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Abstract: The spatial scaling of patterns and processes is a hot topic of research in landscape ecology,
and different scales may yield completely inconsistent results. Therefore, to understand the impact
of the scale effect on urban heat island effect, this study analyzes the correlation between surface
temperature and landscape index at different spatial scales over Nanjing. The scale effect is calculated
thorough curve fitting of the Pearson’s correlation coefficient between ten landscape indices and
land surface temperature at different window sizes, and the optimal one is determined. We have
found that landscape indices can be divided into exponential and Gaussian landscape indices whose
correlation with land surface temperature at different windows conforms to binomial exponential
or multi-Gaussian functions, respectively. The optimal window size is approximately 4000–5100 m
for exponential landscape indices, 1000–2000 m for aggregation index (AI) and percentage of like
adjacencies (PLADJ), 6330 m for contagion (CONTAG) and 4380 m for total edge contrast index
(TECI). Moreover, CONTAG and TECI have a high correlation coefficient plateau where the Pearson
correlation coefficient is high and changes by less than 0.03 as the window size changes by more than
3000 m, which makes it possible to decrease the window size in order to save the calculation time
without an obvious decrease in the Pearson correlation coefficient. To achieve this, we proposed a
suitable window selection function so that the window size becomes 4260 m and 2070 m, respectively.
The window sizes obtained in this study are just suitable in Nanjing, but the window sizes in other
cities can also be obtained by the method in this study. This study provides a reference for future
research on the relationship between landscape pattern and land surface temperature and its driving
mechanisms, as well as for the impact of urban land use planning on the heat island effect.

Keywords: landscape index; surface temperature; Pearson correlation coefficient; scale effect; Nanjing

1. Introduction

The urban thermal environment has become a significant concern in light of global
warming’s impact on human settlements. Many people in the world are exposed to extreme
heat [1]. The urban heat island effect, which occurs as a result of rapid urbanization and
expansion, is a growing issue in the Yangtze River Delta region [2]. The negative impact
of the urban island on the city is increasing and attracting wide attention. It not only
affects the quality of life for residents, but also has a broader impact on urban ecology.
The phenomenon of urban heat island makes urban heat islands increasingly a factor
affecting urban ecology from general meteorological issues. Urban heat waves, especially
when combined with the urban heat island, can result in much more serious heat stress
regarding their positive impact on air temperature [3]. The health problems caused by
urban heat waves are more serious than those caused by cold [4]. As a result, urban
heat island is more intense during a hot day and cause higher health risk, especially for
poor people [5]. It makes it much easier for people to obtain diseases such as cardio-
vascular collapse [6], and even causes death around the world [7–11]. Furthermore, the
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thermal environment has a profound impact on urban energy and water consumption,
ecosystem processes, biological phenology, and the sustainable development of urban
economies [12–14]. Therefore, addressing the urban heat island effect is an urgent priority.

The urbanization of China has grown rapidly since 1980 and resulted in the increase
in urban heat islands [15,16]. Numerous studies have explored the factors and mitigation
strategies for the urban heat island effect. Land cover has an obvious relationship with
urban heat island [17], and urban green space has been found to effectively lower surface
temperature and mitigate the heat island effect [18]. Using geographically weighted re-
gression (GWR) to consider the effect of spatial correlation, Elijah A. Njoku and David E.
Tenenbaum [19] found a significant relationship between land use/land cover and land
surface temperature. However, maximizing the ecological and environmental benefits
of urban green space remains a major focus of current research [20]. Alleviating the ur-
ban heat island effect in China by solely relying on increasing the area of urban green
space and water bodies is impractical due to limited land availability. To examine the
relationship between urban green space layout and the urban heat island effect from a
landscape perspective, many scholars have employed landscape ecology methods. Hu-
man activities such as urban expansion change the landscape patterns [21]. Therefore,
urban planning can adjust the landscape patterns in the city. Landscape patterns have
a crucial impact on the urban thermal environment, and the landscape indices we have
designed can quantify the aggregation, diversity and connectivity levels of landscape
patterns [22–24]. Many researchers studied the relationship between landscape indices and
land surface temperature with land use data. Sun et al. [25] used the Bivariate Moran’s I
method to analyse the spatial correlations of landscape indices and land surface temper-
ature in Chengdu, China. Taking different cities into consideration, Ye et al. [26] studied
the correlation between 10 landscape indices and land surface temperature in 5 large cities
in China. The results showed that the correlations between landscape indices and land
surface temperature is obvious but varied in different cities. Li et al. [27] quantitatively
analysed the relationship between configuration landscape indices of greenspace such
as mean patch area and land surface temperature intensity by linear regression. They
explained the quantitative relationship between landscape indices and the urban heat
island effect under high resolution data. In a study using geospatial methods including
concentric buffer analysis, correlation analysis, and hierarchical ridge regression model,
Ye et al. [26] investigated the impact of landscape patterns on the urban thermal environ-
ment in five highly urbanized mega-cities in China. They concluded that arranging urban
green space 10–15 km away from the city center maximizes the cooling effect.

However, studies have rarely involved quantifying the scale effect of the correlation
between landscape index and urban heat island effect. Wu et al. [28] studied the scale effect
on landscape indices and found that the scale effect significantly affected the landscape
indices. The values of landscape indices changed under different scales by changing grain
size and extent. Wu et al. [29] showed the influence of different scales on the correlations
between some of the landscape indices and land surface temperature using the Pearson
Correlation Coefficient on the bar graph qualitatively. They demonstrated that the scale
effect of correlation of landscape indices and land surface temperature is obvious and
vital to the validity of the conclusions of the researchers regarding urban heat island and
landscape patterns. Therefore, it is meaningful to use functions to quantify the scale effect of
the correlation between land surface temperature and landscape indices in order to design
an effective method to look for the optimal window of correlations between landscape
indices and land surface temperature to help the researchers when they study the urban
heat island. Therefore, this paper uses curve fitting to study the scale effect of the correlation
between landscape indices and land surface temperature quantitively. Meanwhile, we
propose a method to look for the optimal window.

This paper investigates the scale effect on correlation between 10 different landscape
indices and land surface temperature (LST) using remote sensing (RS) and geographic
information system (GIS) technology. Taking Nanjing as an example, this study analyses
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the scale effect of relationship between landscape indices and land surface temperature
and find the optimal window sizes. The content includes the following: (1) This paper
ses the relationship between landscape indices and land surface temperature by using
the Pearson correlation coefficient. (2) This paper quantifies the law of the scale effect of
correlation of landscape indices and land surface temperature. (3) This paper provides an
optimal window for the correlation between landscape index and land surface temperature
in Nanjing. (4) This paper also provides a method of obtaining a suitable window for the
correlation between landscape index and land surface temperature, which considers the
calculation time and the level of correlation. This finding can aid researchers studying
urban thermal environment problems in selecting an appropriate window size.

2. Materials and Methods
2.1. Region of Interest

The research data are sourced from Nanjing, a specific region of interest. Nanjing, a
city located in the southwestern part of Jiangsu Province, China, is a cultural, political and
economic center of the Yangtze River Delta city cluster. It has an administrative area of
6587.02 km2, with a built-up area of approximately 868.3 km2 by 2020. The city is located
in a hilly area, surrounded by mountains on three sides and the Yangtze River to the north.
The northern parts of the city are south of the “Laoshan” mountains. Nanjing has a north-
ern subtropical monsoon climate with cold winters, hot summers and high precipitation
levels. In 2020, the average temperature was 17.1 ◦C, and the annual precipitation was
1294.1 mm. The highest temperature in summer can reach 38 ◦C. The urban area south of
the Yangtze River has a high level of modernization, with a dense distribution of high-rise
buildings and a large population, bringing huge energy consumption to there. Meanwhile,
the mature industrial and commercial activities in the area, along with the increase in cars
and consumption levels, have led to urban thermal environment problems. In recent years,
with the rapid development of Nanjing Jiangbei District, the urban heat island effect has
become increasingly prominent. Figure 1 shows the map of Nanjing.
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Figure 1. The land use cover map of Nanjing. Figure 1. The land use cover map of Nanjing.

