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Quantifying the role of the lattice in metal–insulator
phase transitions
Alexandru B. Georgescu 1,2✉ & Andrew J. Millis3,4

Many materials exhibit phase transitions at which both the electronic properties and the

crystal structure change. Some authors have argued that the change in electronic order is

primary, with the lattice distortion a relatively minor side-effect, and others have argued that

the lattice distortions play an essential role in the energetics of the transition. In this paper,

we introduce a formalism that resolves this long-standing problem. The methodology works

with any electronic structure method that produces solutions of the equation of state

determining the electronic order parameter as a function of lattice distortion. We use the

formalism to settle the question of the physics of the metal–insulator transitions in the rare-

earth perovskite nickelates (RNiO3) and Ruddlesden–Popper calcium ruthenates (Ca2RuO4)

in bulk, heterostructure, and epitaxially strained thin film forms, finding that electron-lattice

coupling is key to stabilizing the insulating state in both classes of materials.
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The relative importance of electronic and lattice effects in
driving phase transitions in quantum materials is the
subject of long-standing interest and controversy. One

issue of particular focus is the metal to insulator transition (MIT),
which in many materials is accompanied by a change in atomic
positions, in other words, by a lattice distortion1. Multiple studies
have addressed various aspects of the interplay between electronic
and lattice contributions to the metal–insulator transition, both
theoretically and experimentally. Some works have argued that
the lattice plays a crucial role2, while others have emphasize the
electronic aspects3; recently, explicit attempts at disentangling
the two have appeared4–6. Information on the coupling of elec-
tronic and structural modes has been used to design and study
new materials7–9 and to help clarify their interconnected roles.
Machine learning approaches are discovering features from
comparison of MIT and non-MIT materials10–12. Nonetheless,
the problem remains an open topic of exploration with a wide
variety of theoretical and experimental approaches2–9,13–54.
Yet, the relative importance of electronic and lattice effects in
producing a transition has remained unclear, in part because
of the lack of an appropriate theoretical framework and of
computational schema for evaluating the needed quantities.

Metal insulator transition phenomena are properly analyzed by
constructing an energy landscape in the space of lattice distor-
tions and electronic order parameters as shown in Fig. 1 for
NdNiO3. However, construction of the full energy landscape as a
function of electronic order parameter and lattice configuration
has not been feasible, as current quantum many-body methods
do not allow the order parameters to be independently varied.
Here we show how to avoid this difficulty by building the needed
energy landscapes from solutions of the equation of state (elec-
tronic order parameter as a function of lattice configuration).
This information is available from modern quantum many-body
methods at reasonable computational expense.

Our work was inspired by the pioneering work of Fisher and
collaborators55, who combined elegant experimental measure-
ments with an insightful free energy analysis to show that the
observed second order nematic transition in an iron pnictide
material has an intrinsically electronic origin. Our work may be
viewed as a generalization of the ideas of Fisher et al. to first order
transitions, where a more global view of the energy landscape
is required, and as an extension of the insightful equation of
state analysis of Peil, Hampel, Ederer, and Georges6 to the
computation and interpretation of the full free energy landscape.
We make substantial use of concepts put forward in analyses of

the metal–insulator transition in epitaxially strained Ca2RuO4
5

and in nickelate heterostructures4. We apply the methodology
developed here to two paradigmatic metal–insulator materials,
the perovskite rare earth nickelates, and the Ruddlesden–Popper
calcium ruthenates, settling a decades-old controversy by showing
that in both cases the energetics associated with the lattice
degrees of freedom are essential to the stabilization of the
insulating phase.

Results
Framework. Following refs. 4–6 we consider a free energy F(ΔN,Q)
that depends on an electronic order parameter, ΔN, and a lattice
distortion, Q. The precise definitions of ΔN and Q will depend on
the specifics of the system. We choose (ΔN,Q)= (0, 0) as the
equilibrium configuration of the metallic phase. The insulating
state then corresponds to a configuration (ΔN,Q) ≠ (0, 0) and the
question of the existence of a purely electronic transition relates to
the properties of F as a function of ΔN at Q= 0.

A second order transition corresponds to a linear instability of
the (ΔN,Q)= (0, 0) state, in other words to a change in sign of
the smallest eigenvalue of the Hessian matrix ∂2F/∂2ΔN,Q
evaluated at ΔN=Q= 0. In general, the eigenvector associated
with the negative eigenvalue will have components along both ΔN
and Q, indicating that the electronic and lattice orders are
coupled. A purely electronically driven transition would corre-
spond to a change in sign of ∂2F/∂2ΔN, a lattice-driven transition
would correspond to a change in sign of ∂2F/∂2Q, and in a mixed
situation, neither single derivative changes sign but the lowest
eigenvalue of the Hessian matrix does change sign. In the case of
the nematic transition in pnictides, Fisher and co-workers were
able55 to experimentally determine ∂2F(Q= 0)/∂ΔN2 and show
that it changed sign at a temperature only slightly lower than the
observed nematic transition temperature, thereby establishing
that a purely electronically driven nematic transition exists in
these materials, with a transition temperature that is slightly
enhanced by coupling to the lattice.

The transitions of interest in this paper are first order,
characterized by the appearance of a new free energy minimum at
which ΔN and Q are both different from zero (see e.g., Fig. 1).
Study of first order transitions requires global knowledge of the
free energy. One may say that the transition is electronically
driven if F(ΔN,Q= 0) has an extremum at a ΔN ≠ 0 with
∂2F(ΔN, 0)/∂ΔN2 > 0 and with energy lower than F(0, 0). One
may say that the transition is lattice-assisted if F(ΔN, 0) has a
local minimum at a ΔN ≠ 0 but that the lattice coupling is
required to make this minimum the ground state. Finally, if
F(ΔN,Q= 0) has only one minimum, at ΔN= 0 but exhibits a
stable minimum with ΔN ≠ 0 at a Q ≠ 0 then we may say that the
transition is not electronically driven. The energy functional
shown in Fig. 1 shows a transition that is not electronically driven
because the global minima are at a Q, ΔN ≠ 0 but along the line
Q= 0 the functional has only one minimum, at the origin.

The global knowledge of F required to assess the relative
importance of electronic and lattice effects in stabilizing the
insulating state has been challenging to obtain. Available quantum
many-body methods can, with reasonable computational cost,
obtain estimates of the optimal ΔN that minimizes F at fixed atomic
positions (Q), but finding the dependence of F on ΔN at fixed Q or
on Q at fixed ΔN is difficult, both because it is not straightforward
to control ΔN independently of Q and because calculations of
energies are very expensive.

