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Abstract 

Whether or not importance should be placed on an all-encompassing general factor of 

psychopathology (or p-factor) in classifying, researching, diagnosing and treating psychiatric 

disorders depends (amongst other issues) on the extent to which co-morbidity is symptom-

general rather than staying largely within the confines of narrower trans-diagnostic factors 

such as internalising and externalising. In this study we compared three methods of 

estimating p-factor strength. We compared omega hierarchical and ECV calculated from 

CFA bi-factor models with maximum likelihood (ML) estimation, from ESEM/EFA models 

with a bifactor rotation, and from BSEM bi-factor models. Our simulation results suggested 

that BSEM with small variance priors on secondary may be the preferred option. However, 

CFA with ML also performed well provided secondary loadings were modelled We provide 

two empirical examples of applying the three methodologies using a normative sample of 

youth (z-proso, n=1286) and University counselling sample (n= 359).  

 

Keywords: p-factor; general factor of psychopathology,  comorbidity, trans-diagnostic 
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BI-FACTOR SIMULATION 

Conceptualising covariation among psychopathological symptoms in terms of broad trans-

diagnostic factors, such as internalising and externalising, is now fairly uncontroversial (e.g. 

Krueger & Markon, 2006). Whether the concept of an all-encompassing general factor of 

psychopathology (or ‘p-factor’) adds scientific and clinical value is less clear. The 

importance placed on this hypothetical p-factor should at least in part be based on the extent 

to which comorbidity cuts across all symptoms of all disorders, rather than staying largely 

within the confines of established trans-diagnostic factors. However, there are no definitive 

guidelines on how best to judge p-factor strength. In this study, we use a combination of 

simulation and real data examples to evaluate Exploratory factor analysis (EFA), 

Confirmatory factor analysis (CFA) and Bayesian structural equation modeling (BSEM) 

bifactor-based methods of quantifying general factor strength in the context of 

psychopathology models.  

 Across the history of psychopathology research, there has been a shift from a view of 

psychiatric disorders as distinct categorical entities, to one in which symptoms co-vary across 

traditional diagnostic boundaries (e.g. see Angold, Costello & Erkanli, 1999; Eaton, 

Rodriguez-Seijas, Carragher & Krueger, 2015; Kessler et al., 2012). Patterns of covariation 

suggest that symptoms can be organised hierarchically with a small number of broad ‘trans-

diagnostic’ dimensions at the most general level. Based largely on factor analytic studies, 

research in this paradigm has primarily focussed on the broad dimensions of internalising and 

externalising (e.g. Kendler, Prescott, Myers & Neale, 2003; Kramer, Krueger & Hicks, 2008; 

Krueger & Markon, 2006). Internalising encompasses symptoms from diagnostic categories 

such as major depression, general anxiety disorder, dysthymia, phobias, post-traumatic stress 

disorder and panic disorder. Externalising encompasses symptoms belonging to diagnostic 

categories such as substance use disorder, conduct disorder and others with behavioural 

disinhibition, impulsivity or ‘acting out’ as a prominent feature.  



 However, psychiatric comorbidity frequently occurs even between symptoms 

belonging to different trans-diagnostic dimensions. At the latent dimension level, for 

example, correlations among internalising, externalising and thought disorder can be around 

.40 to .50 (e.g., Wright, Krueger, Hobbs, Markon, Eaton & Slade, 2013). In confirmatory 

factor analysis (CFA) models, adding a general psychopathology dimension atop or alongside 

these trans-diagnostic factors tends to yield good- and where tested- better fitting models than 

those without a general dimension (e.g. Caspi et al., 2014; Noordhof, Krueger, Ormel, 

Oldehinkel &  Hartman, 2015; Patalay, Fonagy Deighton, Belsjy, Vostanis & Wolpert, 2015). 

Observations of this kind have led to the consideration of the possible role of an all-

encompassing general dimension of psychopathology – labelled the p-factor by Caspi et al. 

(2014) - in psychopathology research and clinical practice.  

 Incorporating a p-factor into the systems used to organise psychopathology would 

have a number of potentially important implications. In clinical settings it would encourage 

assessment and diagnostic systems that consider symptomology across the entire landscape of 

psychopathology simultaneously. This would represent a significant contrast to current 

differential diagnosis processes that attempt to home in on just one ‘best-fitting’ disorder (e.g. 

Rodriguez-Seijas, Eaton & Krueger, 2015). In countries where provision of mental health 

services is linked to having been assigned a specific diagnosis, it may lead to significant 

policy reform, allowing access to services for those who do not neatly fit into any one 

specific diagnostic category. In research settings it may promote a search for broadband 

shared etiological factors and treatments. It could also prompt a re-interpretation of existing 

empirical findings, considering the possibility that many previous attempts to identify 

correlates of specific psychopathologies have been confounded by non-disorder-specific 

influences. For example, some preliminary evidence suggests that sex differences in 

internalising and externalising may be under-estimated when the p-factor is not controlled 



for, while many disorder-specific risk factors may, in fact, reflect general psychopathology 

risk factors (e.g. Caspi et al., 2014; Patalay et al., 2015). Clarifying the generality versus 

specificity of risk factors has potential to inform early prevention and intervention strategies; 

where more general risk factors may be viewed as higher priority targets. 

 There are a number of conceptual and empirical issues that must be considered with 

regards to whether this potential re-conceptualisation of psychopathology is merited. One 

fundamental consideration is the quantitative extent of symptom-generality of comorbidity. If 

the extent of symptom-general covariation is meagre, the idea of placing importance on a p-

factor is difficult to justify. There is no single definitive method of quantifying p-factor 

strength but a range of methodologies that can contribute to a general picture.  Given the 

popularity of bi-factor models for modelling the p-factor, we here discuss indices based on 

this approach (e.g. Caspi et al., 2014; Murray, Eisner & Ribeaud, 2016; Patalay et al., 2015; 

Stochl et al., 2014; Tackett, Lahey, van Hulle, Waldman, Krueger & Rathouz, 2013). A bi-

factor model is a measurement model in which each indicator loads on two factors: a general 

factor common to all indicators and a group factor common to a subset of indicators (Reise, 

2012). Where psychopathology is concerned, the indicators measure specific symptoms or 

disorders, the general factor is the ‘p-factor’ and the group factors are broad dimensions such 

as internalising, externalising and thought disorder. 