2.2. Data Source
2.2.1. Land Use Data

The land use cover data utilized in this paper were sourced from the CLCD dataset
(https://zenodo.org/record/5816591, accessed on 10 October 2022), which was produced
by Huang et al. [30] of Wuhan University. The dataset contains the 2020 Chinese land
use cover data with a 30 m spatial resolution. Validation of the dataset was conducted by

https://zenodo.org/record/5816591
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means of 5463 visual interpretation samples, resulting in an overall accuracy rate of 80%,
which is suitable for the research.

Huang et al. [30] used a random forest model to obtain the land use data on Google
Earth Engine platform (GEE). The random forest model has been proven to be more accurate
and efficient than other machine learning classification methods such as decision tree and
support vector machine (SVM) [31]. The theory of random forest model is to build a
collection of decision trees to classify the land cover according to the input data. To build
decision trees, the random forest model finds the best split according to the traits randomly
chosen from input data. The effect of the split is described by Gini coefficient. The smaller
the Gini coefficient, the better the effect of the spilt.

Gini(p) =
n
∑

j=1

k
∑

i=1
pij
(
1− pij

)
(1)

where n is the number of categories generated by the spilt, j is category j generated by the
spilt, k is the number of the types of land use cover, i means the land use cover i and p is
the frequency of occurrence of land use cover in a category.

The random forest model chooses the split with the smallest Gini coefficient every time
to build the decision tree until the number of pixels in leaf node is less than threshold value.
Huang et al. [30] built 200 decision trees in their random forest model. When classifying
the pixel into land use cover types, the model gives 200 results according to 200 decision
trees, respectively. Then, the final result is provided as the result which has the highest
frequency occurrence.

To ensure the accuracy of the land use cover results, Huang et al. [31] proposed a
method to describe the spatial–temporal consistency probability of a pixel in 3× 3 spatial–
temporal filter.

Pi,t =
1
N

[
∑t+2

t ∑x+1
x−1 ∑

y+1
y−1 I

(
Li,t = Lj

)]
(2)

where Li,t is the land use cover label of pixel i in the year t, Lj is the land use cover label for
pixels in the current window, N is the number of pixels in the current window, I

(
Li,t = Lj

)
is 1 if Li,t is equal to Lj. Otherwise, I

(
Li,t = Lj

)
is 0. Moreover, x and y are the column and

row code of pixel i.
When the land use cover changes, the label of pixel should have the spatial–temporal

consistency. Huang et al. [30] provided the threshold value of spatial–temporal filter. If
Pi,t is larger than 0.5, the label of the pixel in year t has a good spatial–temporal consistent.
However, if the Pi,t is lower than 0.5, the pixel in year t is classified into wrong land
use cover type. Then, the label of the pixel Li,t is corrected as Li,t−1. Finally, the land
use cover data is generated. We download the land use cover data from the website
(https://zenodo.org/record/5816591, accessed on 6 October 2022).

2.2.2. Landsat Data

Land surface temperature data with a spatial resolution of 30 m were retrieved by
Landsat7 image. Radiometric calibration and atmospheric correction are performed on the
image. Then, the image of Landsat7 can be used to retrieve the land surface temperature.
Landsat7 is the seventh satellite of the Landsat program in the USA. It has Enhanced
Thematic Mapper (ETM+) sensor and was launched in 1999. This paper uses the Level 1
product of Landsat7. We choose the image which was taken on 9 October 2020 at 02:01:30
(Greenwich Mean Time), and the detailed information is shown in Table 1.

Table 1. The type of landscape indices.

Satellite Time Cloud Cover Resolution Path/Row

Landsat7 9 October 2020 at 02:01:30
(Greenwich Mean Time) 18% 30 m 120/038

https://zenodo.org/record/5816591
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2.3. Methods
2.3.1. Land Surface Temperature Retrieving

To ensure the accuracy of the result of land surface temperature retrieving, we use
the retrieving algorithm proposed by Cheng et al. [32]. This algorithm can calculate 30 m
land surface temperature, which has better accuracy than USGS land surface temperature
product [32]. After atmosphere correction, the algorithm can be divided into two steps.

First, calculate the land surface emissivity (LSE) in different land cover types. For
non-vegetated surfaces, calculate the land surface emissivity (LSE) in different land cover
types. For nonvegetated surfaces, Cheng et al [32] established the empirical equation of
land surface emissivity and Landsat SRs.

εi = a0 + ∑ aj ∗ ρj (3)

where εi is the land surface emissivity, ρj is the SR of channel j. aj is the parameter of
channel j, a0 is the constant term.

Then, Cheng et al. [32] proposed a linear regression equation regarding the land
surface emissivity of Landsat7 and ASTER.

εL7/b6 = 0.278εAST13 + 0.599εAST14 + 0.121, R2 = 0.975, RMSE = 0.003 (4)

where εi is the land surface emissivity of i.
Also, the empirical equation of the ASTER emissivity and Landsat SRs can be calcu-

lated by statistical regression after spatial-temporal match [32]. Then the empirical equation
of land surface emissivity and Landsat SRs is built. We can obtain AST LSE product from
https://search.earthdata.nasa.gov/ (assessed on 6 October 2022).

For vegetated surfaces, we use 4SAIL model to build the look-up table of land surface
emissivity. In this model, leaf emissivity, soil background emissivity and LAI determine the
land surface emissivity [33]. Cheng et al. [32] has provided the range of input parameters
of PROSPECT + 4SAIL model, leaf emissivity and soil background emissivity of different
land cover types, respectively. They are shown in Table 2.

Table 2. The emissivity of leaf and soil of different land cover types.

Type Forest Shrubland Savanna Grassland Cropland Other

Leaf emissivity 0.962 0.959 0.968 0.974 0.961 0.965
Soil background

emissivity 0.968 0.964 0.964 0.964 0.973 0.968

LAI can be calculated by NDVI according to PROSPECT + 4SAIL model, for PROSPECT
+ 4SAIL model can simulate the surface reflectivity (SR) of red and near-infrared channel of
Landsat image [34]. To build the empirical relationship between NDVI and LAI, randomly
sample the input parameters and run the model in the range shown in Table 3. The input
parameters include chlorophyll a + b content (Cab), brown pigment concentration (Cbrown),
the leaf structure parameter(N), equivalent water thickness (Cw), dry matter content (Cm),
carotenoid content (Car), LAI, hotspot and leaf angle [32].

Table 3. The range of input parameters in PROSPECT + 4SAIL model.

Parameters Cab Cbrown N Cw Cm Car LAI Hotspot Leaf Angle

min 0 0 1.0 6.3 × 10−5 0.0019 0 0 0.01 30
max 100 1 3.0 0.04 0.0165 40 6 0.1 80

Then, we can obtain NDVI from Landsat 7 image and calculate LAI through the em-
pirical relationship between NDVI and LAI. With LAI, leaf emissivity and soil background

https://search.earthdata.nasa.gov/
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emissivity, we can calculate the look-up table of land surface emissivity and obtain land
surface emissivity by interpolation.

