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Abstract—Land surface temperature (LST) is estimated from
thermal infrared data provided by the Spinning Enhanced Vis-
ible and Infrared Imager (SEVIRI) onboard Meteosat Second
Generation (MSG), using a generalized split-window (GSW)
algorithm. The uncertainty of the LST retrievals is highly
dependent on the input accuracy and retrieval conditions,
particularly the sensor view angle and the atmospheric wa-
ter vapor content. This paper presents a quantification of the
uncertainty of LST estimations, taking into account error sta-
tistics of the GSW under a globally representative collection
of atmospheric profiles, and a careful characterization of the
uncertainty of input data, particularly the surface emissivity
and forecasts of the total water vapor content. Such analysis
is the basis for LST uncertainty estimation, also distributed to
users, in the form of error bars, along with the LST retrievals.
Moreover, the spatial coverage of SEVIRI LST is essentially
determined by the LST expected uncertainty, instead of being
restricted to view zenith angles below a given threshold (e.g., 60◦).
Within the MSG disk, the atmosphere is often dry for clear-sky
conditions where angles are large (e.g., Northern and Eastern
Europe and Saudi Arabia). By considering several factors that
contribute to LST inaccuracies, it is possible to increase the spatial
coverage to regions such as those mentioned earlier. Retrieved
values are also compared with in situ observations collected in
Namibia, covering a seasonal cycle. The two data sets are in good
agreement with root-mean-square differences ranging between
1 ◦C and 2 ◦C, which is well below the average error estimated
for the satellite retrievals.

Index Terms—Infrared measurements, satellite applications,
temperature.

I. INTRODUCTION

THE SATELLITE Application Facility on Land Surface

Analysis (Land-SAF), as part of the ground segment of the

European Organization for the Exploitation of Meteorological

Satellites (EUMETSAT), generates, on an operational basis,

land surface temperature (LST) from the Spinning Enhanced

Visible and Infrared Imager (SEVIRI) onboard Meteosat Sec-

ond Generation (MSG) satellites [1]. LST is an important pa-

rameter for the monitoring of surface energy budget, since it is

Manuscript received October 22, 2008; revised February 17, 2009 and
June 9, 2009. First published September 15, 2009; current version published
December 23, 2009.

S. C. Freitas is with the Instituto de Meteorologia, 1749-077 Lisboa,
Portugal.

I. F. Trigo is with the Instituto de Meteorologia, 1749-077 Lisboa, Portugal,
and also with the Instituto Dom Luiz/CGUL, 1749-016 Lisboa, Portugal
(e-mail: Isabel.Trigo@meteo.pt).

J. M. Bioucas-Dias is with the Instituto de Telecomunicações, Instituto
Superior Técnico, Technical University of Lisbon, 1049-001 Lisboa, Portugal.

F.-M. Göttsche is with the Institut für Meteorologie und Klimaforschung,
Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2009.2027697

the primary variable determining the upward thermal radiation

and one of the main controllers of sensible and latent heat fluxes

between the surface and the atmosphere. Thus, the reliable and

long-term estimation of LST is extremely important for a wide

number of applications, including, among others, the follow-

ing: 1) model validation [2], [3]; 2) data assimilation [4]–[6];

3) hydrological applications [7], [8]; and 4) climate monitoring

[9]–[11]. The Land-SAF LST is processed at the full SEVIRI

temporal and spatial resolution, allowing the capture of the full

diurnal cycle over clear-sky regions.

LST estimations from remotely sensed data are generally

obtained from one or more channels within the thermal infrared

atmospheric window from 8 to 13 µm [12]. Operational LST

retrievals often make use of split-window algorithms (see, e.g.,

[13] and [14]), where LST is obtained through a semiempirical

regression of top-of-atmosphere (TOA) brightness tempera-

tures of two pseudocontiguous channels, i.e., the split-window

channels. The Land-SAF LST algorithm is based on the gen-

eralized split-window (GSW) formulation initially developed

for AVHRR and MODIS [14], now adapted to SEVIRI split-

window channels. The error of LST retrievals via GSW depends

on the following: 1) the uncertainty of surface emissivity;

2) the water vapor content of the atmosphere; and 3) the satellite

view angle. Because the latter determines the total optical path,

LST estimations are often limited to satellite zenith angles

(SZAs) below ∼ 60◦, where retrieval errors are still acceptable

(see, e.g., [14], [15], and [37]). In the case of geostationary

platforms, already unable to provide the global coverage of

polar orbiters, such view angle restrictions pose additional

limitations to the product spatial coverage. A wider retrieval

area must be carefully weighted against an increasing error.