A number of previous studies have reported that fitting this kind of structure using CFA 

yields good fit by conventional criteria (e.g. Caspi et al., 2014; Kim & Eaton, 2015; Laceulle, 

Vollebergh & Ormel, 2015; Noordhof et al., 2015; Patalay et al. 2015). However, simply 

fitting a model that includes a general factor does not provide a direct quantification of how 

important symptom-general covariance is either in absolute terms or relative to the variance 

shared among symptoms that belong to more specific trans-diagnostic factors such as 

internalising and externalising. For this purpose, certain indices can be computed from a bi-



factor model (or a Schmid-Leiman transformation of a second-order model; Schmid & 

Leiman, 1957) to provide more of a quantification of the importance of symptom-general 

variance.  

 First, omega hierarchical (𝜔ℎ) can be used to quantify the strength of a p-factor 

controlling for the group factors. 𝜔ℎ is part of the 𝜔 family of model-based estimates of 

reliability. Different 𝜔 coefficients can be computed to estimate the extent to which latent 

dimensions contribute to the reliability of observed scores. Using the parameter estimates 

from a bi-factor model in which general and group factors are all orthogonal, 𝜔ℎ is computed 

as: 

𝜔ℎ = (∑ 𝜆𝑖𝑃)2(∑ 𝜆𝑖𝑃)2 + (∑ 𝜆𝑖𝐺1)2 + (∑ 𝜆𝑖𝐺2)2 + ⋯ (∑ 𝜆𝑖𝐺𝐾)2 + ∑ 𝜃𝑖2 , 
(1) 

where 𝜆𝑖𝑃 denotes the p-factor loading of item i; 𝜆𝑖𝐺1 to 𝜆𝑖𝐺𝐾 denote the group factor loadings 

of item i for group factors 1 to K; and 𝜃𝑖2 denotes item residual variance. It is an estimate of 

the proportion of summed score variance attributable to the p-factor. Noordhof et al. (2015) 

was to our knowledge, thus far the only p-factor study to report 𝜔ℎ. They fit a bi-factor 

model to a selection of the subscales from the Dutch versions of the Child Behavior Checklist 

(CBCL; Verhulst, van der Ende and Koot, 1996) and the Child Social Behavior 

Questionnaire (SCBQ; Hartman, De Bildt, and Minderaa, 2013). The value of .75 is large and 

is comparable to the magnitudes of 𝜔ℎ found in cognitive ability research where a general 

factor ‘g’ has long been considered of major substantive importance (Revelle & Wilt, 2013; 

Spearman, 1904; Jensen, 1998).  It also satisfies the psychometric rule of thumb that 50% of 

test variance should be due to the general factor of that test (Revelle & Wilt, 2012).  



 Another index that can be used to provide a quantification of p-factor importance is 

the explained common variance (ECV) statistic. ECV is the proportion of common variance 

that is attributable to a general factor. It is computed as: 

 

𝐸𝐶𝑉 = ∑ 𝜆𝑖𝑃2∑ 𝜆𝑖𝑃2 + ∑ 𝜆𝑖𝐺12 + ∑ 𝜆𝑖𝐺22 + ⋯ ∑ 𝜆𝑖𝐺𝐾2 

(2) 

where 𝜆𝑖𝑃 and 𝜆𝑖𝐺1 to 𝜆𝑖𝐺𝐾 are as defined for eq.1 and eq.2. It is the proportion of total 

explained variance that is explained by the p-factor and thus provides a quantification of the 

importance of the p-factor relative to the group factors. No study to date has, to our 

knowledge, computed ECV for a p-factor model. 

 There are several different methods by which a bi-factor model can be estimated to 

provide the parameters to be entered in equations 1 and 2. In particular, a bi-factor model can 

be fit as a an exploratory factor analysis (EFA) model (including an exploratory structural 

equation model; ESEM; Asparouhov & Muthén, 2009) a CFA model (e.g. Jennrich & 

Bentler, 2011) or a Bayesian structural equation model (BSEM; Asparouhov & Muthén. 

2012). No study has yet compared these three approaches to estimating the strength of a 

general factor such as the p-factor; however, it is quite possible that they would perform 

differently. In brief, the most commonly used approach - CFA with maximum likelihood 

estimation -  may be liable to overestimate p-factor loadings because in a CFA model many 

loadings are conventionally fixed to zero, reflecting the hypothesis that items reflect only 

certain factors (the p-factor plus one group trans-diagnostic factor in the current context). 

However, the assumption that all remaining loadings are zero is, in general, unrealistic. Many 

small and substantively meaningful cross-loadings arise in practice (Asparouhov & Muthén, 



2009). In psychopathology, symptoms are rarely pure ‘indicators’ of a single trans-diagnostic 

factor, but can reflect multiple factors (e.g. Eaton et al., 2011; Keyes et al., 2013; Oleski, 

Cox, Clara & Hills, 2011).  In addition, many small cross-loadings will arise simply because 

of the practical impossibility of designing completely ‘pure’ indicators of one construct (e.g. 

Morin, Arens, and Marsh, 2015).   

In principle, traditional CFA approaches can handle cross-loadings. Cross-loadings 

can be specified a priori based on past research and/or theory or modification indices and 

expected parameter changes (EPCs) can be used to identify local mis-specifications of zero 

(cross-) loadings and these can be iteratively added to the model (e.g. Saris, Satorra & Van 

der Veld, 2009). In practice, however, theory provides a poor guide as to cross-loadings and 

the stepwise use of MIs and EPCs can lead to the incorrect model.  Moreover, the inclusion 

of cross-loadings still tends to be limited to including only ‘salient’ cross-loadings exceeding 

a conventional threshold such as |.3|. As such, in practice a large number of small cross-

loadings are likely to remain unmodeled.  