Second, use radiative transfer equation (RTE) algorithm to retrieve the land surface
temperature [32].

Li = [εiBi(Ts) + (1− εi)L↓i ]τi + L↑i (5)

where Li is the radiance at sensor of channel i, L↓i is downwelling path radiance of channel
i, L↑i is upwelling path radiance of channel i, Bi(Ts) is the blackbody radiance of channel i,
Ts is land surface temperature which we need to calculate, εi is land surface emissivity of
channel i and τi is the atmospheric transmissivity of channel i.

We can calculate the blackbody radiance according to the Plank’s law [35].

Bi(Ts) =
2hc2

λ5
i

(
e(hc/λi kTs)−1

) (6)

where c is the speed of light (2.9979× 108 m/s), h is the Planck constant (6.6261× 10−34

J·S), k is the Boltzmann constant (1.3806× 10−23 J/K), λi is the effective band wavelength,
which is 11.269 µm for the Band 6 of Landsat 7 [36].

As a result, we can calculate the land surface temperature as follows:

Ts =
C1

λi ln

 C2

λ5
i

(
Bi(Ti)−L↑i −τi(1−εi)L↓i

)
/τi εi

+1

 (7)

where Ci is 14387.7 µm ·K, C2 is 1.19104× 108 W · µm4 ·m−2 · sr−1 [26].
The upwelling path radiance, the downwelling path radiance and atmospheric trans-

missivity can be found on the website https://atmcorr.gsfc.nasa.gov/, accessed on
8 October 2022.

2.3.2. Landscape Index

The relationship between land surface temperature and the degree of aggregation,
fragmentation, diversity, shape complexity and connectivity of the landscape has been
established in previous studies [37–39]. To measure these landscape characteristics, various
landscape indices have been developed such as patch cohesion index (COHESION) [26],
the aggregation index (AI) [40], Shannon’s diversity index (SHDI) [41], and contagion
(CONTAG) [42]. The landscape patterns correlate with land surface temperature [43] and
these correlations have been observed in large Chinese cities such as Beijing, Tianjin, Shang-
hai, Guangzhou and Shenzhen in 1990, 2000 and 2010 [26]. There are also other landscape
indices that can describe the spatial distribution of landscape pattern such as connectance
(CONNECT), landscape division index (DIVISION), effective mesh size (MESH), modified
Simpson’s diversity index (MSIDI), percentage of like adjacencies (PLADJ) and total edge
contrast index (TECI) [44]. Thus, this paper selects these landscape indices as the focus of
our investigation. We provide a brief description of each landscape index below:

(1) Aggregation Index (AI): The aggregation index reflects the degree of aggregation
or dispersion of the same type of landscape patches. The calculation formula is as follows:

AI = 1 +
(

∑n
i=1 ∑n

j=1 Pij ln(Pij)
2 ln(n)

)
(8)

where n represents the number of landscape types, and Pij represents the probability that
landscape types i is adjacent to landscape types j. The calculation formula is as follows:

Pij = Pi/Pj/i (9)

https://atmcorr.gsfc.nasa.gov/
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where Pi is the ratio of landscape type i’s area to window’s area. Pj/i is the probability that
a patch is adjacent to another patch whose landscape type is j, when the patch’s landscape
type is i. The calculation formula is as follows:

Pj/i = mij/mi (10)

where mij is the number of adjacent edges of patches with landscape type i and landscape
type j. mi is the total number of patches whose landscape type is i.

(2) Connectance (CONNECT): Connectance measures the degree of connectivity be-
tween landscape patches. Strong connectivity between patches facilitates the circulation
of material and energy. Since the heat island effect is related to changes in surface energy
balance, the connectivity index is expected to be correlated with the heat island effect. The
index is calculated using the following formula:

CONNECT =
200 ∑n

j=k cijk

(ni
2−ni)

(11)

where cijk is 1 when the patch of landscape type j, and the patch of landscape type k can be
connected within the threshold distance. Otherwise, 0. The threshold distance is 100 m in
this paper.

(3) Patch Cohesion Index (COHESION): The patch cohesion index represents the
degree of aggregation of scenery in space. The calculated formula is follows:

COHESION =
(

1−∑n
j=1 pij/

(
∑n

j=1 pij
√aij

))
∗
(

1− 1/
√

A
)−1

(12)

where pij is the ratio of the patches of landscape type ij. aij is the number of patches of
landscape type ij and A is the total number of patches.

(4) Contagion (CONTAG): Contagion measures the degree of aggregation or diffusion
of landscape patches in space. A smaller CONTAG index indicates a more dispersed distri-
bution of different patch types, while a larger index indicates a more clustered distribution
of different patch types in space. The index is calculated using the following formula:

CONTAG = 100
(

1 +
(

∑m
i=1 ∑m

k=1 Pi(gik/ ∑m
k=1 gik) ln(Pi)(gik/ ∑m

k=1 gik)
2 ln(m)

))
(13)

where Pi is the ratio of the area of the patch whose landscape type is i to the total area. gik is
the number of adjacent patches of landscape type i and landscape type k. m is the number
of landscape types.

(5) Division Index (DIVISION): Division index shows the dispersion of patches whose
landscape type is the same. The calculation formula is as follows:

DIVISION =
(

1−∑m
j=1
(
aij/A

)2
)

(14)

where aij is the area of patches whose landscape type is i. A is the total area of the landscape.
(6) Effective Mesh Size (MESH): Effective mesh size is a metric used to describe the

distribution of patch types in space. It is calculated as the ratio of the quadratic sum of
patch areas for each landscape type to the total area. The calculation formula for Effective
mesh size is as follows:

MESH =

(
m
∑

j=1
a2

ij/A

)
− 1/10000 (15)

where aij is the area of the patch, A is the area of the window.
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(7) Modified Simpson’s diversity index (MSIDI): Modified Simpson’s diversity index
describes the area uniformity of various types of patches in the landscape. The calculation
formula is follows:

MSIDI = −ln
(

n
∑

i=1
p2

i

)
(16)

where pi is the probability of the patch whose landscape type is i in the window.
(8) Percentage of Like Adjacencies (PLADJ): Percentage of like adjacencies describes

the degree of connection between patches in the landscape. The calculated formula
is as follows:

PLADJ =
(

gii/
m
∑

k=1
gik

)
× 100 (17)

where m is the number of patches. gii is the number of patches of landscape type i which
are connected. gik is the number of adjacent edges.

(9) Shannon’s Diversity Index (SHDI): Shannon’s diversity index describes the area
uniformity of various types of patches in the landscape. The calculation formula is
as follows:

SHDI = −
m
∑

i=1
pi ln(pi) (18)

where pi is the probability of the patches whose landscape type is i in the landscape.
(10) Total edge contrast index (TECI): Total edge contrast index describes the hetero-

geneity of patch edges in the landscape. The calculated formula is as follows:

TECI = ∑m
i=1 ∑m

k=i+1(eikdik)
E × 100 (19)

where eik is the length of edges of patches whose landscape type is i and patches whose
landscape type is k. dik is the weight of the contrast index between the patches of landscape
i and landscape k. The weight is 1 in this paper.