Any parameter inference is of little usefulness without an

uncertainty measure. Here, we discuss the calibration of the

GSW algorithm used operationally by the Land-SAF and the

respective assessment of LST retrieval errors. These errors

take into account the expected performance of the GSW under

different atmospheric conditions, as well as the characterization

of input uncertainties and their propagation to the final LST

estimation.

This paper is organized as follows. The next section presents

the description of the SEVIRI/MSG data used for LST es-

timations and the database used to calibrate the Land-SAF

GSW algorithm. The details of this algorithm and of the LST

estimation are given in Section III, while the propagation of

input uncertainties and the total error of retrieved values are

discussed in Section IV. The comparison of satellite retrievals

with ground LST measurements taken at a permanent validation

station in Namibia (southern Africa) is analyzed in Section V.
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Fig. 1. Spectral response functions of SEVIRI thermal windows channels,
centered at 10.8 and 12.0 µm, respectively, onboard MSG1, MSG2, and MSG3.

Finally, Section VI summarizes the main conclusions of this

paper.

II. DATA DESCRIPTION

A. SEVIRI Onboard MSG

MSG is a series of four geostationary satellites to be operated

by EUMETSAT. The SEVIRI is the main sensor onboard MSG,

and it was designed to observe an Earth disk with view zenith

angles (SZA) ranging from 0◦ to 80◦, with a temporal sampling

of 15 min and a 3-km sampling distance at the subsatellite point.

SEVIRI encompasses unique spectral characteristics and accu-

racy, with 12 channels covering the visible to the infrared [1],

[16]. The data are disseminated to users after being rectified to

0◦ longitude, which means that the satellite viewing geometry

varies slightly with the acquisition time (SZAs typically differ

by less than 0.25◦ between consecutive observations).

LST is estimated from TOA brightness temperatures of SE-

VIRI split-window channels, centered on 10.8 and 12.0 µm

(hereafter IR108 and IR120, respectively). Fig. 1 shows the

response functions of these two channels for MSG1, MSG2,

and MSG3 (from Meteosat-8 onward, once operational). The

expected radiometric noise for IR108 (IR120) channel avail-

able onboard MSG-1 to MSG-3 is on the order of 0.11 K

(0.15–0.16 K) [16] (further details may be found at EUMET-

SAT Web site (http://www.eumetsat.int)). Possible inaccuracies

in SEVIRI absolute or relative calibration are not considered

here, despite their relevance for the quality of LST retrievals.

However, it is worth mentioning that EUMETSAT has recently

initiated a routine intercalibration of SEVIRI infrared channels

and the Infrared Atmospheric Sounding Interferometer (IASI;

onboard EUMETSAT polar-orbiter MetOp-A), with the aim of

understanding the mechanisms for (changing) biases and devel-

oping operational corrections [35]. Mean differences between

IASI and Meteosat-8 (Meteosat-9) reported by Hewison and

Konig [35] are 0.16 and 0.13 K (0.03 and 0.05 K) for channels

IR108 and IR120, respectively.