However, the metal–insulator transitions of greatest current
experimental interest share two features that greatly simplify an
analysis. First, the lattice energetics is to good approximation
harmonic4–6, as shown from calculations4 and by the observation

Fig. 1 Energy Landscape for NdNiO3 as a function of the electronic and
ionic lattice disproportionation. Energy landscape for NdNiO3 as a function
of electronic disproportionation ΔN and lattice distortion (bond
disproportionation) Q as obtained from the energy functional methods
introduced in this paper using data from ref. 4.
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that phonon frequencies change only very slightly (~1%) across
the metal–insulator transition. Second, and closely related to the
first point, the coupling between the electronic order parameter
and lattice modes is linear and is well determined by standard
theoretical methods4–6, as are the lattice energetics. This means
that we may write, schematically,4–6:

FðΔN;QÞ ¼ 1
2
KQ2 � 1

2
gQΔN þ FelðΔNÞ ð1Þ

Requiring stationarity of F with respect to variations in ΔN and
Q yields the equations of state4,6

KQ ¼ 1
2
gΔN ð2Þ

and

∂FelðΔNÞ
∂ΔN

¼ 1
2
gQ ð3Þ

Because g and K are known, Eq. 2 can be solved. Substituting
the solution back into Eq. 1 produces:

�FðΔNÞ ¼ � 1
8K

gΔN
� �2 þ FelðΔNÞ ð4Þ

From this point of view, the key question is the magnitude of the
lattice stabilization energy 1

8K gΔN
� �2

: is it large enough to create
a new extremum at a ΔN ≠ 0? Is it large enough to ensure that the
extremum at ΔN= 0 is unstable? Answering this question
requires knowledge of Fel.

Peil, Hampel, Ederer, and Georges6 observed that existing
many-body methods such as the dynamical mean field method
enable computation of electronic properties at fixed lattice
configuration Q, in effect solving Eq. 3. Here we take one further
step: the ansatz for the electronic energy functional in Eq. 1
means that the computed ΔN(Q) determines dFel(ΔN)/dΔN; the
derivative can then be integrated, thereby constructing F, Fel itself.
In practice, we perform the integration by fitting the ΔN(Q)
results to a polynomial, which is analytically integrated. While
this method requires a choice of polynomial form, we empirically
find that the uncertainty thereby introduced is small, of the order
of a few meV, comparable to the error in performing an explicit
energy calculation. This approach is computationally inexpensive,
relatively unaffected by noise, and the analytically specified
functional forms provide additional insight, in particular enabling
a straightforward examination of the global energy landscape.

The method is general: the electronic and lattice order
parameters can be of scalar, vector, or tensor character, higher-
order couplings can be included and any theoretical method that
delivers an equation of state can be used in Eq. 1. The
applicability of the model in its current form is, however,
restricted to situations in which the orbital basis used to define
the electronic order parameter can be clearly defined, and the
order parameter energetics can be separated from the energetics
of the rest of the material which can then be subsumed
into the lattice stiffnesses K. We will discuss the limits of our
method’s applicability in more detail in the “Discussion” section,
and in the Conclusion mention other materials to which it may be
applicable.

We use this approach to analyze the metal–insulator transi-
tions occurring in the rare-earth nickelates and their hetero-
structures, and in bulk and epitaxially strained Ca2RuO4. We find
that in all of these situations the metal–insulator transition is, in
the sense defined above, not electronically driven.

It is important to emphasize that the distinction between
electronically driven and lattice driven transitions is not the same
as the distinction between weak and strong electron correlations.
A material may be said to be weakly correlated if density

functional band theory (DFT) methods (or their hybrid and +U
extensions) adequately describe the behavior and may be said to
be strongly correlated if beyond DFT methods are required for
the correct description of materials properties. While the weak/
strong correlation distinction is not the main focus of this paper
we believe the available evidence indicates that beyond DFT
methods are needed to properly calculate the electronic term Fel
of the materials we study here.

Rare-earth nickelates. The perovskite rare-earth nickelates have
the chemical formula RNiO3; when synthesized in bulk form the
materials with R= Lu, Y, Sm, Nd, Pr exhibit a first order transition
from a high-temperature metal to a low-temperature insulator
while LaNiO3 remains metallic down to the lowest measured
temperature56. The material properties depend systematically on
the choice of rare-earth ion, with LuNiO3 exhibiting the highest
metal insulator transition temperature TMIT= 600 K, SmNiO3

having TMIT ≈ 400 K, NdNiO3 having a TMIT ≈ 200 K and PrNiO3

having a TMIT ≈ 130 K17,57,58. The materials may also be grown in
heterostructure form4,7,13,17,18,24,48,59,60, with a small number of
layers of RNiO3 sandwiched between layers of other materials. The
metal–insulator transition temperature in the heterostructures
differs from that in the bulk.

Except for the La-based compound, where the symmetry is
slightly different, the high temperature metallic state forms in a
Pbnm structure which for present purposes may be regarded as a
pseudo-cubic lattice of Ni ions with an O ion at the midpoint of
each Ni–Ni bond. The insulating state is characterized by a two-
sublattice bond disproportionation, with one Ni sublattice having
a short mean Ni–O bond length and the other by a long one,
represented qualitatively in Fig. 2. The difference in mean Ni–O
bond lengths defines the lattice mode Q appropriate to this
transition.

In the low T insulating state, the two Ni sublattices differ in
electronic configuration. This difference has been characterized in
various ways in the literature6,36,44,61–63. We follow Peil and
collaborators4,6 and define the electronic change ΔN as the

Fig. 2 Schematic of the electronic and structural disproportionation in the
insulating state in rare-earth nickelates. NiO6 octahedra disproportionate
electronically and structurally in a three-dimensional checkerboard pattern
in RNiO3 metal–insulator transition compounds, with R a rare-earth. In the
low-energy model of refs. 4,6, the Ni ions corresponding to the larger
octahedra have 1e− þ ΔN

2 electrons (dark blue) in their eg shell, while those
corresponding to the smaller one (light blue) have 1e− � ΔN

2 . The difference
in average bond lengths defines Q for the nickelate materials. Red circles
correspond to oxygen atoms, while the green arrow is a measure of the
oxygen displacement along the Ni-Ni direction.
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difference in the occupation of the eg states obtained from
a narrow window Wannier fit of the bands crossing the Fermi
level, i.e.,

ΔN ¼ NHF � NLF ð5Þ
with NHF (NLF) the total eg occupation on the octahedron with
higher (lower) Ni occupation NiO6 octahedra, while Q is defined
as the average Ni–O bond length difference between the two, as
shown in Fig. 2.