The scale effect is a common phenomenon in geographic elements. Wu et al. [28]
observed a scale effect in the landscape index and emphasized that ignoring this ef-
fect can significantly impact the interpretability and practical value of research findings.
Estoque et al. [43] discovered a scale effect in the factors influencing the urban thermal
environment, where the correlation between impervious surface density and surface tem-
perature was higher at smaller scales. Furthermore, the impact of different scales on land
surface temperature varies for each factor. To show the scale effect on the landscape index,
this study employs Frastats4.2 software to calculate each landscape index at various win-
dow sizes. Windows are selected from small to large including 1000 m, 1200 m, 1500 m,
1800 m, 2000 m, 2200 m, 2500 m, 2800 m, 3000 m, 3200 m, 3500 m, 3800 m, 4000 m, 4200 m,
4800 m, 5000 m, 5200 m, 5500 m, 5800 m, 6000 m, 7000 m, 8000 m, 9000 m, 10,000 m, 11,000
m, 12,000 m, 13,000 m, 14,000 m, 15,000 m, and 16,000 m.

2.3.3. The Calculation of Correlation Coefficient

This paper employs the Pearson correlation coefficient to quantify the relationship
between landscape index and surface temperature. A dataset of 15,000 points in Nanjing is
selected for this analysis. The calculation method is as follows:

ρij =
Cov(LST,Xij)√

Var(LST)
√

Var(Xij)
(20)

where ρij is the Pearson correlation coefficient between landscape index i and land surface
temperature under the window whose size is j. Xij is the sample of landscape type i when
window size is j. Cov means covariance; Var means variance.

In this study, we utilized SPSS25 software to calculate the Pearson correlation coeffi-
cient between land surface temperature and each landscape index for 31 different window
sizes. Figure 2 displays the results of these calculations.



Remote Sens. 2023, 15, 2131 9 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW  4  of  11 
 

 

column and row code of pixel  𝑖. 
When the land use cover changes, the label of pixel should have the spatial–temporal 

consistency. Huang et al. [30] provided the threshold value of spatial–temporal filter. If 

𝑃 ,   is  larger  than 0.5,  the  label of  the pixel  in year  𝑡  has a good spatial–temporal con-

sistent. However, if the  𝑃 ,   is lower than 0.5, the pixel in year  𝑡  is classified into wrong 

land use cover type. Then, the label of the pixel  𝐿 ,   is corrected as  𝐿 , . Finally, the land 

use  cover data  is  generated. We download  the  land  use  cover data  from  the website 

(https://zenodo.org/record/5816591, accessed on 6 October 2022). 

2.2.2. Landsat Data 

Land surface temperature data with a spatial resolution of 30 m were retrieved by 

Landsat7  image. Radiometric calibration and atmospheric correction are performed on 

the image. Then, the image of Landsat7 can be used to retrieve the land surface tempera-

ture. Landsat7 is the seventh satellite of the Landsat program in the USA. It has Enhanced 

Thematic Mapper (ETM+) sensor and was launched in 1999. This paper uses the Level 1 

product of Landsat7. We choose the image which was taken on 9 October 2020 at 02:01:30 

(Greenwich Mean Time), and the detailed information is shown in Table 1. 

 

 

Figure 2. The figure of Pearson correlation coefficient. Note: AI: Aggregation Index, COHESION: 

Patch Cohesion Index, CONNECT: Connectance, CONTAG: Contagion, DIVISION: Landscape Di-

vision Index, MESH: Effective Mesh Size, MSIDI: Modified Simpson’s Diversity Index, PLADJ: Per-

centage of Like Adjacencies, SHDI: Shannon’s Diversity Index, TECI: Total Edge Contrast Index. 

where  𝑘   is  the  number  of  terms  𝑛   is  the  number  of  samples;  𝑆    is  residual  sum  of 
squares. 

3. Results 

3.1. Correlation Analysis between Landscape Index and Surface Temperature 

We calculate the Pearson correlation coefficient of landscape indices and land surface 

temperature and the results are shown in Figure 2. 

The results shown in Figure 2 indicate that COHESION, CONTAG, MESH and TECI 

are positively correlated with surface temperature for the appropriate window size, while 

AI, CONNECT, DIVISION, MSIDI, PLADJ and SHDI are negatively correlated with land 

surface temperature for appropriate window sizes. The landscape indices are correlated 

Figure 2. The figure of Pearson correlation coefficient. Note: AI: Aggregation Index, COHESION:
Patch Cohesion Index, CONNECT: Connectance, CONTAG: Contagion, DIVISION: Landscape
Division Index, MESH: Effective Mesh Size, MSIDI: Modified Simpson’s Diversity Index, PLADJ:
Percentage of Like Adjacencies, SHDI: Shannon’s Diversity Index, TECI: Total Edge Contrast Index.

2.3.4. Curve Fitting

To explore the correlation between the Pearson correlation coefficient and the window
size, this study utilized curve fitting techniques. Various function models were tested,
and it was determined that either the binomial exponential function or Gaussian function
is suitable for modeling the scale effect of the correlation coefficient. Therefore, these
two functions were selected for further fitting. The formula for the binomial exponential
function is as follows:

y = aeb + ced (21)

where a, b, c and d are parameters.
The Gaussian function formula is as follows:

y =
n
∑

i=1
aie

(−( (x−bi)
ci

)
2
) (22)

where n is the number of terms. ai, bi and ci are parameters.
To ensure a well-fitted function, limit model complexity and prevent over-fitting, this

paper utilizes the adjusted R2 and Akaike information criterion (AIC) to determine the
number of terms of the Gaussian function. The optimal model is chosen as the one with the
smallest AIC value, while ensuring the adjusted R2 is not less than 0.95.

2.3.5. Akaike Information Criterion

To determine the optimal number of terms for the Gaussian function fitting, this study
uses the Akaike information criterion. This criterion, which is based on the concept of
information entropy, helps prevent over-fitting, balance model complexity and improve
the model’s application. The optimal number of terms is identified by selecting the AIC
value corresponding to the smallest number of terms. The AIC value is calculated using
the following method:

AIC = 2k− nln
(

S2

n

)
(23)

where k is the number of terms n is the number of samples; S2 is residual sum of squares.
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3. Results
3.1. Correlation Analysis between Landscape Index and Surface Temperature

We calculate the Pearson correlation coefficient of landscape indices and land surface
temperature and the results are shown in Figure 2.

The results shown in Figure 2 indicate that COHESION, CONTAG, MESH and TECI
are positively correlated with surface temperature for the appropriate window size, while
AI, CONNECT, DIVISION, MSIDI, PLADJ and SHDI are negatively correlated with land
surface temperature for appropriate window sizes. The landscape indices are correlated to
the urban thermal environment [40]. The correlation between landscape index and land
surface temperature is related to the aggregation and connectivity [40,41], as demonstrated
by Equations (8)–(19). COHESION, MESH, MSIDI, DIVISION and SHDI express the
aggregation degree of landscape from the perspective of patch area [44], with larger values
indicating patches that are closer to a clustered distribution, while larger values of MSIDI
and SHDI indicate more dispersed patch distribution. These results showed that the
aggregation of building land leads to an increase in local surface temperature, whereas the
mosaic distribution of green space between buildings can effectively improve the urban
thermal environment [27]. The larger the value of CONNECT, the better the connectivity of
similar patches [44], and it has a strongly negative correlation with land surface temperature,
indicating that the green corridor formed by the interconnection of green space has an
additive effect on improving the urban thermal environment. AI and PLADJ calculate the
aggregation of landscape distribution [44] from the perspective of the number of adjacent
grids of the same kind, which essentially combines aggregation and connectivity. The
positive and negative correlations between AI, PLADJ and surface temperature vary in
different regions, suggesting a weak correlation. TECI and CONTAG can be regarded as
the aggregation of the landscape pattern calculated by the patch area and the adjacent
boundary, with the area being the square of the length of the grid. They have a positive
correlation with surface temperature, and the correlation intensity is moderate.