B. Algorithm Calibration/Verification Database

The calibration (and verification) of the GSW presented

here relies on radiative transfer simulations of TOA brightness

temperatures for SEVIRI channels IR108 and IR120. The simu-

lations are performed for the database of global profiles of tem-

perature, moisture, and ozone compiled by Borbas et al. [17]

for clear-sky conditions and referred to as SeeBor. The data-

base contains over 15 700 profiles taken from other data sets,

such as NOAA88 [18], TIGR-like [19], and TIGR [20], that

are representative of a wide range of atmospheric (clear-sky)

conditions over the whole globe. In addition, surface parameters

such as skin temperatures (Tskin) and a land-cover classification

within the International Geosphere–Biosphere Program (IGBP)

ecosystem categories [21] are assigned to each profile. Skin

temperature over land surfaces corresponds to LST in SeeBor

and is estimated as a function of 2-m temperature (T2m) and

solar zenith and azimuth angles [17]. In this paper, we assume

that each profile corresponds to one given pixel within the

Meteosat disk. Thus, for radiative simulation purposes, an SZA

chosen randomly within the 0◦–80◦ range is assigned to each

profile, except for cases with the following conditions: 1) Tskin

below 270 K, which are constrained to angles above 30◦, and

2) Tskin < 240 K, which are allowed to be observed by a

geostationary satellite with a zenith angle within 60◦ and 80◦.

This procedure ensures a realistic cover of simulated radiances

for all possible viewing geometries.

The SeeBor database described earlier was split into two

subsets—one used for the calibration of the LST GSW and an

independent one used for verification of the fitted algorithm.

The former consists of 77 atmospheres selected to cover a broad

variety of water vapor content (from very dry to moist condi-

tions), leaving more than 15 600 profiles for GSW verification.

The parameters in the GSW algorithm are estimated for 8

different classes of total column water vapor (TCWV) (W ), up

to 6 cm, and for 16 classes of SZA, up to 75◦, ensuring that all

ranges of atmospheric attenuation within the thermal infrared

are covered. In order to ensure that all W and SZA class have

enough representative cases to provide robust parameter estima-

tions, the radiative transfer simulations are performed over the

77 atmospheric profiles with the following settings: 1) surface

temperature ranging between Tskin − 15 K and Tskin+15 K in

steps of 5 K; 2) channel emissivities of IR108 and IR120 (ε108

and ε120, respectively) covering the range 0.96 < ε120 < 0.995
in steps of 0.0175 and ε120 − 0.030 < ε108 < ε120 + 0.018 in

steps of 0.006 (excluding cases with the average of ε108 and

ε120 below 0.94); and 3) SZA ranging from nadir to 75◦ in

steps of 5◦. It is worth noting that the whole simulations cover a

range of Tskin between 230 and 341 K and a range of [Tskin

minus T2m] from −20 to +33 K. The number of different

atmospheric and surface profiles obtained by exhausting all the

combinations of surface temperature, channel emissivities, and

SZA is 189 728, yielding an equal number of radiative transfer

simulations.

C. Radiative Transfer Simulations

The MODerate spectral resolution atmospheric TRANSmit-

tance algorithm (MODTRAN4) [22] provides a useful tool to

quantify the radiation emitted by the surface within known

atmospheric conditions that reaches a sensor operating in a

specific spectral band. The radiance (Lν) is estimated using
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TABLE I
CENTRAL WAVENUMBER AND BAND-CORRECTION COEFFICIENTS

FOR SEVIRI THERMAL WINDOW CHANNELS ONBOARD

MSG-1 AND MSG-2, RESPECTIVELY

MODTRAN4, for the bands corresponding to IR108 and IR120

channels, with a spectral resolution of 1 cm−1. The integration

of Lν weighted by the ith channel response function φi,ν , (see

Fig. 1) provides channel i effective radiance

Li =

∫ νi,2

νi,1
φi,νLνdν

∫ νi,2

νi,1
φi,νdν

(1)

where νi,1 and νi,2 are the lower and upper wavenumber

boundaries of the channel, respectively; the integrals in (1)

are estimated by taking into account the full tabulated values

of the response function φi,ν , i.e., between ν1 = 781.25 cm−1

and ν2 = 1136.36 cm−1, for channel IR108, and between ν1 =
714.28 cm−1 and ν2 = 1000.00 cm−1, for channel IR120.

The simulated SEVIRI radiances for channel i, i.e., Li’s,

are then converted to equivalent black-body brightness temper-

atures (Tbi) following the analytic formulation based on the

Planck function [23]

Tbi =

⎡

⎢

⎣

C2νi,c

log
(

C1ν3

i,c

Li
+ 1

) − βi

⎤

⎥

⎦
·

1

αi
(2)

where νi,c is channel i central wavenumber (Table I), C1 =
2hc2, and C2 = hc/k (with h being the Planck’s constant, c
being the speed of light, and k being the Boltzmann constant).