In Fig. 3 we present results for three different bulk-form rare
earth nickelates, (LuNiO3, SmNiO3, PrNiO3) as a function of Q,
digitized from the calculations of ΔN presented in ref. 6. In this
reference, the calculations performed are DFT+DMFT (DFT
+Dynamical Mean Field Theory) calculations in the paramag-
netic phase. In all compounds, two regimes are found, a low Q
regime where ΔN is proportional to Q and a high Q regime where
ΔN is large but weakly dependent on Q; the two regimes are
separated by a discontinuity.

To determine the free energy model to which the results should
be fit we observe that the two sublattice nature of the insulating
state means that the free energy must be invariant under
simultaneous inversion Q↔−Q, ΔN↔−ΔN, so in particular,
Fel(ΔN) must be even in ΔN. Motivated by the observed first-
order nature of the transition we assume that Fel is a 6th order
polynomial in ΔN:

FelðΔNÞ ¼ 1
2
χ�1
0 ΔN2 þ 1

4
βΔN4 þ 1

6
γΔN6 ð6Þ

Solving Eq. 2 and eliminating Q from the full free energy then

changes the quadratic term χ�1
0 ! χ�1

0 � g2

4K. Note that the shift
in the quadratic term involves the parameter g2/K, which varies

slightly across the RNiO3 series although as noted in ref. 6 the
ratio g/K is almost material-independent. The K for the Lu, Sm,
and Pr materials were reported in ref. 6 to be 39.29, 41.45, and
44.47 eV/Å2, while the g are 3.75, 4.02, and 4.24 eV/Å.

Equation 6 implies that the equation of state Eq. 3 takes the
explicit form

0 ¼ �gQþ χ�1
0 ΔN þ βΔN3 þ γΔN5 ð7Þ

We fit the points in Fig. 3 to Eq. 7, using the g values presented
in ref. 6, obtaining the light solid curves shown in Fig. 3 and the fit
parameters given Table 1. It is important to note that the DMFT
equation of state shown in Fig. 3 has two branches, with the
solution discontinuously changing from one to the other as Q is
varied. In our fits we only use the data points shown as symbols in
Fig. 3; these points lie outside the region of multistability (i.e.,
where two ΔN solutions exist within DMFT for the same Q).
However, our theoretical energy function correctly reproduces
behavior that was not part of the original fit, for example, the

Fig. 3 Equation of state fit for bulk rare-earth nickelates, and corresponding electronic and total energies. a Points: Electronic disproportionation as a
function of bond disproportionation ΔN(Q) values used for the three RNiO3 materials as obtained from Density Functional Theory + Dynamical Mean Field
Theory calculations from ref. 6; Light lines: fits of the points to Eq. 7. Also shown is the Q(ΔN) line obtained from the Q equation of state Eq. 2. Note that
the ratio of the lattice stiffness to the linear coupling K/g has the same value for all three materials. b Electronic energy, c total energy Ftot= F of three
RNiO3 compounds as a function of electronic order parameter ΔN, minimized over structural order parameter (bond disproportionation) Q. d Total energy
as function of lattice distortion Q, minimized over ΔN. Energies per 10 atom unit cell.

Table 1 Parameters that characterize the electronic and total
energy of the three RNiO3 materials, as extracted by fitting
the data from ref. 6 to Eq. 7.

RNiO3 χ�1
0 (eV) β(eV) γ(eV) � 1

4
g2

k (eV)

LuNiO3 0.0596 −0.1314 0.0618 −0.0895
SmNiO3 0.0945 −0.1303 0.0667 −0.0975
PrNiO3 0.1749 −0.1713 0.0804 −0.1011

The χ�1
0 ; β; γ parameters correspond to the quadratic, quartic, and sixth-order terms of the

electronic energy, while g corresponds to the linear coupling between the electronic and lattice
terms, and k is the lattice stiffness, as described in the main text.
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locally stable large ΔN at Q= 0 solution for LuNiO3
6. Including

points within the region of multistability does not lead to
significant changes to our results. The free energy we obtain here
may be thought of as the free energy that would be obtained from
the two component Landau theory of ref. 6 if the metal–insulator
variable were integrated out.

Panel b of Fig. 3 shows the purely electronic energy Fel
corresponding to the fit parameters given in Table 1. We see that
for all of the materials the purely electronic theory is
characterized by a locally and globally stable metallic minimum
at Q= 0. Only for LuNiO3 does the purely electronic theory even
exhibit a second, insulating extremum and even in this case it is
not energetically favored. Panel c presents the total free energy as
a function of ΔN obtained by minimization over the lattice
degrees of freedom Q. We see that inclusion of the lattice
coupling is necessary to stabilize the ΔN,Q ≠ 0 solution: in other
words, it is the electron-lattice coupling that drives the transition.

Table 1 shows that as one moves across the RNiO3 series from
R= Lu (most insulating) to R= Pr (least insulating), the linear
response electronic susceptibility of the metallic state decreases,
consistent with the empirical observation that the Lu material is the
strongest insulator and the Pr material is the weakest. We see also
that the nonlinear terms in the energy are the same for the Lu and
Sm compounds, which are the two strong insulators, but are
different in the Pr compound, which is close to the metal–insulator
transition. This shows that to understand composition-dependent
changes one must consider more than just the variation in linear
response susceptibilities. Results to be presented below for
superlattices further confirm this point.

The present theory predicts that PrNiO3 is undistorted and
metallic, although close to the metal–insulator transition boundary,
while the compound is empirically distorted and insulating,
although again with a very low transition temperature. We believe
this discrepancy arises because the transition in PrNiO3 is from a
paramagnetic metal to an antiferromagnetic insulator, in contrast
to the Sm and Lu materials where the transition is between two
paramagnetic phases. Inclusion of antiferromagnetism in the
theory will yield a lower energy for the insulating phase of PrNiO3

at the U, J values used here while a slightly different choice of
interaction parameters would also push PrNiO3 to the insulating
side of the phase diagram.

We may take the analysis further by substituting the ΔN(Q)
obtained from the solution of Eq. 7 into the full free energy
expression to obtain the free energy as a function of the lattice
coordinate Q shown in the panel d of Fig. 3. This is analogous to
the energy that is usually calculated by electronic structure codes,
which work at fixed atomic positions. The discontinuities arise
from the different branches of the ΔN(Q) curves. The resulting
free energy is, to a good approximation, the combination of two
parabolic energy curves, one corresponding to the metallic state,
and one to the insulating state. We see that in this theory the
ΔN= 0, Q= 0 state is stable to lattice distortions for PrNiO3,
marginally stable for SmNiO3, and unstable for LuNiO3.

