact of the randomness of the data of cumulative confirmed cases on the epidemics in

Ontario. (B) The impact of contact rate on the cumulative confirmed cases, where we assumed that the

contact rate decreases since March 30th. Here, c0 is the estimated value based on the fitting results in (A)

follows a Poisson distribution with mean given by the reported number. We generated

500 cumulative incidence data sets and re-estimated model parameters for each data set.

We utilized this procedure to provide themean and 95% confidence interval in our projec-

tion until April 7th.We found that the number of the reported cases keep a fast-increasing

trend inOntario, and the predicted number of cumulative confirmed cases is 6132 (95%CI

4250–8000) as of April 7th without an indication of approaching epidemic peak, suggest-

ing enhancedmitigationmeasures must be taken.We also conducted a sensitivity analysis

showing how further decreasing the contact rate since March 30th would affect the cu-

mulative reported cases, shown in Fig. 3(B). In particular, we observed that the cumulative

reported cases decrease significantly as the contact rate is further decrease: the additional

number of the cumulative reported cases betweenMarch 30th and April 7th can decrease

by ∼ 50% when the contact rate decreases by 90%.

However, the reduction of transmission contact rate will have a limit. On the other

hand, our estimation of the transmission probability per contact, β , has been virtually

unchanged since February 26th (0.145) indicating lack of improvement of personal pro-

tection.We show, in Fig. 4(A–B), that the cumulative reported cases and the infected pop-

ulation at the peak time decrease significantly as β is reduced. Particularly, the epidemics

in Ontario could have peaked around April 2 should the transmission probability have

been decreased by 70%. Similarly, we can reduce the cumulative reported cases and peak

value of infected population by increasing the quarantine rate q and, importantly, the di-

agnose rate δI , as shown in Fig. 4(D–E) and Fig. 4(G–H), respectively. The contour plots

of the control reproduction number in Fig. 4(C), (F) and (I) show that the control repro-

duction number can be reduced to the threshold 1, in a very short period of time, when

a combination of reduction of transmission contact rate and transmission probability is

implemented, or a combination of increasing the quarantine rate and increasing the di-

agnosis rate. This analysis, proactively done on March 29, is relevant for planning the de-

escalation of social distancing measures as it shows what kind of synergistic combination

of social distancing measures will be needed to counteract future outbreaks potentially

caused by relaxation of social distancing.
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Figure 4 Sensitivity analysis. The impact of the transmission probability per contact β in (A–B), the

quarantine rate q in (D–E), and the diagnose rate δI in (G–H), respectively, on the COVID-19 epidemics of

Ontario. (C), (F) and (I), Contour plots of the control reproduction number with respect to the contact rate c

and the transmission rate β , or quarantine rate q, or rate diagnose rate δI , respectively. Here, the baseline

values of the parameters are fixed as the same as those in Fig. 3, β0 , q0 and δI0 denote the estimated values

Real-time analytic and projection: An important insight gained from the above retroac-

tive analysis based on data in different phases between February 26 to March 29 is that

intervention efficacy has been evolving as the public healthmeasures have been escalated.

In particular, we noted the gradual decreasing of contact rate, and hence the control re-

production number. Since March 24, the province of Ontario has taken some additional

public health measures to include the closure of any non-essential business and the im-

provement of testing to increase the detection rate. As shown in the previous studies [6, 8],

amore appropriate way to reflect these twomajormeasures is to adopt a non-autonomous

transmission dynamics model with time-dependent contact rate and case detection rate

as follows:

c(t) =

⎧

⎨

⎩

c0, t < Ts,

(c0 – cb)e
–r1(t–Ts) + cb, t ≥ Ts

(2)

and

δI(t) =

⎧

⎨

⎩

δI0, t < Ts,

(δI0 – δIf )e
–r2(t–Ts) + δIf , t ≥ Ts,

(3)