The parameters αi and βi, shown in Table I for MSG-1 and

MSG-2, are band-correction coefficients, adjusted to SEVIRI

ground characterization data. The simulations of IR108 and

IR12.0 brightness temperatures are then performed for both

MSG-1 and MSG-2, for the whole database (calibration and

verification subsets) described in the previous sections.

III. LAND-SAF LST ALGORITHM

A. GSWs

Several algorithms have been proposed to retrieve LST from

remotely sensed thermal infrared data (see, e.g., [11]–[15] and

[36]–[39]). The Land-SAF LST [24] is estimated using a GSW

algorithm with a formulation similar to that first proposed by

Wan and Dozier [14] for AVHRR and MODIS. Thus, LST is a

function of TOA brightness temperatures of SEVIRI IR108 and

IR120 (T10.8 and T12.0, respectively)

LST =

(

A1 + A2

1 − ε

ε
+ A3

∆ε

ε2

)

T10.8 + T12.0

2

+

(

B1 + B2

1 − ε

ε
+ B3

∆ε

ε2

)

T10.8 − T12.0

2

+ C + ∆LST (3)

where ε is the average of the two channels’ surface emissivities;

∆ε is their difference (ε10.8 − ε12.0); Aj , Bj , (j = 1, 2, 3),
and C are the GSW coefficients obtained by fitting (3) to the

calibration data described earlier; and ∆LST is the model

error. For each class of water vapor W and SZA Ψ, a set of

coefficients Aj , Bj , C is inferred by minimizing the l2-norm of

the model error ∆LST . The GSW algorithm is applied to clear-

sky pixels only. In the Land-SAF, cloud removal is performed

using the software developed by the Nowcasting (NWC) SAF,

which is based on multispectral threshold technique applied to

visible, near-infrared, and thermal atmospheric window chan-

nels within SEVIRI, for each pixel of the image [25].

A relevant factor in the selection of the algorithm was its ex-

pected reliability for operational LST retrievals, both in terms of

expected accuracy and timeliness considering the high (15-min)

generation frequency of SEVIRI LST fields. The latter favors

the use of semiempirical relationships between LST and TOA

brightness temperatures, which are computationally efficient

and free of the convergence problems of direct emissivity and

temperature retrieval methods (see, e.g., [26]) associated to the

nonlinearity of the inverse problem in remote sensing (see, e.g.,

[27]). Recent studies have assessed the use of other window

channels along with the split-window IR108 and IR120, such

as the infrared bands centered on 3.9 and 8.7 µm (IR39 and

IR87) [28], [29]. There are, however, several caveats regarding

the use of those extra channels for LST operational retrievals:

1) The uncertainty of surface emissivity within IR39 and IR87

is considerably higher than that of channels IR108 and IR120,

particularly over semiarid regions, which cover a considerably

area within the Meteosat disk [30]; 2) channel IR87 has a rather

low dynamic range of 300 K, which limits its use over very

warm surfaces where measurements will be close to sensor sat-

uration; and 3) solar contamination of daytime IR39 radiances

would also need to be taken into account.

The error characterization of LST retrievals is an impor-

tant component of the operational algorithm and an important

source of information for users. In this sense, points 1) and

2) mentioned earlier constitute the major limitation to a “four-

channel” methodology, one by increasing the retrieval error

bars and the other by adding the uncertainty of the radiometer

behavior close to saturation.

B. Calibration/Verification of the GSW Algorithm

The GSW parameters Ai, Bi, and C obtained by fitting (3) to

the calibration data set and the variance of LST explained by the

regression are schematically shown in Fig. 2. The coefficients

vary fairly smoothly throughout the W and SZA classes, except

Authorized licensed use limited to: Instituto Meteorologia. Downloaded on January 5, 2010 at 10:18 from IEEE Xplore.  Restrictions apply. 