Fixing the majority of cross-loadings resulting from the non-isomorphic nature of 

psychopathology symptoms to zero - as is custom in CFA models - forces the covariance to 

be mediated via an alternative pathway, potentially inflating first-order factor inter-

correlations in an oblique model or p-factor loadings in a bi-factor or higher-order model 

(Asparouhov & Muthén, 2009; Murray & Johnson, 2013; Morin et al., 2015). Issues like 

these mean that even if a bi-factor model is not the ‘true’ model, it can still fit well (see e.g. 

Murray & Johnson, 2013) 

 Muthén and Asparouhov (2012) propose a solution to the problem of cross-loadings 

in CFA. They recommend using BSEM specifying cross-loadings to be approximately zero, 

with small variance priors. BSEM differs from traditional applications of CFA estimated with 



maximum likelihood (ML) estimation in that parameter estimates are derived from a posterior 

distribution formed from the combination of a prior distribution and likelihood. Bayesian 

estimates are the mean, median or mode of the posterior distribution and will be close to ML 

estimates when the prior distribution is non-informative. In BSEM, cross-loading can be set 

to be approximately zero by placing a prior distribution on them that is centred on zero and 

with small variance. This allows cross-loadings to be non-zero while keeping the basic CFA 

model intact. In traditional applications of CFA, freeing all cross-loadings would lead to a 

non-identified model; however, in BSEM the priors provide this identification. They are 

chosen to reflect prior beliefs based on past research or theory. Assuming all indicators are 

standardised prior to analysis, a reasonable choice of prior for a cross-loading is a normal 

distribution with mean zero and variance .01. Here, 95% of the loading variance will be in the 

+/- .2 range. As the variance of the prior is made larger, larger cross-loadings are 

accommodated but identification suffers. 

In an ESEM or EFA model, all loadings are freely estimated; therefore, in principle, 

the covariance due to cross-loadings is appropriately modelled and does not inflate other 

parameters, especially those used to gauge the strength of a p-factor. However, in practice, 

Mansolf & Reise, (2016) noted that EFA models with bifactor rotations are liable to over-

attribute variance to the general factor because group factors can ‘collapse’ onto the general 

factor.  

 Although BSEM and EFA have been available for a number of years, previous p-

factor studies have essentially all used CFA with ML estimation. In this study, we therefore 

compared these three methods of estimating p-factor strength using a combination of 

simulation studies and real data examples. 

Simulation Study 



Population models 

 Three population models were considered in which we varied the strength of the 

general factor. Across all conditions, latent factor variances and total item variances were 

kept constant at 1 and residual item variances were kept constant at .30. In this way, the 

summed score variance was also kept constant across population models. We examined three 

levels of general factor strength, such that population models had either a very weak general 

factor (general factor loadings of .10; specific factor loadings of .83), a moderate strength 

general factor (general factor loadings of .46; specific factor loadings of .70), or a strong 

general factor (general factor loadings of .70; specific factor loadings of .46).  Across these 

population models, the number of items was kept constant at 20. The number of group factors 

was kept constant at four, with five items per factor. We also included 3 cross-loadings of 

magnitude 0.25 with the primary loading of cross-loading items correspondingly reduced to 

maintain the same item total variance. Group factors were orthogonal to one another and to 

the general factor. The models are summarised in Figures 1-3. Population 𝜔ℎand ECV values 

are provided in Results tables. For each of the three population models, data on N=1000 and 

N=200 was generated over 1000 replications. All analyses were conducted in Mplus 7.13 

(Muthén & Muthén, 2012).  Mplus scripts are available from the first author. On the basis of 

initial results, additional simulation conditions were added ad hoc in order to further probe 

potentially important results identified based on the initial conditions.  

 Fitted models 

For each population model, three approaches to calculating 𝜔ℎ and ECV were applied 

to the N=1000 and N=200 replicates: a confirmatory factor analysis bi-factor model (‘CFA’), 

an exploratory structural equation bi-factor model (‘ESEM/EFA’) and a Bayesian structural 

equation bi-factor model (‘BSEM’). These are described below in more detail. 



In the CFA conditions, a bi-factor confirmatory factor analysis model with one 

general factor and four specific factors were fit to each dataset. General and specific factors 

were all set orthogonal to one another and scaling and identification achieved by fixing the 

latent variable variances to 1. Models were estimated using ML estimation. We included one 

set of conditions in which cross-loadings were freely estimated and one set where they were 

fixed to zero. The latter set represents mis-specified models in the sense that parameters that 

are present in the population models are not present in the fitted models.  

In the BSEM conditions, bi-factor models with one general factor and four specific 

factors were fit to the data with scaling and identification achieved by fixing latent variances 

to 1. Models were estimated using Bayesian estimation. Analogous to the CFA models, two 

sets of models were fit: one including only the primary loadings (i.e. mis-specified models) 

and one including small variance priors [~N(0,0.01) ] on all potential secondary loadings. We 

also included the software default priors, specifically inverse gamma prior distributions with 

alpha= -1 and beta= 0 for observed variable residual variances. This encodes the assumption 

that their values are positive 

 In the ESEM/EFA conditions, an ESEM/EFA model using a bifactor rotation was 

used. The technical details of ESEM/EFA are comprehensively described in Asparouhov & 

Muthen (2009) and the technical details of bifactor rotations are provided in Jennrich & 

Bentler (2011). In brief, ‘ESEM’ describes an exploratory factor analysis measurement model 

within a structural equation model although the term is often used even when only the 

measurement model is estimated. Here we estimated an ESEM/EFA measurement model 

with an orthogonal bifactor rotation (bi-geomin) in which we specified four group factors and 

one general factor. The bi-geomin rotation is recommended in cases where cross-loadings are 

likely to be present (e.g. Mansolf & Reise, 2016). Scaling and identification were achieved by 

fixing the latent factor variances to 1. As ESEM/EFA by definition allows all items to load on 



all factors, there were no ‘mis-specified’ models fit to the datasets. Models were estimated 

using ML estimation.  

In all cases, 𝜔ℎ and ECV were computed as shown in equations 1 and 2 based on the 

estimated solutions. 