Overall, the correlation between the landscape indices and land surface temperature
generally increased and then decreased with increasing window size. COHESION and
MESH showed a similar trend, with the maximum correlation occurring at a window size
of around 4000–4500 m. In contrast, DIVISION, CONNECT, MSIDI and SHDI showed a
negative correlation with surface temperature and peaked at a similar window size. The
behavior of AI and PLADJ differed from other landscape indices, with a rise of correlation
followed by a plateau, and the maximum correlation appearing at a window size of about
1000–2000 m. CONTAG and TECI showed a high plateau, where the Pearson correlation
coefficient changes little. These findings demonstrate a relationship between the correlation
coefficient and window size.

3.2. Results of Quantitative Relationship between Correlation Coefficient and Window Size

This paper classifies the landscape indices into correlation coefficient exponential
landscape indices and correlation coefficient Gaussian landscape indices according to the
model of fitting, which is based on the correlation coefficients between each landscape
index and surface temperature under different window sizes.

3.2.1. Correlation Coefficient Exponential Landscape Index

In this paper, the trend of correlation between the correlation coefficient exponential
landscape indices and land surface temperature with window sizes is fitted using the
binomial exponential function. The resulting curve is shown in Figure 3.
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As shown in Figure 3, the function images are U-shaped. COHESION and MESH
exhibit a positive correlation with land surface temperature, whereas CONNECT, DIVI-
SION, MSIDI and SHDI display a negative correlation. As the window size increases,
the correlation between the exponential landscape index and surface temperature initially
increases and then decreases, with the growth rate following a pattern of initial decrease
and subsequent increase. We can see the obvious scale effect of relationship between
exponential landscape indices and landscape temperature [40].

The curve on the left side of the optimal value has a large tangent slope, indicating
a high growth rate of the correlation coefficient. This suggests that when the window
size is much smaller than the optimal size, expanding the window appropriately can
rapidly improve the correlation between the landscape index and the surface temperature.
This rapid growth stage occurs in a wide range of about 1000–4000 m. As the window
size approaches the optimal size, the slope of the curve slows down, resulting in a less
significant increase in correlation. This stage occurs in a small range of about 4000–5000 m.
If the window continues to expand beyond the optimal size, the correlation decreases. The
exponential landscape index has a clear global optimal value due to the large range of rapid
growth and small range of slow growth. Therefore, the optimal window size for practical
applications corresponds to the window size with the maximum correlation coefficient.

To evaluate the fitting goodness of the binomial exponential function, this paper
employs adjusted R-squared. The values of adjusted R-squared for the correlation between
each landscape index and surface temperature are presented in Table 4.

Table 4. Fitting goodness of correlation coefficient exponential landscape index.

Landscape Index COHESION CONNECT DIVISION

Adjusted R2 0.9841 0.996 0.993

landscape index MESH MSIDI SHDI
Adjusted R2 0.9925 0.9901 0.9925

Table 4 presents the adjusted R-squared values for the correlation between each
landscape index and surface temperature, all of which are greater than 0.98, indicating
a strong fitting goodness of the binomial exponential function. This model accurately
represents the quantitative relationship between the correlation coefficient, calculated by
the exponential landscape index, land surface temperature and window size.

The expressions of the Pearson correlation coefficient and the window size are
as follows:

ρCOHESION = 0.9251e−0.000102x − 1.422e−0.0004971x (24)

ρCONNCET = −0.8208e−0.0001016x + 1.378e−0.0007295x (25)

ρDIVISION = −1.054e−0.0001348x + 1.194e−0.0003667x (26)

ρMESH = 1.059e−0.0001353x − 1.202e−0.0003675x (27)

ρMSIDI = −25.45e−0.0002423x + 25.65e−0.0002531x (28)

ρSHDI = −2.691e−0.0002289x + 2.904e−0.0003459x (29)

where x is window size and ρ is the Pearson correlation coefficient of exponential landscape
index and land surface temperature.

It can be seen from the expressions that each exponential landscape index has a unique
optimal window size that corresponds to the maximum correlation coefficient with land
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surface temperature. Although the optimal window size is similar across different indices,
the expression of each index varies significantly, for various landscape indices describe
different aspects of landscape pattern and are calculated variously [44]. This indicates that
the scale effect of the correlation between exponential landscape indices and land surface
temperature is unique and depends on the calculation formulas and the meaning of the
indices. Therefore, different exponential landscape indices have different optimal windows,
which can be determined by their expressions, providing the most suitable window size for
studying the urban heat island effect.

3.2.2. Correlation Coefficient Gaussian Landscape Index

To determine the number of Gaussian function terms for each Gaussian landscape
index, the AIC is utilized, which takes into account both the goodness of fit and model
complexity. A smaller AIC value indicates a better model. Table 5 displays the number of
terms determined by the AIC and their corresponding AIC values.

Table 5. The table of terms number of Gaussian landscape index.

Landscape Index AI CONTAG PLADJ TECI

The number of terms 2 4 2 3
AIC value −291.6404 −304.2682 −292.1786 −304.6713

The best Gaussian models for the aggregation index (AI), contagion (CONTAG), per-
centage of like adjacencies (PLADJ) and total edge contrast index (TECI) were determined
to have 2, 4, 2, and 4 terms, respectively. The results of fitting are presented in Figure 4.
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The scale effect of correlation between Gaussian landscape indices and land surface
temperature is also obvious [40], as shown in Figure 4. The aggregation index (AI) and
percentage of like adjacencies (PLADJ) exhibit similar correlation scale effects with land
surface temperature. The curves display wavy fluctuations and reach significant optimal
values earlier. Conversely, contagion (CONTAG) and total edge contrast index (TECI)
exhibit different scale effects. Both curves have a high correlation platform of about
4000 m, with CONTAG exhibiting a high correlation plateau of about 4000–7000 m, and
TECI exhibiting one of about 2000–6000 m, where the Pearson correlation coefficient of
landscape indices and land surface temperature changes by less than 0.03 as the window
size changes by more than 3000 m.

The goodness of curve fitting can be assessed by the adjusted R2 value, which is used
in this study to evaluate the fitting effect. Table 6 presents the adjusted R2 values for the
Gaussian landscape index, providing an indication of the degree of fit between the data
and the model.

Table 6. The table of fitting effect of Gaussian landscape index.

Landscape Index AI CONTAG PLADJ TECI

Adjusted R2 0.9683 0.9913 0.9518 0.9804

Based on the results presented in Table 6, it can be inferred that the adjusted R2 value
is greater than 0.95, indicating that the model has a good fitting goodness. Therefore,
the Gaussian function has effectively described the quantitative relationship between
the correlation coefficient of the Gaussian landscape index, surface temperature and the
window size.

The expressions of quantitative relationship between the correlation coefficient and
the window size are as follows:

ρAI = −0.199e−(
x−1356

3874 )
2
− 0.08704e−(

x−11250
5662 )

2
(30)

ρCONTAG = 0.3067e−(
x−6256

2583 )
2
+ 0.1434e−(

x−9797
2246 )

2

+0.1677e−(
x−3685

1360 )
2
+ 0.05507e−(

x−2624
549.8 )

2 (31)

ρPLADJ = −0.1593e−(
x−1540

3346 )
2
− 0.0776e−(

x−11020
6177 )

2
(32)

ρTECI = 0.04397e−(
x−4096

1580 )
2
+ 0.05316e−(

x−1817
1120 )

2
+ 0.2697e−(

x−6175
9317 )

2
(33)

where x is window size and ρ is the correlation coefficient of Gaussian landscape index and
land surface temperature.