526 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 1, JANUARY 2010

Fig. 2. Distribution of the GSW parameters (indicated at the top of each panel) and explained variance of the fitted regression (bottom left) as a function of the
SZA and total column water vapor (in centimeters).

for cases where very moist atmospheres are observed with high

zenith angles. In such conditions, the linear combination of

the split-window channels cannot reproduce the nonlinear path

length effects. As a result, the explained variance of surface

temperature by TOA brightness also reaches considerably lower

values (below 90%; bottom right panel in Fig. 2), and GSW

errors increase substantially.

The GSW algorithm is verified against the independent sub-

set of simulated TOA brightness temperatures (which excludes

the calibration data). Fig. 3 shows the GSW LST model error

distribution within each class of W and SZA. Classes with root-

mean-square error (rmse) higher than 4 K are omitted. These

classes correspond to cases where the explained variance of

the GSW within the training data set is less than 93% and

where errors of 10 K or more are commonly obtained within the

verification database. Thus, we limit the operational production

of LST to SZA below 67.5 when W is 3 cm or higher, and to

SZA below 62.5 when W is 4.5 cm or higher.

The overall bias and rmse of the GSW are, respectively,

0.05 and 0.78 K. As shown in Fig. 3, the retrieval errors

tend to increase with both SZA and W . The rmse is always

below 2 K for water vapor content and angles within the

range of values admissible for Land-SAF LST estimations,

with the exception of the following: 1) W above 5.25 cm and

SZA higher than 57.5◦, and 2) W above 2.25 cm and SZA

higher than 72.5◦, where the GSW presents rmse on the order

of 3 K.

IV. ERROR PROPAGATION

In a real scenario, we do not have access to the exact

GSW inputs X = (T10.8, T12.0, ε10.8, ε12.0) and Y = (W, Ψ),
but only to inaccurate inputs, which we denote by X̂ =
(T̂10.8, T̂12.0, ε̂10.8, ε̂12.0) and Ŷ = (Ŵ , Ψ̂). Therefore, if we

still infer the LST according to model (3), replacing the exact

GSW inputs with the inaccurate ones, we have a new source of

error on the top of the fitting error ∆LST shown in Fig. 3. In

the current section, the main error sources are identified, and

their impact on the total LST error is estimated.

Potentially, all inputs may introduce errors in the retrieved

LST values. However, here, we only consider the radiometric

noise, the uncertainty in surface emissivity, and errors in W
forecasts. The rectification of the satellite data from the real

position to 0◦ longitude may introduce errors in the determi-

nation of the SZA class. We have opted to ignore the impact

of these errors on the overall LST error, taking into account

the following: 1) The probability of having the wrong class

of SZA for MSG is fairly low and very unlikely to be missed

by more than one class, and 2) the extra GSW error induced

by the wrong categorization of SZA by one class is negligible
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Fig. 3. Distribution of LST errors obtained for the GSW verification database, which are obtained for different classes of SZA (indicated in the bottom left of
each panel) and water vapor content (W ; x-axis in each diagram). The lines within each box plot correspond to the lower quartile, median, and upper quartile,
respectively, while the whiskers extend to the remaining data.

for low SZA and generally lower than 0.8 K for high SZA

(above 60◦).

The misclassification of cloudy pixels as clear sky would

have very high impact on the retrieved LST. According to

validation results of the NWC SAF cloud mask for SEVIRI,

the expected rate of missed clouds is on the order of 4% [25].

These missed cases often correspond to broken clouds or cases

in neighboring cloudy pixels. It is very difficult to propagate the

uncertainty in cloud identification to LST error bars. Instead,

LST retrievals over neighboring cloudy pixels are flagged.