where c0 is the constant contact rate and δI0 denotes the constant detection rate before

the time Ts. Here, Ts = 27 (corresponding to March 24, when non-essential business was

closed and case detection rate was increased). We assume the contact rate c(t) began to

decrease at an exponential rate r1 while the detection rate δI(t) began to increase at an

exponential rate of r2. cb (to be estimated) is the minimum contact rate that such a non-

essential business closure can achieve) and δIf is the maximum detection rate with the
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Figure 5 (A) Best model fitting result; (B–D) Solutions of model (1) by fixing the parameters as the estimated

values; (E) Estimated effective reproduction number of Ontario

current testing capacity. Based on the formula of the control reproduction number, we can

further define the effective (daily) reproduction number replacing the constant contact

rate c and the diagnose rate δI with the functions defined in Eqs. (2) and (3). Therefore,

the effective reproduction number is time-dependent. It should be mentioned that there

should be the S(0)/N(0) term in the formula of the control reproduction number with

S(0)/N(0) = 1. Similarly, we assume that S(t)/N(t)≈ 1 as the susceptible population size is

very large. Then, the effective reproduction number can be defined as follows:

Rt =
(

βρc(t)(1 – q)
)

/
(

δI(t) + α + γI
)

+
(

βc(t)θ (1 – ρ)(1 – q)
)

/γA.

Note that with constant contact rate c and the diagnose rate δI , the effective reproduction

number coincides with the control reproduction number, Rc. The above-defined effective

reproduction number is an estimate for the average number of secondary cases per pri-

mary case introduced at time t, assuming that the contact rate and the rate of diagnosis

would remain constant at the level of c(t) and δI(t) during one’s infectious period, also

assuming that the depletion of susceptible persons during the epidemic is negligible.

We then re-fitted the autonomous model to the data between February 26 to April 13,

and re-estimated the parameter values, listed in Table 1 as well. The best fitting result is

shown in Fig. 5(A). We also plotted the solutions of I(t), D(t) and A(t) in Fig. 5(B–D) by

fixing the parameters as estimated. It follows fromFig. 5(C) that the time series of reported

cases has passed the peak aroundApril 12. Further, we showed in Fig. 5(E) that the effective

reproduction number of Ontario decreased to below the threshold 1 around April 7. This

is in line with our sensitivity analysis and predictions in last subsection that, based on the

estimation using the earlier epidemic data, conclude that reducing contacts and improving

the case detection rate can be an effective way in controlling the COVID-19 epidemics.

We implicitly utilized a constrained least square method to select the parameter val-

ues identified through the least square method which collectively fall in the ranges es-
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timated in other published studies that are described below. The recovery rate of those

symptomatic and infectious, in our model, can also be interpreted as the baseline infec-

tious period of those presenting symptoms. Our estimate rate of γI = 0.183 – 0.2 1/day

correspond to an average infectious period of 5 to 5.5 days which is consistent with those

adopted by prior studies, such as [13]. We expected our estimated contact rates to be

lower than those from social contact surveys as a result of factors including the public’s

heightened awareness from declaration of the pandemic in addition to public health in-

terventions implemented by the province [14]. The final contact rate cb we estimated of 3

is slightly above the average rates from contact surveys collected in Shanghai, China and

Wuhan, China during the (stricter) lockdown [15]. As expected, the estimated contact

rate was lower in China than in Ontario, since the lockdown was stricter. The diagnosis

rate δI also has the interpretation of the average time from symptom onset to case diag-

nosis among those symptomatic individuals. Hence, our estimated rate of δI = 0.1 day–1

are indicative of an average 10 days from symptom onset to diagnosis. This rate estimated

is in line with our direct calculation of an average of 9.2 days from onset to case report

using the individual line-list of all documented and confirmed COVID-19 cases in On-

tario. Furthermore, the diagnosis rate among those quarantined and exposed to the virus

can be interpreted as the average time from exposure (transmission event) to diagnosis.