From the fitting curve, aggregation index (AI) and percentage of like adjacencies
(PLADJ) were found to have similar correlations with land surface temperature. Therefore,
when constructing a model for land surface temperature, only one index should be used.
However, contagion (CONTAG) and total edge contrast index (TECI) showed different
scale effects on the correlation with land surface temperature, although they shared the
characteristic of a high plateau where the Pearson correlation coefficient is high and changes
little as the window size changes.

3.3. Optimal Window Calculation
3.3.1. Optimal Window of Correlation Coefficient Exponential Landscape Index

This paper adopts the window size corresponding to the global optimal value on
the fitting curve of the exponential landscape index as the optimal window because it
shows an obvious global optimal value. The optimal windows for each landscape index
are calculated and presented in Table 7.



Remote Sens. 2023, 15, 2131 15 of 21

Table 7. Optimal window size of correlation coefficient exponential landscape index.

Landscape Index COHESION CONNECT DIVISION

Optimal window size (m) 5100 3960 4860
Optimal correlation coefficient 0.4372 −0.4722 −0.3465

Landscape index MESH MSIDI SHDI
Optimal window size (m) 4860 4770 4170

Optimal correlation coefficient 0.3472 −0.3425 −0.3496

Table 7 suggests that the values of optimal window size of exponential landscape index
are relatively concentrated, ranging from 4000 to 5100 m. Therefore, selecting a window
of 4000–5100 m to calculate the exponential landscape index can effectively improve the
correlation between landscape index and surface temperature, achieving better research
and judgment results.

In Nanjing, CONNECT has the highest correlation with land surface temperature,
instead of SHDI in Beijing [40]. Meanwhile, COHESION, SHDI, DIVISION, MESH, MSIDI,
SHDI also have obvious correlation with land surface temperature, which is the same as
the discovery in Beijing [40]. It is caused by the different effects of landscape’s composi-
tion and configuration on the urban thermal environment [26] and consideration of the
scale effect.

3.3.2. Optimal Window of Correlation Coefficient Gaussian Landscape Index

The fitting curves of the aggregation index (AI) and percentage of like adjacencies
(PLADJ) in the Gaussian landscape index exhibit a clear global optimal value, indicating
that the window size corresponding to global optimal value is the optimal window. Accord-
ing to the Equations (30)–(33), we can find the optimal window corresponding to the largest
Pearson correlation coefficient between land surface temperature and Gaussian landscape
indices. Table 8 provides the calculated optimal window sizes for these landscape indices.

Table 8. The optimal window of Gaussian landscape index.

Landscape Index AI PLADJ

Optimal window size (m) 1470 1980
Optimal correlation coefficient −0.2032 −0.1675

Landscape index CONTAG TECI
Optimal window size (m) 6330 4380

Optimal correlation coefficient 0.3235 0.3027

Table 8 shows that both aggregation index (AI) and percentage of like adjacencies
(PLADJ) have optimal window sizes in the range of 1000–2000 m. While selecting a
window in this range can yield good results, their optimal correlation coefficients are small,
indicating a weak correlation between AI, PLADJ and surface temperature. As a result,
their importance in the urban heat island effect is lower compared to other landscape
indices in Nanjing. However, the correlation of AI and land surface temperature in Denver,
CO, USA is higher [44]. It indicates that the correlations of landscape indices and land
surface temperature are different in various regions, for different urban development stage,
location, city size and geographic environment [26].

Moreover, we can find that the optimal window of contagion (CONTAG) is much
larger than other landscape indices, and the optimal window size of contrast index (TECI)
is about 4380 m. Although the landscape index CONTAG and TECI also belong to Gaus-
sian landscape indices, their optimal window sizes are totally different from landscape
index AI and PLADJ, and the correlations with land surface temperature are higher. There-
fore, CONTAG and TECI are more important than AI and PLADJ when studying the
relationship between landscape pattern and land surface temperature. Additionally, the
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correlation of CONTAG and land surface temperature and the correlation of TECI and
land surface temperature are varied, as well. Both of them should be considered to en-
sure that the landscape indices selected in this paper can reflect the feature of the land-
scape pattern and analyze the relationship between landscape pattern and land surface
temperature comprehensively.

3.4. Suitable Windows of CONTAG and TECI Calculation

Considering that the larger the window size, the longer the time when calculating,
sometimes we need to achieve balance between calculation time and the correlation of
landscape indices and land surface temperature in order to make the study more conve-
nience without an obvious decrease in the correlation. Since the fitting curves of contagion
(CONTAG) and total edge contrast index (TECI) have a high-level plateau where the
Pearson correlation coefficient of landscape index and land surface temperature changes
by less than 0.03 as the window size changes by more than 3000 m (Figure 4), we can
both consider the calculation time and the value of Pearson correlation coefficient in this
study. When decreasing the window size of CONTAG and TECI within the high-level
correlation plateau, the loss of correlation is less. However, other landscape indices do
not have the high plateau and the correlations of these landscape indices and land surface
temperature change fast as the window size changes. As a result, it is not practical to obtain
a smaller window size without the Pearson correlation coefficient decreases obviously. In
this part, we take CONTAG and TECI into consideration, and other landscape indices’
suitable windows are the optimal windows which have calculated before. To construct the
suitable window selection function, the Akaike Information Criterion (AIC) is used, which
considers both window size and correlation coefficient. The suitable window selection
function is as follows:

min
x∈(0,16000)

αx− 2lnρ (34)

where x is window size; ρ is the correlation coefficient of landscape index and land surface
temperature; and α is weight. If α is larger, the influence of window size on the result will
be larger, and the result will be smaller. In this paper, α = 0.0001.

Using step iterative method, calculate the optimal window size based on the step size
that ∆x = 30. Table 9 shows the result.

Table 9. The suitable window of CONTAG and TECI.

Landscape Index CONTAG TECI

Suitable window size (m) 4260 2070
Correlation coefficient 0.3094 0.2811

The suitable window sizes for contagion (CONTAG) and total edge contrast index
(TECI) are 4260 m and 2070 m, respectively, which are situated on the left side of the
high plateau. Increasing the window size beyond the suitable value can result in dimin-
ishing returns due to the longer calculation time required. Comparing the results in
Tables 8 and 9, we can find that the windows sizes of CONTAG and TECI decrease
2070 m and 2310 m, respectively. Meanwhile, the Pearson correlation coefficient of land-
scape indices and land surface temperature decreases only 0.0143 and 0.0215, respectively.
This indicates that we can decrease the window size to save a lot of the calculation time
without causing an obvious decrease in Pearson correlation coefficient if the fitting curve
has the high plateau. The balance between correlation enhancement and computation time
is controlled by the parameter α. This parameter can be flexibly chosen based on practical
needs. When α = 0.0001, the optimal window sizes are all located on the left side of the
high plateau of the fitting curve. This suggests that the optimal window selection function
can limit excessive window sizes and produce a more reasonable window size selection by
setting the weight appropriately.
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4. Discussion
4.1. The Scale Effect of Land Surface Temperature and Landscape Pattern

In the previous study on the relationship between landscape pattern and land surface
temperature, many landscape indices which describe the spatial distribution of landscape
pattern are considered [21–27] without considering the scale effect of landscape pattern on
the urban thermal environment. Although there is some research recognizing the scale effect
of the relationship between landscape pattern and land surface temperature [30,41], they
do not quantify the scale effect and provide a method of choosing the optimal window sizes
corresponding to the largest correlation of landscape indices and land surface temperature.