Simulation Outcomes 

We considered three simulation outcomes: the percentage of convergence failures, 

bias in 𝜔ℎ, and bias in ECV.  In ML estimation, convergence is defined by a vanishingly 

small difference between estimates from successive iterations. For Bayesian estimation, 

convergence is defined by similarity across chains (each formed by successive draws) as 

indexed by a comparison of within and between chain variance. Bias in 𝜔ℎ and ECV were 

computed in terms of per cent bias: 

𝑒𝑠𝑡 − 𝑝𝑜𝑝𝑝𝑜𝑝 × 100 

(3) 

where est refers to the average 𝜔ℎ or ECV parameter estimate over the 1000 replications and 

pop refers to the corresponding population parameter.  

Real Data Examples 

 We include two real data examples to illustrate the different approaches to estimating 

p-factor strength in empirical psychopathology data. We provide one real data analysis 

utilising a dataset in which there was evidence for a strong general factor (‘counselling 

CORE-OM’) and one utilising a dataset in which no true general factor could be extracted 

(‘z-proso SBQ’).  

Counselling CORE-OM 



 Participants and Measures. 

 Participants contributing data for the first real data example were n=359 users of 

University counselling services at a large UK higher education institution. The dataset has 

been described in several existing publications (Murray et al., 2016a; Murray et al., 2016b; 

McKenzie et al., 2016). In brief, participants (108 male, 249 female, 1 transgender) with a 

mean age of 22.7 (SD=4.3) were administered the Clinical Outcomes in Routine Evaluation-

Outcome Measure (CORE-OM) before receiving a counselling intervention. The CORE-OM 

is supported by psychometric evaluations across a large number of previous studies (e.g. 

Barkham, Mellor-Clark, Connell & Cahill, 2006; Connell et al., 2007; Murray, McKenzie, 

Murray, Richelieu, 2014). It is a 34 item self-report instrument. Items refer to internalising 

symptoms such as loneliness, panic, feeling unhappy as well as externalising symptoms such 

as threatening or intimidating others, taking dangerous risks with health. They also refer to 

somatic symptoms, insomnia, suicidal ideation and plans, intrusive thoughts and social 

support. Participants rated the extent to which they have experienced symptoms on a 5-point 

Likert scale from Not at all to Most or all the time.  

 Statistical Procedure 

 The basic factor structure for the CORE-OM real data analyses was adopted from 

previous research (Murray, McKenzie & Richelieu,  2018). Exploratory factor analyses in the 

previous study indicated that an optimal factor structure for this set of items was one in which 

all items loaded on a general factor as well as subsets of items loading on one of three 

specific factors. The specific factors were labelled ‘externalising’, ‘internalising’ and ‘self-

harm’ based on the contents of the highest loading items in each case. Using this basic 

structure, the 3 previously described approached to estimating 𝜔ℎ and ECV were applied: 

CFA, BSEM and ESEM/EFA. All indicators were standardised prior to analysis. 



z-proso SBQ 

 Participants and Measures 

Data for the second real data examples comes from the Zurich project on social 

development from Childhood to Adulthood (z-proso):  a longitudinal cohort study based in 

Zurich, Switzerland focussed on positive youth development. A full description of the study, 

including recruitment and assessment procedures can be found in various prior publications 

(Eisner & Ribeaud, 2007; Ribeaud & Eisner, 2010) and on the study website 

(http://www.jacobscenter.uzh.ch/en/research/zproso/aboutus.html). The current study 

focusses on the 6th main data collection wave when the participants were aged 15-16 (median 

= 15.68). At this stage, data on the constructs relevant for the current study were available on 

between 1271 and 1286 participants, depending on the specific item. Analyses were based on 

17 items of the Social Behavior Questionnaire (SBQ; Tremblay et al., 1991). These items 

provided measures of internalising (anxiety, depression), externalising (reactive aggression, 

relational aggression, proactive aggression, physical aggression) and attention-deficit 

hyperactivity disorder (attention deficit, hyperactivity/impulsivity). All items were 

administered in German.  Individuals were asked to respond with respect to their feelings or 

behaviour in the last month in the case of anxiety and depression and in the last year in the 

case of externalising and ADHD symptoms. Responses were on a five-point scale from Never 

to Very Often.  

Statistical Procedure 

In a first step, the appropriate number of factors to include in the main analyses was 

determined using EFA. The number of group factors (K) to retain was guided by parallel 

analysis with principal components analysis (PA-PCA), the minimum average partial (MAP) 

test and visual inspection of a scree plot. PA-PCA was used rather than PA-PAF (parallel 



analysis with principal axis factoring) because although the latter is theoretically aligned with 

EFA, it has a greater tendency to over-extract than PA-PCA (e.g. Crawford et al, 2010).  We 

evaluated factor solutions with a range of numbers of factors centred on the consensus from 

the factor retention criteria to check for evidence of over- or under- extraction of group 

factors. Factor solutions were estimated using minimum residuals (minres) estimation and 

oblimin rotation. The factors were interpreted based on the contents of high-loading 

indicators. These preliminary analyses were used to guide model specification in the main 

analyses with items with loadings >|.3| in the preliminary analyses were used to define the K 

group factors in the main analyses. All items, whether or not they loaded >|.3| on the p-factor 

in the preliminary EFA analyses, were used to define the p-factor in the main analyses.  

Results 

Simulation Study  

In the CFA condition, estimation failures occurred 18-19% of the time when a bi-

factor model was fit to a set of items with a very weak general factor and n=1000. They 

occurred at an even higher rate with n=200 (up to 42% when the model was mis-specified). 

In these very weak general factor conditions, even among the replications that converged, 

there were a large number of solutions in which the residual covariance matrix was non-

positive definite. Convergence problems with bifactor and similar psychometric models using 

ML estimation have previously been noted, especially at smaller sample sizes (e.g. Maydeu-

Olivares & Coffman, 2006; Helm, Castro-Schilo & Oravecz, 2017). They may be more likely 

occur in the conditions in which the general factor is low in strength and where the sample 

size is small because factor loading estimates are here liable to be close to zero in samples.  

Indeed, estimation failures did not tend to occur when the general factor was moderate or 

strong even when the model was mis-specified, irrespective of sample size.  