A. Framework

Let us define the vector of model coefficients θ =
(A1, A2, A3, B1, B2, B3, C). Notice that the vector θ generated

by the fitting process is a function of water content and view

angle, i.e., θ = θ(Y ). Consider the LST estimator LŜT =

f(X̂, θ̂) where θ̂ = θ(Ŷ ) and f(X, θ) is the LST estimate

given by model (3). A characterization of the model error is

given by

SLST = E

[

(

f(X̂, θ̂) − LST
)2

|X,Y

]1/2

(4)

where E[·|X,Y ] stands for a mean value conditioned to

X and Y , i.e., for a given GSW input X or Y , we

want to compute the rmse of the LST estimate. By using

the fact that LST = f(X, θ) + ∆LST and assuming that

E[f(X̂, θ̂)|X,Y ] = f(X, θ), we may write

S2
LST = E

[

(

f(X̂, θ̂) − f(X, θ)
)2

|X,Y

]

+ ∆LST 2. (5)

By taking a linear approximation of f(X̂, θ̂) in the neigh-

borhood of (X, θ) and denoting σ2
Xi

= E[(X̂i − Xi)
2|X] and

σ2
θi

= E[(θ̂i − θi)
2|Y ], we are led to

S2
LST =

∑

i

(

∂f

∂Xi

)2

σ2
Xi

+
∑

j

(

∂f

∂θj

)2

σ2
θj

+ ∆LST 2

(6)

where we have assumed that the components of X and Y
are mutually independent and that E[(X̂i − Xi)|X] = 0 and

E[(θ̂i − θi)|Y ] = 0. Next, we study in detail the error due to

each individual GSW input.
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Fig. 4. Histograms of LST errors (in kelvins) attributed to the sensor noise,
obtained for different classes of total column water vapor. From top to bottom:
0–1.5, 1.5–3.0, 3.0–4.5, and 4.5–6.0 cm.

B. Impact of Sensor Noise

The expected radiometric noise of SEVIRI channels IR108

and IR120 onboard MSG-2 is σT108
= 0.11 K and σT120

=
0.16 K, respectively. The associated LST uncertainty is then

S2
Tb = S2

Tb108 + S2
Tb120 (7)

where

S2
Tb108 =

(

∂f

∂T108

)2

σ2
T108

S2
Tb120 =

(

∂f

∂T120

)2

σ2
T120

.

(8)

Fig. 4 shows the distributions of errors attributed to the impact

of sensor noise STb, grouping all possible SZA within different

ranges of W . STb is generally below 0.75 K and increases with

the atmospheric water content. The larger variability within

the moister atmospheres (bottom panel in Fig. 4) is largely

associated to nonlinear effects on the atmospheric path for high

SZA. In the most extreme cases, with W higher than 3 cm, STb

is higher than 0.5 K and may reach values above 2 K.

C. Impact of Uncertainties in Surface Emissivity

The impact of uncertainties in surface emissivity for channels

IR108 and IR120, σε108
and σε120

, respectively, on LST is

given by

S2
ε = S2

ε108
+ S2

ε120
(9)

where

S2
ε108

=

(

∂f

∂ε108

)2

σ2
ε108

S2
ε120

=

(

∂f

∂ε120

)2

σ2
ε120

.

(10)

Emissivity retrievals are based on the so-called vegetation

cover method (VCM) [31], [32], where effective channel emis-

sivity for any given pixel is estimated as a weighted average

of channel emissivities of dominant bareground and vegeta-

tion types within the scene. Furthermore, it is considered that

SEVIRI pixels may include a land FLand and an in-land water

fraction (1 − FLand), and thus, the effective pixel emissivity

εeff_IRn is given by

εLAND_IRn = εveg_IRnFV C + εbg_IRn(1 − FV C) (11a)

εeff_IRn = εLAND_IRnFLand + εWATER_IRn(1 − FLand)

(11b)

where FV C is the pixel fraction of vegetation cover and

εveg_IRn, εbg_IRn, and εWATER_IRn are the vegetation, bare-

ground, and water emissivities, respectively, for the split-

window channel IRn. The values for εveg_IRn and εbg_IRn are

available from lookup tables (Table II), determined for the land

cover classes within the IGBP [21] database [32]. In the case

of inland water, εWATER_IRn is set to the Water Bodies values

detailed in Table II. Channel emissivity is currently estimated

from FVC retrieved by the Land-SAF from SEVIRI/Meteosat

[33] and corresponds to five-day composites updated on a daily

basis.