In this study, we investigated the relationship between landscape indices and land
surface temperature in Nanjing to better understand the scale effect. Using Nanjing’s land
use data in 2020, we calculated the landscape indices using 31 different window sizes and
measured their correlation with land surface temperature using the Pearson correlation
coefficient. Through curve fitting, we identified two types of scale effects, correlation
coefficient exponential type and correlation coefficient Gaussian type, which correspond
to binomial exponential function and multinomial Gaussian function. For exponential
landscape indices, we directly fit the expression of the scale effect, while for Gaussian
landscape indices, we first determine the number of Gaussian function terms through the
AIC, and then fit the expression of the scale effect. Finally, we selected the optimal window
of the landscape index based on the shape of the fitting curve, either through the global
optimal value or using the window selection function. However, the window sizes we
obtained are only for the study region (Nanjing) in this paper. In other regions, applying
the methods mentioned in this paper can also obtain the optimal or suitable window sizes.
Our main findings suggest that the correlation between landscape indices and land surface
temperature in Nanjing is influenced by the scale effect, which are as follows:

1. We find that patch cohesion index (COHESION), contagion (CONTAG), effective
mesh size (MESH), and total edge contrast index (TECI) are positively correlated with
surface temperature under the appropriate window size, while aggregation index
(AI), connectence (CONNECT), landscape division index (DIVISION), modified Simp-
son’s diversity index (MSIDI), percentage of like adjacencies (PLADJ) and Shannon’s
diversity index (SHDI) are negatively correlated with surface temperature under the
appropriate window size. The positive or negative of the Pearson correlation coeffi-
cients between landscape indices and land surface temperature such as COHESION,
CONTAG, MESH and CONNECT [26,40–42,44] are the same, which indicates that the
positive or negative correlations of landscape indices and land surface temperature
in different cities are similar, though the values of Pearson correlation coefficient
are different.

2. We divide the landscape index into exponential landscape index and Gaussian land-
scape index based on the fitting effect. The scale effect of landscape pattern signifi-
cantly impacts the correlation of landscape indices and land surface temperature [29],
and the scale effect conforms to exponential function and Gaussian function, respec-
tively. The exponential landscape index includes connectence (CONNECT), patch
cohesion index (COHESION), landscape division index (DIVISION), effective mesh
size (MESH), modified Simpson’s diversity index (MSIDI) and Shannon’s diversity
index (SHDI), and the scale effect of their correlation with land surface temperature
conforms to the binomial exponential function. The Gaussian landscape index con-
sists of aggregation index (AI), percentage of like adjacencies (PLADJ), contagion
(CONTAG) and total edge contrast index (TECI). The scale effect of aggregation in-
dex (AI) and percentage of like adjacencies (PLADJ)’s correlation with land surface
temperature conforms to the binomial Gaussian function, while the scale effect of the
correlation coefficient between contagion (CONTAG), total edge contrast index (TECI)
and land surface temperature is consistent with the four Gaussian functions.

3. We determine that all exponential and Gaussian landscape indices have a global
optimal value in their correlation with land surface temperature. The corresponding
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window size is the optimal window. However, the fitting curve of contagion (CON-
TAG) and total edge contrast index (TECI) has a high plateau, making it possible
to decrease the window size without the obvious decrease in correlation between
landscape indices and land surface temperature to achieve balance between sav-
ing calculation time of landscape indices and the level of correlation. To address
this, we propose a suitable window selection function that considers both the time
of calculation and the Pearson correlation coefficient and apply it into CONTAG
and TECI.

4. We find that the optimal window size for the exponential landscape index is ap-
proximately 4000–5100 m. For the Gaussian landscape index, the optimal window
size for aggregation index (AI) and percentage of like adjacencies (PLADJ) is about
1000–2000 m, but the maximum correlation coefficient is relatively small, making
them less important in the study of heat island effect. The optimal window sizes of
contagion (CONTAG) and total edge contrast index (TECI) are 6330 m and 4380 m,
respectively. When applying the suitable window selection function, the window sizes
of CONTAG and TECI become 4260 m and 2070 m, respectively. It indicates that using
suitable window selection function, we can balance the calculation time and the level
of correlation between land pattern and land surface temperature. The suitable win-
dow sizes are related to the weight setting of the suitable window selection function.
A higher weight setting would lead to a greater inclination toward selecting a smaller
window size.

5. We provide a method of selecting suitable window of correlation between landscape
indices and land surface temperature. First, classify the landscape index into expo-
nential landscape index or Gaussian landscape index. Second, use the fitting function
corresponding to its type to fit and obtain the equation of the scale effect. Third,
observe whether the curve has a high correlation plateau. If it has a high correlation
plateau, we use suitable window selection function to calculate the suitable window.
Otherwise, we calculate the optimal window by the fitting equation and the optimal
window is the suitable window. The flow chart is shown in Figure 5.
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Figure 5. The flow chart of method of selecting suitable window.

The findings provide a basis for selecting the window size when studying the heat
island effect and offer theoretical support for urban planners to reduce the heat island effect
in their designs. Additionally, the results of this study can be used by local governments to
make informed decisions about urban development and land use policies. Overall, this
study has significant implications for urban planning and environmental management, and
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it highlights the importance of considering the scale effect when analyzing the relationship
between landscape indices and land surface temperature.

4.2. Prospect

This study aimed to investigate the scale effect of the correlation between landscape
index and land surface temperature using land use data from Nanjing. However, to
generalize these findings, future work is necessary to verify them in other cities while
taking into account the potential impact of regional climate and urban structure. It is
important to note that while the scale effect determined by curve fitting provides valuable
insights, it does not reveal the underlying mechanism. Therefore, future studies should
focus on investigating the underlying mechanism to further our understanding of the
relationship between landscape index and land surface temperature. The findings of this
study could serve as a basis for selecting the optimal window size when studying the heat
island effect, and provide theoretical support for urban planners to mitigate the heat island
effect in their designs.
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Conflicts of Interest: The authors declare that they do not have any conflict of interest.

References
1. Zhang, H.; Luo, M.; Zhao, Y.; Lin, L.; Ge, E.; Yang, Y.; Ning, G.; Cong, J.; Zeng, Z.; Gui, K.; et al. HiTIC-Monthly: A Monthly High

Spatial Resolution (1 km) Human Thermal Index Collection over China during 2003–2020. Earth Syst. Sci. Data 2023, 15, 359–381.
[CrossRef]

2. Shi, X.; Xu, Y.; Wang, G.; Liu, Y.; Wei, X.; Hu, X. Spatiotemporal Variations in the Urban Heat Islands across the Coastal Cities in
the Yangtze River Delta, China. Mar. Geod. 2021, 44, 467–484. [CrossRef]

3. Wei, C.; Chen, W.; Lu, Y.; Blaschke, T.; Peng, J.; Xue, D. Synergies between Urban Heat Island and Urban Heat Wave Effects in 9
Global Mega-Regions from 2003 to 2020. Remote Sens. 2021, 14, 70. [CrossRef]

4. Guo, Y.; Gasparrini, A.; Armstrong, B.G.; Tawatsupa, B.; Tobias, A.; Lavigne, E.; de Coelho, M.S.Z.S.; Pan, X.; Kim, H.; Hashizume,
M.; et al. Heat Wave and Mortality: A Multicountry, Multicommunity Study. Env. Health Perspect. 2017, 125, 087006. [CrossRef]
[PubMed]

5. Ma, H.-Y.; Li, H.-J.; Zhang, M.; Dong, X. Impact of Cropland Degradation in the Rural–Urban Fringe on Urban Heat Island and
Heat Stress during Summer Heat Waves in the Yangtze River Delta. Adv. Clim. Change Res. 2022, 13, 240–250. [CrossRef]