Bias in 𝜔ℎ  was substantial when the general factor was very weak and cross-loadings 

were present in the population but not estimated model. Here for n=1000, the average 

estimate was .25 (.20 for n=200) where the population value was only .05. Bias in ECV was 

also most pronounced in this condition (average estimate of .20 for n=1000 and .16 for n=200 

compared with a population value of .01).  ECV % bias was substantial across all conditions 

with a very weak general factor, even where the model was correctly specified although the 

difference in absolute values were generally modest and would be unlikely to lead to major 

distortions of substantive conclusions. Examining the patterns of estimated factor loadings 

suggested that the overestimation of 𝜔ℎ and ECV was due both to an overestimation of 

general factor loadings and an underestimation of specific factor loadings. Having unmodeled 

cross-loadings led to a mis-attribution not only of unmodeled variance to the general factor, 

but also to a fundamental shift in the content of factors so that further specific factor variance 

was also attributed to the general factor. For example, the average p-factor loading for item 

14 was .22 (compared with population value of .10) in the n=200 model while its average 

specific factor loading was .73 (compared with population value of .83).  

Estimation failures occurred in the BSEM bi-factor models, in which the general 

factor was very weak and cross-loadings were present in the population model at n=1000 

(12% failure rate when the cross-loadings were modelled; 21.8% when they were not) but 

were otherwise rare. The better convergence rates in BSEM than in CFAs with ML in some 

conditions was likely due to the additional information provided by the priors (those on the 

residual variances in all models and on the secondary loadings specifically in the condition in 

which cross-loadings were modelled; e.g. Helm et al., 2017). 𝜔ℎ  was substantially 

overestimated when the general factor was very weak and cross-loadings were present in the 

population model, especially when cross-loadings were not modelled (where 𝜔ℎ was 

estimated at .23 for n=1000 and .20 for n=200). ECV was substantially overestimated in all 



three conditions on which the general factor was very weak with the effect again being most 

marked when cross-loadings were present in the population model but not estimated in the 

fitted model (where ECV was .17 for both n=1000 and n=200). Examining the average factor 

loading estimates across replications suggested that these biases were due to a combination of 

overestimated general factor loadings and underestimated specific factor loading, with 

loading biases showing a similar pattern to those in the corresponding CFA conditions. 

 ESEM/EFA 

 Estimation failures occurred at a relatively constant rate of 17-18% across all 

conditions at n=1000 and of 22-26% at n=200. This was in contrast to BSEM and CFA with 

ML, both of which were considerably more likely to fail when the population model was 

characterised by low general factor loadings and/or the model was mis-specified. Both 𝜔ℎ 

and ECV were substantially overestimated in the conditions in which the general factor was 

very weak, but there was some overstatement of general factor variance across all conditions.  𝜔ℎ was estimated at .23 and .26 for the n=1000 conditions and at .23 and .27 for the n=200 

conditions (compared with .05 population value), while the corresponding ECV estimates 

were .22 and .25 at both sample sizes (compared with .01 population value).  A similar 

pattern of overestimated general factor loadings and underestimated specific factor loadings 

was also seen to be responsible for the 𝜔ℎ and ECV overestimates; however, while the 

BSEM and CFA models generally only erred substantially when mis-specified, none of the 

ESEM/EFA models were technically incorrectly specified. 

Additional conditions 

 Given the above results, we added supplementary conditions to further explore some 

of the observations from the initial set of simulations. First, given the poor performance of 

the ESEM/EFA models we increased the random starts for the rotation algorithm, from the 



software default of 30 to 1000. Past research has suggested that bi-factor rotations in 

ESEM/EFA are prone to local minima and that within these solutions, general factor variance 

is liable to be overstated (Mansolf & Reise, 2016). We used a sample size of n=200.  

 Second, given that CFA with ML and BSEM did not evidence substantial bias when 

the general factor was moderate or strong provided the number of cross-loadings were 

limited, we also explored some conditions in which population models presented greater 

factorial complexity , in order to identify the point at which their performance is likely to 

break down. To do this, we relocated some of the variance in primary loadings to secondary 

loadings. Specifically, an additional 12 cross-loadings of .10 were added, adjusting primary 

factor loading parameters downwards to maintain the same population item total and residual 

variances.    In order to evaluate whether ESEM/EFA might outperform CFA and BSEM in 

conditions with more complex structures, we also evaluated its performance with these more 

complex underlying population structures. The population models are summarised in 

Supplementary Materials. Our model fitting strategies were here designed to mimic common 

or recommended strategies in practice. For the CFA models we followed the standard 

recommendation of including standardised loadings <|.3| and thus did not include the .10 nor 

the .25 cross-loadings in the fitted models. For the BSEM models, we followed the 

recommendation of Muthén & Asparouhov (2012) and included small variance priors on all 

secondary loadings. For the ESEM/EFA models, all secondary loadings were freely 

estimated.  

Results for the above-described additional conditions are provided in Supplementary 

Materials. Increasing the number of random starts to 1000 (Mansolf & Reise, 2016) in the 

rotation algorithm improved neither convergence rates nor bias in the ESEM/EFA models 

(see Table S1). This suggests the problems with ESEM/EFA are broader than local minima.  

The convergence failures are not necessarily surprising given the complexity- in terms of 



number of free parameters - of the ESEM/EFA models (the BSEM models also contained 

large numbers of freely estimated parameters but convergence was assisted by the small 

variance priors on the secondary loadings). A likely explanation for the bias in factor 

loadings seem to be the shifts of group factor variance to the general factor outlined in 

Mansolf & Reise (2016), not only in local minima solutions but in the solution at the global 

minimum as well.  

Results of fitting CFA, BSEM and ESEM/EFA models to more complex factorial 

structures are provided in Table S2. As expected, overestimation in ECV and omega 

hierarchical estimates increased for both CFA with ML and BSEM. Bias also increased in 

ESEM/EFA, and was similar to that observed in the CFA with ML and BSEM conditions, 

suggesting that it was no better able to handle more complex factorial structures.  