The analysis presented here is based on a fit of the computed
ΔN(Q) to a free energy model. We emphasize that this fit is in no
way essential to our method; one could simply numerically
integrate a suitably dense set of ΔN(Q) data. But for the
procedure used here the question of the sensitivity of the results
to the choice of free energy arises. To quantify the uncertainties
we have refit the PrNiO3 data shown in Fig. 3, now constraining
the 4th and 6th order coefficients to have the same values as
found in SmNiO3. Results are shown in Fig. 4. We see from panel
a that this fit to the data is not quite as good, especially in the
small to intermediate Q region. The fitted energy (panel b) is very
similar to that shown in Fig. 3, with the value of ΔN at the
minimum almost the same in the two cases and the energy of

insulating solution in the constrained fit is now slightly lower
than the energy of the metallic solution, placing paramagnetic
PrNiO3 slightly on the insulating side of the transition. These
differences indicate that the systematic uncertainties in the
method are not large.

Layered structures of NdNiO3/NdAlO3. An important modern
direction in quantum materials science is heterostructuring: the
ability to synthesize structures in which atomically thin planes of
one material alternate with atomically thin planes of another.
Previous experimental13 and theoretical4 work analyzed systems
of the type shown schematically in Fig. 5 in which a few layers of
metal–insulator transition compound NdNiO3 were grown as a
thin film sandwiched epitaxially between layers of the wide-gap
insulator NdAlO3. The few-layer systems had significantly higher
transition temperatures than did bulk NdNiO3. Theoretical DFT
+DMFT results are available4 for three systems: bulk NdNiO3

and two heterostructured systems with a 4 unit cell repeat dis-
tance: one layer of NdNiO3 followed by three of NdAlO3

(monolayer), and two layers of NdNiO3 followed by two of
NdAlO3 (bilayer). The ΔN(Q) results are shown in Fig. 6

Two competing effects were found4: the electronic confinement
of the electrons in the NdNiO3 by the nearby NdAlO3 layers
favors a higher electronic disproportionation ΔN, while the
energy cost of imposing a lattice distortion on the adjacent Al-O
octahedra is equivalent to an increase in the stiffness K of the
NiO6 lattice with a K= 31.6914eV/Å2, for the bulk material,
K= 35.6269 eV/Å2 for the bilayer and K= 40.4753 eV/Å2 for the
monolayer; all energies per 10 atom unit cell. The values for g are
those quoted in ref. 4; we reproduce them here for convenience:
g= 3.2212 eV/Å for the bulk, g= 3.3465 eV/Å for the bilayer, and
g= 3.3780 eV/Å for the monolayer. Performing an analysis
similar to that presented in section “Rare-earth nickelates” leads
to the energy curves presented in Fig. 6 and to the fit parameters
shown in Table 2. The original data with the fit are presented for
convenience in Fig. 6

Turning first to the purely electronic correlation energy shown
in the (b) panel of Fig. 6, we observe that neither NdNiO3 nor the
heterostructured materials show a purely electronically driven
insulating state; however, hints of an inflection point, the
precursor of the formation of a higher ΔN extremum, can be
seen in bilayer and monolayer curves around ΔN= 1 reflecting
the effect of quantum confinement in increasing electron
correlation effects. Inclusion of the lattice energy produces a
global, insulating minimum in all three materials. The monolayer
and bilayer show a significantly larger energy difference between
the insulating and the metallic states than does bulk NdNiO3, in
agreement with their higher TMIT.

The origin of the differences between monolayer, bilayer, and
bulk nickelates is surprising: the modest decrease in the
magnitude of g2/K as we pass from bulk to bilayer to monolayer
reflects the increase in lattice stiffness, opposing the order, and
nearly counterbalances the modest decrease in χ�1

0 reflecting the
increased correlation physics of the confined metallic state. The
more important effect, however, is the change in the magnitude of
the higher order (ΔN4, ΔN6) terms shown in Table 2. The change
can be seen in Fig. 6 from the variation of the critical Q below
which the insulating state is not stable. In the calculations
presented in the previous subsection the higher order terms were
also found to be different in PrNiO3 (proximal to the
metal–insulator transition) than in LuNiO3 and SmNiO3 (farther
from the transition point).

Metal–insulator transition in bulk Ca2RuO4. Ca2RuO4 forms
in a slightly distorted version of the n= 1 Ruddlesden–Popper
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structure, a layered structure consisting of RuO2 planes sepa-
rated by pairs of CaO layers. Each Ru is six-fold coordinated
by oxygen, forming RuO6 octahedra. The relevant electronic
states (actually Ru–O antibonding states) may be thought of
as Ru t2g symmetry d-states (dxy, dxz, dyz) with 4 t2g electrons
per Ru. Below 340 K the material undergoes a first-order
transition from a high temperature metallic to a low tempera-
ture insulating phase. No symmetry is broken at the transition:
the two phases share the same crystal symmetry but differ
in the occupancies of the d orbitals and shape of the RuO6

octahedra, and the relative occupancies of the d-levels.
As sketched in Fig. 7, the metallic state is characterized by an
approximately equal occupancy of the t2g orbitals, while in the
insulating state the xy orbitals are doubly occupied and
the xz/yz orbitals each contain a single electron. The appro-
priate electronic order parameter is the occupancy difference

between the xy and xz/yz orbitals

ΔN ¼ nxy �
1
2
ðnxz þ nyzÞ: ð8Þ

No crystal symmetry protects the orbital occupancies in the
high temperature metallic state, which is characterized by a
ΔN= NH close to, but not exactly, zero.

The change in electron occupancy across the metal–insulator
transition occurs simultaneously with a decrease in the Ru–O
apical bond length and an increase in the in-plane Ru-O bond
length (a flattening of the octahedra). At the transition, there is a
change in the lattice constants, and rearrangements of other
internal coordinates. The harmonic nature of the lattice
Hamiltonian means that most of the lattice modes may be
integrated out, leaving an effective theory involving two structural
degrees of freedom. The two lattice degrees of freedom are
needed, because if the point symmetry of the Ru ion is lower than
cubic, then both the unit cell volume change and the relative
octahedral distortion couple linearly to the differential level
occupancy ΔN.