Hence, our estimates of δq = 0.1 day–1 are indicative of 10 days from exposure to diagnosed

among those quarantined. In light of the disease’s estimated average incubation time of 5

days, we then estimated an average of 5 days for individuals to seek health care and have

their test confirmed. This finding is logical, as we estimated quarantined individuals were

confirmed (on average) substantially faster than those not quarantined. In other words,

we captured the heightened awareness of those individuals quarantined in our estimated

value of δq. The estimated final diagnosis rate δIf among symptomatic individuals quali-

tatively captured the effects of enhanced testing throughput, which was implemented by

the province in late March, on case detection time.

4 Discussion

Ontario has been escalating a series of public health measures aimed at containing the

COVID-19 outbreak. As of March 14th, Ontario closed all public schools until April 5th.

OnMarch 16th, theMinistry of Health requested closure of all recreational programs and

libraries, all private schools, all daycares, all churches and other faith settings, all bars and

restaurants, with the exception of those that can shift to a takeout/delivery mechanism.

On March 17th, Ontario declared state of emergency and, after an initial transition, as of

March 24th at midnight, closure of all non-essential workplaces becomes mandatory and

effective.

In the present study, using the COVID-19 incidence report data from February 26th to

April 13, we estimated key epidemiological and intervention parameters of a disease trans-

mission model in Ontario. We estimated the transmission risk and studied the impact of

public health interventions implemented by Ontario, we also estimated the probability

of individuals presenting symptoms, which is consistent with previously established esti-

mates [16]. While the control reproduction number had been decreasing with time, our

simulations based on data as ofMarch 29 indicated that further compliancewithmeasures

and additional interventions were needed to reduce below the control threshold of 1. We

pointed out that a combination of additional reduction of contacts and increasing the de-

tection rate would help to reduce the effective reproduction number to under the unity
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for disease control, and our estimation and analysis based on time series of cumulative

reported cases since March 24 confirmed this strategy worked: since the closure of non-

essential business and increasing the detection rate sinceMarch 24, we noted rapid decline

of the effective reproduction number and the fast approaching of the epidemic peaks.

In particular, to identify the evolution of contact rates and other parameters potentially

affected by the variation of intervention intensity, we have estimated the relevant param-

eters using cumulative reported cases by March 21st, March 25th, and by March 29th,

respectively. As a result, the control reproduction numbers estimated using the different

time intervals decreased from3.25 to 2.97 and 2.84, indicating a gradually increasing effec-

tiveness of the interventions adopted. Further, we illustrated how the control interventions

adopted by the government and the public have begun to play an important role in miti-

gating the epidemic in Ontario since March 21st (Fig. 2). Using the estimated parameters

and based on the model, we predicted the number of cumulative confirmed cases as of

April 7th to be 6132 (95% CI 4250–8000) (Fig. 3(A)), and we noted that this could have

been further reduced by ∼ 50% by decreasing the contact rates fromMarch 30th to April

7th by 90% (Fig. 3(B)). Hence the level of compliance with social distancing advisories by

the public and the increasing capacity of case detection can influence the future trend of

the epidemic.

Comparing the estimates from the three different time intervals before the closure of

non-essential business, we conclude that the intervention efforts and control measures,

such as lockdown and social distancing advisories, was effective in reducing the person-

to-person contact rate (Table 1).We also estimated that proportionally more cases are be-

ing quarantined which had contributed to the decrease of the control reproduction num-

ber (Table 1). However, the estimated transmission efficacy was not changed significantly

since the adoption of controls (Table 1) until March 24, indicating that the intensity of

personal protections against effective contacts was not improved. Although the control

reproduction number by March 24 had decreased, it was still close to 3 and would be

below 1 only if the effective contact rate (the contact rate times the transmission proba-

bility per contact) is reduced by 2/3. Therefore, there should be persistent control efforts

in reducing contact rate and the duration of infection of infectious individuals, which is

possible with a fast case detection rate and effective isolation measures. We confirmed

that this was indeed achieved two weeks after the closure of non-essential business and

the improved testing.