The uncertainties in retrieved emissivity are thoroughly dis-

cussed in [30]. These take into account inaccuracies in the VCM

inputs (on the order of 0.1 for FVC; IGBP class dependent in the

case of εveg_IRn and εbg_IRn) and errors in the approximation

made by (11), which ignores the effect of multiple reflections

within the canopies/ground. A further source of emissivity

errors relies on the classification of each SEVIRI pixel into

one of the two categories: “land” with FLand = 1 or “water”

with FLand = 0. To take this into account in the estimation of

emissivity uncertainty, we assume an average error of 0.20 in

FLand; in coastal pixels, this uncertainty may reach 0.45.

Error bars of channel emissivity, ∆ε108 and ∆ε120, are

estimated operationally, along with the emissivity values them-

selves, and later used for LST error bars. Here, we assess

the impact of emissivity uncertainties on LST, prescribing a

fixed FVC characteristic of each IGBP land cover (Table II)

and thus assigning to every profile in the SeeBor verification

database a value of ε108, ε120, ∆ε108, and ∆ε120 (Table II).

On top of this, we assume FLand to be equal to 0 or 1, but

prescribing an uncertainty of 0.2, i.e., for “land” pixels, FLand

may range from 0.8 to 1, while for “water pixels,” FLand lies

between 0 and 0.20. Fig. 5 shows the results obtained for

different ranges of TCWV. As expected, the sensitivity to land

surface emissivity is significantly higher for drier atmospheres,

since under moist conditions, the impact of emissivity on

the surface-emitted radiance is partially compensated by an

opposite effect on the (higher) atmospheric radiation reflected

by the surface [30]. Moreover, the higher values of ∆ε108

and ∆ε120 are often found in (semi-)arid regions (see Barren

Sparsely Vegetated, Savanna, or Woody Savanna land cover

types in Table II), leading to LST inaccuracies of 1 K or more

under dry conditions (W below 1.5 cm). In contrast, the impact

on LST is always below 2 K for the moister atmospheres

(W > 4.5 cm).
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TABLE II
LAND SURFACE EMISSIVITY AND RESPECTIVE STANDARD DEVIATION FOR THERMAL WINDOW CHANNELS

ONBOARD SEVIRI-MSG, AND THE CORRESPONDENT FVC FOR EACH IGBP CLASS

Fig. 5. As in Fig. 4, but for errors in LST (in kelvins) attributed to uncertain-
ties in surface emissivity.

D. Uncertainties in Forecasts of Atmospheric Water

Vapor Content

According to (6), the error due to uncertainties in the water

vapor content is given by

S2
W =

∑

j

(

∂f

∂θj

)2

σ2
θj

(12)

Fig. 6. Histograms of W errors (in centimeters)—difference between fore-
casts and the respective analysis—for different classes of total column water
vapor. From top to bottom: 0–1.5, 1.5–3.0, 3.0–4.5, and 4.5–6.0 cm.

where

σ2
θj

= E
[

(θ̂j − θj)
2
∣

∣

∣
W, Ψ

]

. (13)

Since we neglect the uncertainty in the SZA Ψ, let us focus

our attention on W . Given that θ̂ is a piecewise linear function,
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Fig. 7. (a) Probability (shaded boxes) of a reference value W (horizontal axis) being forecast as WEstimate (vertical axis) and LST errors (contours, in kelvins)
associated to W forecast errors, for all possible SZAs up to 77.5◦. (b) Contours of errors of LST retrievals obtained for all admissible classes of water vapor (W )
and SZA, taking into account the statistics of ECMWF forecast errors for W .

we have

σ2
θj

=E
[

(θ̂j − θj)
2
∣

∣

∣
W

]

=
∑

k

(

θ̂j(Rk) − θj

)2

P (Ŵ ∈ Rk|W ) (14)

where Rk is the region of the water vapor domain where the kth

linear model is assumed. Therefore, the sets Rk’s are a partition

of the referred-to domain.