Following ref. 5 we write the two relevant structural degrees of
freedom as a variable Q3 parametrizing a volume preserving
change in the c-direction Ru–O bonds relative to the average in-
plane Ru–O bonds, and a change Q0 in the octahedral volume
and define the lattice variables such that in the high-T metallic
state Q3=Q0= 0. In terms of changes δx, δy, δz to the three
Ru–O bond lengths, defined as:

Q0 ¼
1ffiffiffi
3

p ðδx þ δy þ δzÞ Q3 ¼
1ffiffiffi
6

p ð2δz � δx � δxÞ ð9Þ

We now build the free energy. We define the lattice distortion

relative to the high-T metallic state as the vector Q
!¼ ðQ3;Q0Þ;

the lattice restoring term K is a 2 × 2 matrix with entries
determined in previous work5 to be K33= 17.7, K03= 7.6,
K00= 46.2 eV/Å2 per formula unit. We write the linear
combination of the Q that couples to the electronic dispropor-

tionation as F!� Q! with F!¼ F3ð1;�λÞ. Reference 5 finds
F3= 2.8 eV/Å and λ= 0.45.

FðΔN;QÞ ¼ 1
2
QTKQ� F!� Q!ðΔN � ΔNHÞ þ FelðΔNÞ; ð10Þ

Here ΔNH is the value of ΔN in the high temperature insulating
phase; it is nearly, but not quite, zero.

Fig. 4 Assessing the accuracy of the method by comparing multiple fits. Fits (a) and total energy (b) for PrNiO3 based on Density Functional Theory +
Dynamical Mean Field Theory data from ref. 6; green lines correspond to the optimal polynomial fit, red lines to 4th and 6th kept constant to the values
extracted for SmNiO3, and only the quadratic term fitted to the data.

Fig. 5 Structural and electronic effects of layering NdNiO3 with the band
insulator NdAlO3. a Schematic of superlattice consisting of NdNiO3

layered in between the band insulator NdAlO3; b schematic view of two
atomic layers of NdNiO3 sandwiched between NdAlO3 layers as described
in ref. 4. Dashed line with red slash: forbidden electronic hopping path,
indicating mechanism of dimensional confinement. Zig-zag lines connecting
O (red circles) and Al atoms: representation of the increased stiffness to
distortions of apical Ni–O bonds as a result of resistance from the
Al–O bonds.
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For the purely electronic energy we chose the 4th order form:

FelðΔNÞ ¼ cΔN4

4
þ bΔN3

3
þ aΔN2

2
þ σ0ΔN ð11Þ

Odd powers occur because no symmetry is broken at the
transition.

Figure 8 shows previously published results5 for ΔN as a
function of the relevant combination of lattice distortions along
with our fit to Eq. 11. As in the previous section we have not used
points in the coexistence region for the fit. We find σ0=−0.009,
a= 0.70, b=−1.718, c= 1.28.

The higher curve (blue) in Fig. 8, panel b, shows the purely
electronic free energy resulting from the fit. We see that in the
absence of lattice effects the metallic, undistorted state is
energetically favored and that there is not even a metastable
minimum corresponding to the insulating state, although there is
a hint of an inflection point that is a precursor of a higher ΔN
extremum. The lower trace (dark orange line) shows �F, the full
free energy after the lattice modes have been integrated out. We

see that the inclusion of the lattice energetics qualitatively changes
the free energy, strongly favoring large ΔN. Indeed we see that the
energy does not have a minimum in the physically allowed range
ΔN ≤ 1; rather it is minimized at the boundary ΔN= 1, as
∣ΔN ≤ 1∣ is the largest allowed value. We again conclude that the

Table 2 Parameters that characterize the electronic and
total energy of NdNiO3 and NdNiO3/NdAlO3

heterostructures consisting of a single or two layers of
NdNiO3 from ref. 4.

Layers χ�1
0 (eV) β(eV) γ(eV) � 1

4
g2

k (eV)

Bulk 0.1049 −0.1022 0.0631 −0.0819
Bilayer 0.0823 −0.0879 0.0545 −0.0789
Monolayer 0.0818 −0.0747 0.0377 −0.0705

The χ�1
0 ; β; γ parameters correspond to the quadratic, quartic, and sixth-order terms of the

electronic energy, while g corresponds to the linear coupling between the electronic and lattice
terms, and k is the lattice stiffness, as described in the main text.

Fig. 6 Equation of state fit, and electronic and total energy for bulk NdNiO3 and layered NdNiO3/NdAlO3 structures. a Data showing electronic
disproportionation as a function of structural distortion ΔN(Q), from4 (points) and the polynomials (light lines) obtained by fitting the data to the equation
of state, Eq. 7. b Electronic and c total energy as functions of electronic order parameter ΔN for bulk NdNiO3 and for superlattices consisting of a bilayer of
NdNiO3 alternating with NdAlO3 and a monolayer of NdNiO3 alternating with three layers of NdAlO3 using data from ref. 4. d Total energy as function of
octahedral distortion Q after minimizing over electronic disproportionation ΔN. Note change of y-axis scale between panel a and other two panels. Energy
normalized to correspond to 10 atom unit cell for the bulk, and per two Ni atoms (one layer) of NdNiO3 in the superlattices.

Fig. 7 Schematic of the electronic and structural disproportionation
characterizing the metal–insulator transition of Ca2RuO4. a In the metallic
phase, all 3 t2g orbitals of Ca2RuO4 are approximately equally occupied;
ΔN≈ 0. b In the insulating phase, the xy orbital is doubly occupied, while
the yz and xz are singly occupied; ΔN= 1. c Representation of Q0 structural
mode, in which all bond lengths change equally. d Representation of
structural mode Q3 in which octahedral volume is preserved and the change
in the two in-plane Ru–O bond lengths are equal, and opposite in sign to the
change in the apical bond length. The electronic state in b is associated with
a structural term of the form −(Q3− λ0Q0), with λ0 > 0 Legend: a, b: black
lines correspond to orbital energy levels, blue circles signify electrons; c, d:
purple circle= Ru atom, red circle, O atom; arrows and dotted lines signify
bonds and their changes with the two different structural modes.
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transition in this compound is driven by the lattice contribution
to the energetics.