Real Data Examples 

 𝜔ℎ and ECV values computed from the factor solutions of each method for the two 

datasets are provided in Table 4. For the counselling CORE-OM data,  𝜔ℎ  values were 

highly similar across the 3 methods, ranging from .90 (ESEM/EFA) to .92 (BSEM). ECV 

ranged from .70 (ESEM/EFA) up to .76 (CFA with ML). For the z-proso SBQ data, 𝜔ℎ 

ranged from .16 (ESEM/EFA) up to .34 (CFA with ML) while ECV ranged from .23 (BSEM) 

up to .28 (ESEM/EFA). 

Discussion 

The extent to which symptom-general co-morbidity is a dominant feature of 

psychopathological symptoms has potential implications for the research, assessment and 

treatment of psychiatric disorders. However, to date there have been no studies comparing 

different method of estimating p-factor importance. We thus conducted a simulation study 

complemented by two real data examples to compare estimates of 𝜔ℎand ECV derived from 



CFA models estimated with ML, CFA models estimated with Bayesian estimation and 

ESEM/EFA models with a bifactor rotations.  All three methods overestimated p-factor 

strength when the p-factor was weak. Overall, CFA performed well provided it was correctly 

specified (including major secondary loadings in the model). BSEM is likely to be useful 

when there is limited a priori knowledge of these secondary loadings. ESEM/EFA did not 

offer an advantage over these two methods despite freely estimating all loadings. In all cases, 

as would be expected, the overestimation of p-factor strength depended on the extent of 

unmodeled factorial complexity (i.e. secondary loadings).  

 As independent cluster structure would not generally be expected in psychopathology 

data (e.g. Cote et al., 2016), we specified cross-loadings in the population in all of our 

simulation conditions. BSEM and CFA showed some robustness to the effects of omission of 

cross-loadings when p-factor strength was at least moderate. When p-factor strength was 

weak and there were cross-loadings present in the population that were not modelled (i.e. the 

model was mis-specified) BSEM and CFA with ML overestimated ECV and 𝜔ℎ. ESEM/EFA 

estimates all loadings, therefore, there was no condition in which the ESEM/EFA model was 

mis-specified in this way. Thus, it is notable that ESEM/EFA models performed worse than 

mis-specified BSEM and CFA models in many cases.  Finally, it is instructive to compare a 

mis-specified CFA model to a BSEM model with small variance priors on all secondary 

loadings because mis-specified CFA models that omit cross-loadings may be common in the 

literature, and BSEM models with small variance priors on secondary loadings have been 

recommended as a solution (Muthén & Asparouhov, 2012).  Here BSEM performed better, 

overestimating 𝜔ℎand ECV to a lesser extent than the mis-specified CFA model. 

 ESEM/EFA models were arguably the poorest performing method while the 

currently dominant method of fitting CFA models with ML estimation performed well 

provided they were correctly specified and the general factor was of at least moderate 



strength. The ESEM/EFA models had a tendency to shift specific factor variance onto the 

general factor. Mansolf & Reise (2016) provide a comprehensive account of how this can 

occur. In brief, available bifactor rotation criteria are minimised on the basis of the rotation of 

the group factors alone; however, in order to achieve permissible solutions, variance may 

shift between group and general factors. These shifts can lead to an overestimation of the 

general factor. Mansolf & Reise (2016), illustrated that this can often arise in local minima 

solutions; however, in the current study, general factor overestimation was not remedied by 

including a large number of random starts to account for local minima. This suggests that that 

global minima solutions may also be affected.  

Overall, we would recommend estimating a BSEM model with small variance priors 

on secondary loadings in order to identify cross-loadings that need to be specified and 

estimating 𝜔ℎ and ECV from either this model or a CFA model that includes the identified 

cross-loadings. EFA/ESEM may be useful in an exploratory phase but would not necessarily 

be the ideal model from which to compute 𝜔ℎ and ECV.  

 We also provide two real data examples across which the three approaches to 

estimating p-factor strength can be compared. In our first real data example, there was 

evidence for a relatively strong p-factor. In fact, many items loaded only on the p-factor and 

not on any specific factor. In this dataset, there was minimal difference across methods in 

estimates of 𝜔ℎ, which ranged from .90 to .92. This is in line with our simulation study that 

suggested that all three methods are reasonably robust in cases where the p-factor is strong. 

For ECV, the range of estimated was from .70 (ESEM/EFA) to .76 (CFA) with BSEM 

yielding an estimate of .73. This difference reflects the fact that to calculate ECV, loadings 

are squared before summing. In both BSEM and ESEM/EFA, there were a large number of 

small negative specific factor loadings, which would have contributed to the denominator of 

ECV.  



 In the second real data example, there was no evidence for a true general factor in the 

sense that any general factor extracted was defined by only a limited subset of the items in 

the set. Arguably, this renders the 𝜔ℎ and ECV values meaningless as estimates of p-factor 

strength. These results provide a cautionary note against giving importance to the p-factor on 

the basis of good fitting bi-factor models alone. Some previous studies have cited good fit of 

a bi-factor model as evidence for a p-factor, however, all of our bi-factor models fit 

reasonably by conventional fit criteria in these data but none showed evidence of a truly 

general factor. In fact, in this dataset we observed that at most 53% of items loaded saliently 

on the p-factor. Thus, another recommendation from the current study is to ensure that 

patterns of loadings are examined in order to evaluate whether there is evidence for a latent 

factor that is general to all items, not just a subset.  

On balance, past studies appear to be more in line with our counselling than z-proso 

real data example. Most studies find that only a minority – one or two – items, if any show 

non-salient p-factor loadings (e.g. Caspi et al., 2014; Lacuelle et al., 2015; Lahey et al., 2015; 

Patalay et al., 2015; Stochl et al., 2015; Tackett et al., 2013). However, the question of the 

importance of symptom-general covariance requires further study. Routinely providing ECV 

and 𝜔ℎ as indices of p-factor strength will help towards this goal. 