We also considered the scenario that some of the efforts might have reached their max-

imum level by social distancing and self-isolation recommendations before the closure of

non-essential business on March 24, so decreasing transmission efficacy by boosting per-

sonal protection could be amitigation option. Using simulations, we illustrated the impact

of reducing transmission efficacy on future cumulative number of confirmed cases, epi-

demic peak time, and peak number of infections as shown in Fig. 4(A) and Fig. 4(B). We

also simulated the role of increasing testing which leads to increase in the case confir-

mation rate and suggested the possibility of a combination of rapid testing and effective

quarantine (Fig. 4(D, E, F)) in reducing the case number and reducing the control repro-

duction number. Overall, the contact rate, transmission probability, detection/diagnose

rate, and quarantine rate are key factors that influence the control reproduction number

(Fig. 4(C), Fig. 4(F) and Fig. 4(I)).
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While epidemic control inOntariowas achievedwith reduction of contacts and increase

of detection rate during the period fromMarch 24 to April 13 as shown in Fig. 5, our simu-

lations show that there is still much room for improvement in personal protection. This is

an encouraging news for Ontarians to plan for their social distancing de-escalation strat-

egy, as increasing personal protection may compensate a certain degree of social distanc-

ing relaxation. Social distancing advisories, closures, among the package of implemented

control measures have assisted in reducing disease transmission; however, personal pro-

tection may admit further reduction in forward transmission. Personal protection in the

form of improved hygiene such as handwashing, reduction of face-touching, and the ap-

propriate utilization of personal protective equipment (PPE) offers the convenience of be-

ing actionable by all individuals in the public and may mitigate future COVID-19 trans-

mission in Ontario. Mask wearing and instant hand wiping has been proposed and sup-

ported to mitigate transmission of COVID-19, and recent findings indicate that surgical

face masks could prevent transmission of human coronaviruses from symptomatic indi-

viduals [14, 17]. In this light, Ontarians should intensify its effort in acquiring protective

supplies such as masks and protective clothing, and develop an optimal distribution strat-

egy if supplies are in insufficient supply.

Respiratory infectious diseases, such as COVID-19, are spread through a susceptible

individual’s contact with infectious agents. These contacts facilitate disease transmission

and can be made indirectly through environmental routes or through direct person-to-

person interaction. PPE, such as surgical and N95 masks, are utilized with the aim of re-

ducing the likelihood of disease transmission either from an asymptomatic infection to

susceptible contacts, or upon an individual’s exposure to an infectious agent such as a

cough or sneeze carrying a pathogenic load. However, as in the case of surgical and N95

masks, PPE may not be tested or efficacious for conditions which they may see in prac-

tice, including a range of plausible human respiratory emissions containing pathogenic

loads [18, 19]. Further, no studies have directly evaluated the biophysics of droplets and

gas formation for patients infected with the SARS-CoV-2 [18]. Lastly, in some regions,

the availability of surgical masks may be limited in light of the high demand and recent

production decreases [20]. All these points emphasize the urgent need for a mechanistic

and comprehensive understanding of respiratory disease transmission, in order to effec-

tively design PPE and enhance COVID-19 mitigation strategies such as social distancing.

These points highlight several of the current challenges and difficulties of PPE adequately

reducing disease transmission, warranting further research.

In conclusion, through the parametrization and simulation of disease transmission

models with intervention mechanisms informed with multiple data sources including

regional demographics, and regional intervention features, our work utilizes a founda-

tional framework for intervention evaluation and intervention scenario analysis. This

study highlights the opportunity for evaluation of control measures and trend in disease

transmission to inform the future decision-making for preparedness, real-time manage-

ment as well as risk assessment of COVID-19.
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