Epitaxially constrained Ca2RuO4. Ca2RuO4 has also been grown
expitaxially on insulating substrates. The epitaxial constraint
means that the in-plane lattice parameters of Ca2RuO4 are forced
to be equal to the in-plane lattice parameters of the substrate
material. A priori, this constraint does not fix the values of the
internal coordinates including the the Ru–O in-plane bond length
of relevance here. Density functional theory calculations,
however5, indicate that in practice the material adapts to the

epitaxial constraint by adjusting the in-plane Ru–O bond lengths,
rather than by rotating the Ru–O6 octahedra, so that the per-
centage change in the in-plane Ru–O bond lengths is fixed by the
percentage change in the in-plane lattice parameters. The z-
direction lattice constants and Ru–O apical bond lengths are still
of course free to relax. This means that the theory of the previous
section can be simply adapted to the epitaxial case by a change of
variables. We write:

Q3 ¼
1ffiffiffi
6

p ð2δz � δx0 � δy0Þ ð12Þ

Fig. 8 Equation of state fit for bulk Ca2RuO4, the resulting energy, and energy as a function of epitaxial strain. a Electronic disproportionation as a
function of structural disproportionation ΔN(Q) from5 (heavy black points) and polynomial fit (solid line) used for the equation of state. b Correlated
electron free energy, and total free energy as a function of the electronic disproportionation order parameter characterizing the orbital polarization: Fel(ΔN)
and Ftotal(ΔN) for bulk Ca2RuO4. c Total energy plotted against orbital disproportionation ΔN for materials grown on four substrates indicated in the legend
(NSAT is Nd0.4Sr0.6Al0.7Ta0.3O3) which provide different strains relative to the metallic phase of Ca2RuO4. For compressive strain (NdAlO3), the material
is always metallic and the orbital polarization has the opposite sign from the insulating state. d Total free energy versus electronic disproportionation ΔN :
Ftotal(ΔN) computed for bulk Ca2RuO4 different values of the linear coupling term F3. e Phase diagram of epitaxially constrained Ca2RuO4 in plane of tensile
strain (defined as difference of mean in-plane Ru–O bond length from value in the high temperature structure) in Å and electron-lattice coupling parameter
F3. Red dashed line: value of F3 at which metal insulator transition occurs in bulk system. Arrows (red on line) indicate strain imposed by epitaxial growth.
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and

Q0 ¼
1
3
ðδz þ δx0 þ δy0Þ ð13Þ

with δx0 and δy0 fixed by the epitaxial constraint. It is also con-
venient to define the zero of δz to be the value

δz0 ¼ �ðδx0 þ δy0Þ
K00 � K33 þ K30ffiffi

2
p

2K33 þ 2
ffiffiffi
2

p
K30 þ K00

ð14Þ

that δz would take at ΔN=NH.
We obtain:

FðΔN; δzÞ ¼ K 0

2
δz2 þ g 0 δz � δz?ð ÞΔN þ FelðΔNÞ ð15Þ

with

K 0 ¼ 2
3

K33 þ
ffiffiffi
2

p
K30 þ

1
2
K00

� �
ð16Þ

g 0 ¼ F3ð2�
ffiffiffi
2

p
λ0Þffiffiffi

6
p ð17Þ

and

δz? ¼ ðδx0 þ δy0Þ
1þ ffiffiffi

2
p

λ0
2� ffiffiffi

2
p

λ0
þ

K00 � K33 þ K30ffiffi
2

p

2K33 þ 2
ffiffiffi
2

p
K30 þ K00

 !
ð18Þ

The epitaxial constraint thus has three effects: it increases the
net stiffness to lattice distortions by preventing relaxations of the
lattice coordinates associated with in-plane bond lengths, making
the insulating phase more difficult to obtain. Second, it reduces
the electron lattice coupling (Eq. 17) which also makes it more
difficult to obtain an insulating phase. Finally, it provides a term
linearly proportional to ΔN, which for positive epitaxial strain
favors the insulating phase. Panel a of Fig. 9 shows the change in
apical Ru–O bond length as a function of epitaxial strain; panel b
the occupancy difference ΔN. The first order transition is evident.
Note that for an epitaxial strain matching the in-plane lattice
constant of the high temperature metallic phase, insufficient
lattice energy is available to stabilize the insulating phase. As the
tensile strain is increased, the octahedral deformation, which
couples linearly to ΔN, increases, and beyond a critical value
drives a first order transition.

Experiments (refs. 64,65) have studied films grown epitaxially
on substrates NdAlO3, LaAlO3, NSAT (Nd0.4Sr0.6Al0.7Ta0.3O3),

and NdGaO3 corresponding to changes (relative to the high-T
state, and assuming the Ru–O bond length exactly tracks the in-
plane strain) in average in-plane Ru–O lattice parameters of
−0.04, 0.008, .03, and 0.046 respectively. Figure 8 shows that the
theory, with no adjustable parameters, predicts that for the
theoretically predicted coupling F3= 2.8 eV/Å the films grown on
NdAlO3 and LaAlO3 should be metallic, while the films grown on
NSAT and NdGaO3 should be insulating. In the experiment, the
LaAlO3-strained material has a transition at T ≈ 200 K from a
high temperature metal to a low temperature weak insulator/bad
metal, while the others are metallic and insulating as predicted by
the theory. The qualitative agreement is good; the quantitative
discrepancies may arise from a more subtle relation between
Ru–O bond length and in plane lattice constant than was
assumed in ref. 5 or from small systematic errors in the theory.
The good correspondence between experiment and theory shows
the utility of the methodology introduced here.

Temperature Dependence. The methods presented here provide
some insight into the physics of the temperature-driven
metal–insulator transition, indicating an important area for
future research. We see from Figs. 3 and 6 that for the nickelates
the low T energy landscape is characterized by two minima, with
energy differences per formula unit ranging from 80meV
(LuNiO3) to 25 meV (NdNiO3). In the nickelates, as the tem-
perature increases, a first order metal–insulator transition occurs.
The lattice distortion Q exhibits negligible temperature depen-
dence over the entire insulating phase, indicating that the minima
remain robust and the transition is driven by an entropic effect
that lifts up the free energy of the large ΔN extremum relative to
that of the ΔN= 0 extremum.

To investigate whether the entropic effect arises from the local
correlations captured by the dynamical mean field approxima-
tion, for bulk NdNiO3 we have extended the calculations shown
in Fig. 6 to much higher temperatures by performing calculations
with the same methodology and interaction parameters as in4 but
changing the electronic temperature. The parameters, as obtained
from the fit for certain temperatures can be found in Table 3.
Figure 10 shows the results: all of the parameters in the electronic
free energy vary systematically with temperature, decreasing in
magnitude as the temperature is increased from ~290 to 1000 K;
the result is a very weakly first order transition at ≈1080 K
(the model actually passes very close to the tricritical point at
which the second and fourth order coefficients of the theory