Finally, p-factor strength is only one issue relevant for p-factor interpretation. There 

are also broader issues related to the interpretation of the common variance that is captured 

by the general factor in bi-factor and closely related model general factor models that remain 

to be resolved.  At a basic level, researchers must decide whether a bi-factor model provides 

an appropriate model for their data; a task made difficult by its practical indistinguishability 

from other possible models on the basis of model fit (e.g. Murray & Johnson, 2013). It is well 

known, for example, that the appearance of a general factor can result from a range of other 

underlying causal structures that produce equivalent covariance structure (e.g. van der Maas 



et al., 2006). Current psychopathological theory provides little strong justification for any 

particular interpretation of general factor variance over others, although it appears likely that 

different psychopathological symptoms seem to both share causes and create increases risks 

for one another, suggesting that the true causal structure underlying the so-called ‘p-factor’ is 

mixed (e.g. van Lier et al., 2012; Wertz et al., 2015).  

 Finally, though the work presented here were framed in terms of general 

psychopathology, they will also apply to a range of different research areas where there are 

questions about the relative importance of general and specific dimensions and difficulties in 

obtaining measures that demonstrate independent cluster structure. This includes areas such 

as personality research (e.g. Booth & Hughes, 2014) or research into specific clinical 

phenotypes (e.g. Garner et al., 2017; Murray et al., 2015).  

Limitations 

The primary limitations of the current study relate to the limited number of conditions 

explored in the simulation study. We focussed on a small number of population models that 

we believe are broadly representative of the types of data observed in psychopathology 

research. Future studies will be required to study the effects of features such as non-normal 

indicators, different numbers of items, patterns of loadings, and residual covariances that 

could influence estimates of p-factor strength.  Our coverage of possible methods of 

estimating p-factor strength was not exhaustive. Other methods have been suggested to 

estimate general factor strength such as the average general factor loading (e.g. Gignac, 

2014); a comparison of Revelle’s worst split half reliability 𝛽 at different levels of 

aggregation (e.g. Revelle, 1979); utilising bifactor loadings from a Schmid-Leiman 

transformed higher-order model; or using target rotations in ESEM/EFA. Future simulation 

studies will be required to assess the utility of these indices for assessing p-factor strength. 



Finally, the utility of simulation studies depends on the extent to which the studied models 

are useful representations of real world; however, this is difficult to directly verify and 

generally has to be assumed.  

Conclusion 

Provided that p-factor strength is moderate to high, ECV and 𝜔ℎ can be used as 

estimates of p-factor strength.  Lower values should be treated with caution as they are liable 

to overestimate p-factor strength when there are unmodeled secondary loadings. It is also 

important to check that ECV and 𝜔ℎ reflect a genuine general factor, in the sense that most 

items should load saliently on this factor. Our results suggest that the best method of 

quantifying p-factor strength is either a BSEM bi-factor model with small variance priors on 

cross-loadings or a CFA model with major secondary loadings freely estimated. BSEM and 

CFA should be preferred to a bifactor rotation strength as the latter tends to overestimate p-

factor strength even in the most favourable conditions.  
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Table 1: Simulation results for CFA   

Population model Fitted 

model 

Estimation 

failure 

rate (%) 

Population 𝝎𝒉   

Average 𝝎𝒉 estimate 

𝝎𝒉 % 

Bias 

Population 

ECV 

Average 

ECV 

estimate 

ECV 

% bias 

    n=1000     

Very weak p-
factor/cross-loadings 

Bi-factor 
with cross-

loadings 
18.0 0.05 0.25 436.81 0.01 0.04 1278.95 

Moderate p-factor/cross-
loadings 

Bi-factor 
with cross-

loadings 
0.0 0.59 0.64 8.02 0.30 0.30 10.36 

Strong p-factor/cross-
loadings 

Bi-factor 
with cross-

loadings 
0.0 0.87 0.89 2.56 0.70 0.70 3.15 

Very weak p-
factor/cross-loadings 

Bi-factor 
ICS 

19.2 0.05 0.04 690.55 0.01 0.20 283.51 

Moderate p-factor/cross-
loadings 

Bi-factor 
ICS 

0.0 0.59 0.59 24.74 0.30 0.33 -0.64 

Strong p-factor/cross-
loadings 

Bi-factor 
ICS 

0.0 0.87 0.88 7.22 0.70 0.72 -1.12 

n=200 

Very weak p-
factor/cross-loadings 

Bi-factor 
with cross-

loadings 
27.2 0.05 0.07 36.94 0.01 0.07 395.97 

Moderate p-factor/cross-
loadings 

Bi-factor 
with cross-

loadings 
0.8 0.59 0.58 -1.67 0.30 0.30 0.36 

Strong p-factor/cross-
loadings 

Bi-factor 
with cross-

loadings 
0 0.87 0.87 -0.08 0.70 0.69 -0.73 



Very weak p-
factor/cross-loadings 

Bi-factor 
ICS 

41.7 0.05 0.20 313.56 0.01 0.16 1049.82 

Moderate p-factor/cross-
loadings 

Bi-factor 
ICS 

4 0.59 0.62 6.12 0.30 0.34 11.72 

Strong p-factor/cross-
loadings 

Bi-factor 
ICS 

0 0.87 0.89 2.41 0.70 0.72 2.59 

Note. ICS=independent cluster structure.  



 

Table 2: Simulation results for BSEM  

Population model Fitted model Estimation 

failures 

(%) 