6. Crandall, C.G.; González-Alonso, J. Cardiovascular function in the heat-stressed human. Acta Physiol. 2010, 199, 407–423.
[CrossRef]

7. Robine, J.-M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.-P.; Herrmann, F.R. Death Toll Exceeded 70,000 in
Europe during the Summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [CrossRef]

8. Davis, R.E.; Knappenberger, P.C.; Novicoff, W.M.; Michaels, P.J. Decadal Changes in Summer Mortality in U.S. Cities. Int. J.
Biometeorol. 2003, 47, 166–175. [CrossRef]

9. Hayashida, K.; Shimizu, K.; Yokota, H. Severe Heatwave in Japan. Acute Med. Surg. 2019, 6, 206–207. [CrossRef]
10. Tong, S.; Wang, X.Y.; Yu, W.; Chen, D.; Wang, X. The Impact of Heatwaves on Mortality in Australia: A Multicity Study. BMJ Open

2014, 4, e003579. [CrossRef]
11. Ma, W.; Zeng, W.; Zhou, M.; Wang, L.; Rutherford, S.; Lin, H.; Liu, T.; Zhang, Y.; Xiao, J.; Zhang, Y.; et al. The short-term effect of

heat waves on mortality and its modifiers in China: An analysis from 66 communities. Environ. Int. 2015, 75, 103–109. [CrossRef]
[PubMed]

12. Shukurov, I.S.; Le, M.T.; Shukurova, L.I.; Dmitrieva, A.D. Influence of the effect of the urban heat island on the cities sustainable
development. UCA 2020, 10, 62–70. [CrossRef]

13. Wang, J.; Xiang, Z.; Wang, W.; Chang, W.; Wang, Y. Impacts of Strengthened Warming by Urban Heat Island on Carbon
Sequestration of Urban Ecosystems in a Subtropical City of China. Urban Ecosyst. 2021, 24, 1165–1177. [CrossRef]

https://zenodo.org/record/5816591
https://doi.org/10.5194/essd-15-359-2023
https://doi.org/10.1080/01490419.2021.1897716
https://doi.org/10.3390/rs14010070
https://doi.org/10.1289/EHP1026
https://www.ncbi.nlm.nih.gov/pubmed/28886602
https://doi.org/10.1016/j.accre.2022.01.006
https://doi.org/10.1111/j.1748-1716.2010.02119.x
https://doi.org/10.1016/j.crvi.2007.12.001
https://doi.org/10.1007/s00484-003-0160-8
https://doi.org/10.1002/ams2.387
https://doi.org/10.1136/bmjopen-2013-003579
https://doi.org/10.1016/j.envint.2014.11.004
https://www.ncbi.nlm.nih.gov/pubmed/25461419
https://doi.org/10.17673/Vestnik.2020.02.9
https://doi.org/10.1007/s11252-021-01104-8


Remote Sens. 2023, 15, 2131 20 of 21

14. Jenerette, G.D.; Harlan, S.L.; Stefanov, W.L.; Martin, C.A. Ecosystem Services and Urban Heat Riskscape Moderation: Water,
Green Spaces, and Social Inequality in Phoenix, USA. Ecol. Appl. 2011, 21, 2637–2651. [CrossRef]

15. Zhang, Z.; Zhang, J.; Liu, L.; Gong, J.; Li, J.; Kang, L. Spatial–Temporal Heterogeneity of Urbanization and Ecosystem Services in
the Yellow River Basin. Sustainability 2023, 15, 3113. [CrossRef]

16. Tu, L.; Qin, Z.; Li, W.; Geng, J.; Yang, L.; Zhao, S.; Zhan, W.; Wang, F. Surface Urban Heat Island Effect and Its Relationship with
Urban Expansion in Nanjing, China. J. Appl. Remote Sens. 2016, 10, 026037. [CrossRef]

17. Zhang, H.; Yin, Y.; An, H.; Lei, J.; Li, M.; Song, J.; Han, W. Surface Urban Heat Island and Its Relationship with Land Cover
Change in Five Urban Agglomerations in China Based on GEE. Environ. Sci. Pollut. Res. 2022, 29, 82271–82285. [CrossRef]
[PubMed]

18. Semenzato, P.; Bortolini, L. Urban Heat Island Mitigation and Urban Green Spaces: Testing a Model in the City of Padova (Italy).
Land 2023, 12, 476. [CrossRef]

19. Njoku, E.A.; Tenenbaum, D.E. Quantitative Assessment of the Relationship between Land Use/Land Cover (LULC), Topographic
Elevation and Land Surface Temperature (LST) in Ilorin, Nigeria. Remote Sens. Appl. Soc. Environ. 2022, 27, 100780. [CrossRef]

20. Zhou, H.; Wang, Q.; Zhu, N.; Li, Y.; Li, J.; Zhou, L.; Pei, Y.; Zhang, S. Optimization Methods of Urban Green Space Layout on
Tropical Islands to Control Heat Island Effects. Energies 2022, 16, 368. [CrossRef]

21. Demissie, B.; Amsalu, A.; Tesfamariam, Z.; Nyssen, J.; Meaza, H.; Asfaha, T.G.; Zenebe, A.; Gregoretti, C.; Van Eetvelde,
V. Landscape Changes in the Semi-Closed Raya Agricultural Graben Floor of Northern Ethiopia. Earth Syst. Environ. 2022,
6, 453–468. [CrossRef]

22. He, H.S.; DeZonia, B.E.; Mladenoff, D.J. An Aggregation Index (AI) to Quantify Spatial Patterns of Landscapes. Landsc. Ecol. 2000,
1, 591–601. [CrossRef]

23. Dušek, R.; Popelková, R. Theoretical View of the Shannon Index in the Evaluation of Landscape Diversity. AUC Geogr. 2017,
47, 5–13. [CrossRef]

24. Sun, D.; Dawson, R.; Li, H.; Wei, R.; Li, B. A landscape connectivity index for assessing desertification: A case study of Minqin
County, China. Landsc. Ecol. 2007, 22, 531–543. [CrossRef]

25. Sun, Z.; Li, Z.; Zhong, J. Analysis of the Impact of Landscape Patterns on Urban Heat Islands: A Case Study of Chengdu, China.
Int. J. Environ. Res. Public Health 2022, 19, 13297. [CrossRef]

26. Ye, H.; Li, Z.; Zhang, N.; Leng, X.; Meng, D.; Zheng, J.; Li, Y. Variations in the Effects of Landscape Patterns on the Urban Thermal
Environment during Rapid Urbanization (1990–2020) in Megacities. Remote Sens. 2021, 13, 3415. [CrossRef]

27. Li, X.; Zhou, W.; Ouyang, Z. Relationship between Land Surface Temperature and Spatial Pattern of Greenspace: What Are the
Effects of Spatial Resolution? Landsc. Urban Plan. 2013, 114, 1–8. [CrossRef]

28. Wu, J.; Shen, W.; Sun, W.; Tueller, P.T. Empirical patterns of the effects of changing scale on landscape metrics. Landsc. Ecol. 2002,
17, 761–782. [CrossRef]

29. Wu, Q.; Li, Z.; Yang, C.; Li, H.; Gong, L.; Guo, F. On the Scale Effect of Relationship Identification between Land Surface
Temperature and 3D Landscape Pattern: The Application of Random Forest. Remote Sens. 2022, 14, 279. [CrossRef]

30. Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021,
13, 3907–3925. [CrossRef]
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