Fig. 9 Structural and electronic disproportionation of Ca2RuO4 versus epitaxial strain. Equilibrium electronic order parameter characterizing the orbital
polarization ΔN (a) and Ni–O apical bond distortion δz (b) versus epitaxial strain defined as the difference in mean in-plane Ru–O bond length relative to
the value in the high temperature structure of Ca2RuO4 as imposed through epitaxial strain via in-plane Ni–O bond changes away from the bulk values, δx0,
δy0 where δx0= δy0, computed as described in the main text.
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simultaneously change sign). This behavior, while theoretically
interesting, is inconsistent with the observed strongly first order
character and much lower transition temperature behavior,
suggesting that either the single site dynamical mean field
approximation does not adequately describe the temperature
dependence of the electronic contribution to the free energy, or
that an entropic effect associated with the lattice degrees of
freedom plays an important role. Indeed the neglect of spatial
fluctuations generically means that single-site DMFT approxima-
tions overestimate transition temperatures66,67. It should also be
noted that in this material antiferromagnetism plays an important
role in the ordering, and that a direct computation44 of the free
energy F(ΔN,Q) using a different DMFT formalism places
paramagnetic NdNiO3 on the paramagnetic metal side of the
transition and yields a stronger low T temperature dependence,

and shows for LuNiO3 a temperature dependence of F(ΔN,Q) in
the range T < 500K very similar to that found here for NdNiO3.

Ca2RuO4 presents different issues. A substantial temperature
dependence is observed68 across the insulating phase. Since the
electronic order parameter ΔN in this material is fixed at its
largest possible value for a range of couplings, the temperature
dependence must imply a temperature dependence of the
electron-lattice coupling F3 as proposed for related reasons in5.
Within single-site dynamical mean field theory, there is no
theoretical justification for a strongly temperature-dependent
coupling parameter, but on the assumption that changes in
electron-lattice coupling F3 are a proxy for changes in
temperature we show in Fig. 8, panel d, the energy computed
for different values of F3. We see that a first order transition
occurs at an F3 ≈ 1.58 ≈ 0.6 of the F3 we estimated from the low
temperature calculation. The phase diagram presented in Fig. 8
panels e, and c, then indicates that films grown on substrates
with a tensile epitaxial constraint exhibit significantly higher
transition temperatures than found in bulk, roughly consistent
with experiment.

Discussion
It is important to critically examine the assumptions that underly
our results. The first assumption enabling the construction is that
the lattice energy is quadratic in deviations from an equilibrium
position at fixed value of the electron order parameter, in other
words that the physics controlling the relevant atomic force
constants arises from chemical bonds inside the solid that are
only weakly affected by the transition from metal to insulator.
This and the harmonic nature of the lattice response are found in

Table 3 Parameters that characterize the temperature
dependence of the electronic energy as extracted by fitting
the data in Supplementary Note 1; electronic energies
presented in Fig. 10.

Temperature χ�1
0 (eV) β(eV) γ(eV)

387 K 0.0937 −0.0781 0.0519
580 K 0.0811 −0.0427 0.0346
773 K 0.0773 −0.0197 0.0227
966 K 0.0806 −0.0082 0.0172

The χ�1
0 ; β; γ parameters correspond to the quadratic, quartic, and sixth-order terms of the

electronic energy, as described in the main text.

Fig. 10 Evolution of the electronic and total energy landscape of NdNiO3 as a function of electronic temperature. a Electronic free energy as function of
electronic disproportionation ΔN computed for NdNiO3 at temperatures from 290 to 1160 K. b Total free energy computed for bulk NdNiO3 for the same
temperature range. c Total expanded view of total free energy for bulk NdNiO3 at temperatures close to the transition. d Optimal bond disproportionation
Q, as obtained by a linear transformation from the electronic disproportionation ΔN, using the lattice stiffness K and electron-lattice coupling term g:
Q(T)= ΔNðTÞ g

2K. Data for fits provided in Supplementary Note 1.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00909-z

10 COMMUNICATIONS PHYSICS |           (2022) 5:135 | https://doi.org/10.1038/s42005-022-00909-z | www.nature.com/commsphys

www.nature.com/commsphys


density functional calculations (see e.g., the supplementary
material of ref. 4) and are further supported by the observation
that phonon frequencies do not change much across the transi-
tions of interest.

The second assumption is that the coupling between electronic
and lattice degrees of freedom is linear, and may be determined a
priori. This second assumption has been confirmed by explicit
calculations (see, for example, the supplementary information in
ref. 4). Further investigation of these assumptions, and identifi-
cation of compounds in which they break down, is an important
topic for future research. One important direction is a detailed
comparison of results obtained along the lines indicated here to
direct computations of energies and free energies44,62,63,69.

Given these assumptions, a many-body calculation of electro-
nic configuration as a function of lattice distortion may be used to
construct free energies, essentially by integrating the equation of
state. We accomplish the integration by fitting the equation of
state results to a polynomial which is integrated analytically. This
procedure is convenient because it avoids ambiguities associated
with the coexistence region of the first order transition, but is not
necessary.

We applied the methodology to two currently interesting
families of compounds, that exhibit first order metal–insulator
transitions as the temperature is decreased: the rare earth per-
ovskite nickelates RNiO3, and Ca2RuO4. The two materials were
chosen because they exhibit qualitatively different electron-
lattice couplings. The transition in the RNiO3 is a symmetry-
breaking transition leading to two inequivalent Ni sites and an
alternating pattern of long and short Ni–O bond lengths. The
transition in Ca2RuO4 is isosymmetric, with no broken crystal
symmetries between the two states. In both materials, we find
that if the lattice coordinate is set to the value appropriate to the
high temperature metallic state, the resulting energy F(ΔN,
Q= 0) has only one minimum, at ΔN= 0. It is only after the
coupling to the lattice is included that the total functional
F(ΔN,Q) acquires a minimum at a ΔN,Q ≠ 0. We, therefore,
conclude that lattice effects are essential in driving the
metal–insulator transition in both compounds, rather than
being merely a minor consequence of a fundamentally elec-
tronically driven transition, thereby settling a long-standing
controversy. It is important to note however that although the
purely electronic theory does not produce a metal–insulator
transition, the correlation contribution to the electronic energy
is still important. DFT-level calculations would lead to a Fel,
which rises so steeply with ΔN that the only extremum would
be at ΔN=Q= 0. A beyond-DFT theory is needed to obtain an
electronic energy which, although it does not by itself have a
minimum at a non-zero ΔN, is “soft” enough to enable the
lattice energies to produce the ordered state.