Population 𝝎𝒉   
Average 𝝎𝒉  
estimate 

𝝎𝒉 % 

Bias 

Population 

ECV 

Average 

ECV 

estimate 

ECV 

% bias 

n=1000 

Very weak p-
factor/cross-loadings 

Bi-factor with 
small variance 

priors  12 

0.05 0.13 165.88 0.01 0.09 525.21 

Moderate p-
factor/cross-loadings 

Bi-factor with 
small variance 

priors 0.4 

0.59 0.63 6.93 0.30 0.33 9.04 

Strong p-
factor/cross-loadings 

Bi-factor with 
small variance 

priors  0.3 

0.87 0.89 2.31 0.70 0.71 1.62 

Very weak p-
factor/cross-loadings 

Bi-factor ICS 

21.8 

0.05 0.23 382.87 0.01 0.17 1084.75 

Moderate p-
factor/cross-loadings 

Bi-factor ICS 

0 

0.59 0.64 8.31 0.30 0.34 11.25 

Strong p-factor/cross-
loadings 

Bi-factor ICS 

0 

0.87 0.89 2.70 0.70 0.72 3.47 

n=200 

Very weak p-
factor/cross-loadings 

Bi-factor with 
small variance 

priors  
0 0.05 0.01 165.45 0.01 0.11 687.27 

Moderate p-factor/cross-
loadings 

Bi-factor with 
small variance 

priors  
0 0.59 0.30 6.20 0.30 0.34 11.22 

Strong p-factor/cross-
loadings 

Bi-factor with 
small variance 

priors  
0 0.87 0.70 2.63 0.70 0.71 1.32 



Very weak p-
factor/cross-loadings 

Bi-factor ICS 0.4 0.05 0.01 315.88 0.01 0.17 1105.71 

Moderate p-factor/cross-
loadings 

Bi-factor ICS 0 0.59 0.30 7.73 0.30 0.35 15.83 

Strong p-factor/cross-
loadings 

Bi-factor ICS 0 0.87 0.70 3.16 0.70 0.73 4.33 

Note. ICS=independent cluster structure.



Table 3: Simulation results for ESEM/EFA 

Population model Fitted model % 

Estimation 

failures 

Population 𝝎𝒉   
Average 𝝎𝒉  
estimate 

% 𝝎𝒉 
Bias 

Population 

ECV 

Average 

ECV 

estimate 

% 

ECV 

bias 

n=1000 

Very weak p-factor/cross-
loadings 

Bi-factor all 
loadings freely 

estimated 
16.6 0.05 0.26 456.82 0.01 0.25 1644.29 

Moderate p-factor/cross-
loadings 

Bi-factor all 
loadings freely 

estimated 
16.8 0.59 0.73 23.57 0.30 0.41 36.20 

Strong p-factor/cross-loadings 
Bi-factor all 

loadings freely 
estimated 

17.9 0.87 0.92 5.96 0.70 0.73 5.05 

n=200 

Very weak p-factor/cross-
loadings 

Bi-factor all 
loadings freely 

estimated 
22.2 0.05 0.27 463.14 0.01 0.23 1531.82 

Moderate p-factor/cross-
loadings 

Bi-factor all 
loadings freely 

estimated 
22.3 0.59 0.71 20.97 0.30 0.40 33.51 

Strong p-factor/cross-loadings 
Bi-factor all 

loadings freely 
estimated 

24.1 0.87 0.92 5.69 0.70 0.72 2.90 

 

 

 

 

 



 

Table 4: Comparison of 𝝎𝒉  and ECV across approaches in real data 

Method 𝝎𝒉 ECV 

Counselling CORE-OM 

CFA  .91 .76 
BSEM  .92 .73 
ESEM/EFA  .90 .70 

z-proso SBQ 
CFA  .34 .26 
BSEM  .32 .23 
ESEM/EFA .16 .28 



 



Figure 1: Population model for ‘Very weak p-factor/cross-loadings’ conditions



 



Figure 2: Population model for ‘Moderate p-factor/cross-loadings’ conditions

 



Figure 3: Population model for ‘Strong p-factor/cross-loadings’ condition 

 



Table S1: 

ESEM performance with 1000 random starts for rotation algorithm and n=200 

Population model Fitted model % 

Estimation 

failures 

Population 𝝎𝒉   

Average 𝝎𝒉  
estimate 

% 𝝎𝒉  
Bias 

Population 

ECV 

Average 

ECV 

estimate 

% ECV 

bias 

Very weak p-
factor/cross-

loadings 

Bi-factor all loadings 
freely estimated 

22.2 0.05 0.27 433.20 0.01 0.23 1564.29 

Moderate p-
factor/cross-

loadings 

Bi-factor all loadings 
freely estimated 

22.3 0.59 0.71 20.51 0.30 0.40 33.44 

Strong p-
factor/cross-

loadings 

Bi-factor all loadings 
freely estimated 

24.1 0.87 0.92 5.53 0.70 0.72 3.07 

 

 



Table S2:  

CFA with ML, BSEM and ESEM performance with different numbers of cross-loadings 

Population model Fitted model n 𝝎𝒉   ECV Average  𝝎𝒉   
estimate 

Average 

ECV 

estimate 

% bias  𝝎𝒉   
 

% bias 

ECV 

% 

estimation 

failure 

Moderate p-
factor/cross-loadings 

CFA/Bi-factor ICS 1000 
.55 .30 .69 .39 24.74 27.60 0 

Strong p-factor/cross-
loadings 

CFA/Bi-factor ICS 1000 

.85 .70 .91 .76 7.22 9.02 0 
Moderate p-

factor/cross-loadings 
BSEM/Small variance 
priors on cross-loadings 

1000 

.55 .30 .68 .38 23.65 25.41 100.00 
Strong p-factor/cross-

loadings 
BSEM/Small variance 
priors on cross-loadings 

1000 

.85 .70 .90 .74 6.95 6.37 0.10 
Moderate p-

factor/cross-loadings 
ESEM/EFA 1000 

.55 .30 .74 .44 35.28 46.34 14.60 
Strong p-factor/cross-

loadings 
ESEM/EFA 1000 

.85 .70 .93 .76 9.83 9.07 15.20 
Moderate p-

factor/cross-loadings 
CFA/Bi-factor ICS 200 

.55 .30 .67 .38 21.91 27.23 6.10 
Strong p-factor/cross-

loadings 
CFA/Bi-factor ICS 200 

.85 .70 .91 .76 7.06 8.31 0.00 
Moderate p-

factor/cross-loadings 
BSEM/Small variance 
priors on cross-loadings 

200 

.55 .30 .68 .39 23.80 28.59 0.00 
Strong p-factor/cross-

loadings 
BSEM/Small variance 
priors on cross-loadings 

200 

.85 .70 .91 .75 7.32 6.40 0.00 
Moderate p-

factor/cross-loadings 
ESEM/EFA 200 

.55 .30 .68 .39 23.80 28.59 0.00 
Strong p-factor/cross-

loadings 
ESEM/EFA 200 

.85 .70 .91 .75 7.32 6.40 0.00 

 