It is important to consider the limitations of our conclusions.
First, while the approach introduced here will work with any
method that calculates the electronic order parameter as a func-
tion of lattice distortion ΔN(Q), in practice the information
available in the literature comes from the density functional plus
dynamical mean field methodology. While this method success-
fully produces results that are consistent with many experiments,
its precise quantitative accuracy is unknown. The method does
require an identification of correlated orbitals, it relies on the
assumption that density functional theory gives an adequate
account of the energetics of the uncorrelated orbitals, it requires
specification of interaction parameters, and its solution of the
many body problem involves a stringent locality assumption.
Cross checking via other methods (as for example was done for
Ca2RuO4 in ref. 70) would be desirable. Further, there are several
variants of the DMFT plus DFT methodology, differing in the
choice of energy window and the representation of correlated

states71; the dependence of our conclusions on the implementa-
tion is an interesting question.

The specification of interaction parameters is of particular
importance. As shown e.g., in refs. 3,4, as the interaction para-
meters are increased in magnitude, a transition can be generated
in the purely electronic theory. The precise statement made here
is that with interaction parameters determined by reproducing
physical properties including gaps, and effective masses, and
structural distortion, the purely electronic theory does not exhibit
a phase transition: electron-lattice coupling plays an essential role
in stabilizing the insulating states.

It will also be noted that while the theory presented here
reproduces trends and orders of magnitude very well, it has some
quantitative deficiencies, for example predicting that PrNiO3 is
metallic but close to the phase boundary when in fact it is insulating
but close to the phase boundary, with the lowest transition tem-
perature of any bulk member of the RNiO3 nickelate family. This
deficiency is likely to be remedied by the inclusion of magnetism in
the theory, since in PrNiO3 and NdNiO3, but not in the other
compounds studied in this paper, the metal–insulator transition is
accompanied by a magnetic transition. Similarly, the phase dia-
gram of epitaxially constrained Ca2RuO4 films is qualitatively
correct but exhibits quantitative discrepancies with experiment. We
note that in this paper no attempt was made to adjust the para-
meters from the literature or to fine-tune the fits to obtain better
agreement with the experiment. Small changes, reflecting moderate
parameter uncertainties and modest systematic errors in the DFT
+DMFT approach, would likely cure these discrepancies.

Conclusions
Electronic phase transitions in quantum materials are almost
always accompanied by some form of lattice distortion, and in
many specific cases, the question of whether the transition is
driven by the lattice or by correlated electron energetics has been
hotly debated. In theoretical terms, the answer is determined by
the properties of a free energy functional F(ΔN,Q) that depends
on suitably defined electronic (ΔN) and lattice (Q) modes. For
second order transitions, the needed information can often be
determined from symmetry arguments along with the values of a
small number of parameters determined from the linear response
of the symmetry-unbroken state. However, many transitions of
current interest, in particular metal–insulator transitions, are first
order, so that knowledge of the free energy landscape over a wide
range is required. This information has been more difficult to
obtain both because of the simple expense of computing an entire
energy landscape and because these computations require fixing
the electron order parameter at values that do not extremize the
energy. In this paper, we proposed a method that constructs the
needed free energy from the equation of state (electron order
parameter as a function of lattice distortion). The method is
computationally feasible and can be applied using any many-body
method that obtains the equation of state. We demonstrate the
power of the method by using it to resolve the long-standing
question of the role of the lattice in the metal–insulator transi-
tions in two representative classes of quantum materials, the
perovskite rare earth nickelates, and the Ruddlesden–Popper
calcium ruthenates. We find that in both materials the lattice
degree of freedom is essential to the metal–insulator transition.

We also observe that while we presented results based on
dynamical mean field calculations, the method is generic in
nature and can easily be used with other electronic structure
methods, including DFT, DFT+U72,73, Gutzwiller74,75,
Auxiliary–Boson76–79—particularly with the advent of new
codes that calculate energy and naturally handle symmetry
breaking80–84, and quantum Monte Carlo85.
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The methods can be applied to quantify the importance of
lattice effects in other systems of current interest, including
CaFeO3

86,87 which exhibits charge ordering and lattice dis-
proportionation, perovskite titanates and vanadates, where lattice
distortions couple to orbital ordering88–90, VO2 where a dimer-
ization instability occurs91, V2O3 where the metal–insulator
transition couples to the volume of the material92, and the rare
earth manganites where electronic charge, orbital and magnetic
ordering are tightly coupled to complex lattice distortions93–95,
two-dimensional correlated van der Waals dihalides and triha-
lides MX2, MX3, with M a transition metal ion and X a
halogen96–99, as well as in charge density waves in transition
metal dichalcogenides100,101.

The access to the free energy provided by our methods enables
additional insights. Issues relating to temperature dependence were
discussed in the temperature dependence section “Temperature
Dependence”. The energy landscape shown in Fig. 1 makes it clear
that only one narrowly defined path connects the metallic and
insulating minima; this information may be used to investigate the
kinetics of order parameter nucleation if the material is supercooled
or superheated across the phase boundary. Further, the differing
roles of the electronic and lattice degrees of freedom in defining the
energy landscape make possible an analysis of the kinetics of state
evolution after excitation. For example, excitation might rapidly
heat the electrons (leading to changes in Fel) but only slowly heat
the lattice degrees of freedom (which would in any event respond
more slowly). Extension of the theory presented here to include the
antiferromagnetism that occurs in the rare earth nickelates may
help understand recent ultrafast experiments exploring the relation
between antiferromagnetism, lattice distortions, and metallicity in
NdNiO3

102,103.

Methods
The new numerical ΔN(Q) data for NdNiO3 used to build the electronic energies in
this paper is obtained by using identical methodology and parameters as in our
previous work (ref. 4). We’ve used Quantum Espresso104 for density functional
theory calculations, Wannier90105 to build the low-energy Wannier model, and
dynamical mean field theory calculations using the TRIQS implementation106,
using the continuous time hybridization107 solver. We’ve used the exact same
numerical and interaction parameters as in (ref. 4), but with a different electronic
temperature which can be obtained by changing the parameter β.

The other DFT+DMFT data used in this work is digitized from previous work,
namely from ref. 6 (bulk LuNiO3, SmNiO3, and PrNiO3), from ref. 4 (for bulk
NdNiO3 and layered NdNiO3/NdAlO3), and from ref. 5 (Ca2RuO4).

Data obtained either from new calculations or digitizing from previous work, is
fit using Matlab and built into our equation of state (3), as appropriate for each
material.

Data availability
The data used for this work and scripts used to fit the data can be found in the
manuscripts referenced herein, both original and digitized from previous work,4–6, can
be accessed directly on GitHub at: https://github.com/alexandrub53/EnergyLandscapes.

Code availability
The scripts used to fit the DFT+DMFT data and obtain electronic and total energies
throughout the paper can be accessed directly on GitHub at: https://github.com/
alexandrub53/EnergyLandscapes.
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