The operational estimation of LST with the GSW algorithm

(3) applied to SEVIRI makes use of forecasts of TCWV (W )
provided by the European Centre for Medium-range Weather

Forecasts (ECMWF) for parameter selection. To characterize

W error statistics, we compared ECMWF W forecasts (with

forecast steps ranging between 12 and 36 h) with the respective

analysis, for the 15th of each month during 2007. ECMWF

grid points with model cloud cover higher than 10% were

excluded. The histograms of the difference between forecasts

and analyses are shown in Fig. 6, for different classes of

TCWV. Forecast errors could also be assessed through a com-

parison with observations, e.g., radiosondes. However, here,

we consider the model analysis to correspond to the best

estimate of the state of the atmosphere at any given time.

The recent evolution of assimilation techniques and assimilated

data—including both conventional data such as radiosondes,

and remote sensing—contributed to the significant improve-

ment of ECMWF model analysis of water vapor content [34].

As a consequence, the bias of ECMWF humidity analysis has

decreased significantly, supporting the use of analysis fields

as reference for the estimation of forecast errors. Moreover,

the procedure described here can also be easily reproduced

whenever changes to the ECMWF model justify a reassessment

of W forecasts.

The comparison between W forecasts and analysis (the ref-

erence value) allowed us to estimate the probability P (Ŵi|Wj),

i.e., the probability that Ŵ belongs to the water vapor content

class Wi, given that the true class is Wj . This probability

is then used to compute the expected LST error, according

to (12)–(14). Fig. 7(a) shows shaded values of P (Ŵ |W )
superimposed on contours of LST errors associated to Ŵ

Fig. 8. Histograms of LST uncertainties (in kelvins), including all sources of
errors grouped by W .

forecast errors, i.e., to the wrong choice of GSW parameters.

The estimated errors of LST retrievals associated to TCWV

uncertainties, which are obtained through the application of

(12)–(14) to all possible classes of W and SZA, are shown in

Fig. 7(b). These are generally below 0.2 K for dry to moderately

moist atmospheres. Higher values occur only for W above

5.25 cm.

E. Uncertainty of LST Retrievals

The estimation of LST error bars SLST assumes that

all sources of errors described in the previous sections are

independent

SLST =
√

S2
Tb + S2

ε + S2
W + ∆LST 2. (15)

Fig. 8 shows histograms of LST uncertainties for four nonover-

lapping ranges of W . These were obtained for “LST re-

trievals” computed for the verification data set described in

Section II-B and taking into account the uncertainties of the

different input variables, as discussed earlier. Dry atmospheres
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Fig. 9. Field of view of the two downlooking KT15.85 IIP radiometers, on the
gravel plain north of Gobabeb LST validation station (KT-15 West and KT-15
East). The ellipses cover about 13 m2 (horizontal diameter about 3.7 m).

present the widest range of SLST. In such conditions, the total

error depends essentially on emissivity uncertainties and to

a lesser extent on the view zenith angle. Nevertheless, SLST

distributions tend to be shifted to the right with total water vapor

content, i.e., LST error bars increase for higher optical depths.

V. COMPARISON OF SEVIRI/METEOSAT RETRIEVALS

WITH IN SITU OBSERVATIONS

The GWS algorithm described in Section III is used by the

Land-SAF to generate LST from SEVIRI/Meteosat measure-

ments on an operational basis. LSTs are then freely available

(http://landsaf.meteo.pt), along with an estimated uncertainty

based on the error propagation analysis described in Section IV.

Ultimately, also independent ground measurements are needed

to validate remotely sensed LSTs. As discussed in [11] and

[24], ground measurements have their own issues, includ-

ing, among others, the following: 1) the low number and

discontinuity of high-quality data sets; 2) the lack of global

representativeness; and 3) the upscaling of LST “point” mea-

surements to satellite pixel size. Here, we compare satellite-

derived LSTs with in situ observations collected at a permanent

validation station at Gobabeb, Namibia (23◦33′S and 15◦03′E).
For thermally heterogeneous land surfaces, point 3) introduces

uncertainties that are not easily quantified; Gobabeb valida-

tion station was chosen because it is located in a relatively

homogeneous area characterized by large gravel plains, which

greatly simplifies the upscaling. The station is equipped with

self-calibrating chopped KT15.85 IIP radiometers (Heitronics),

which are sensitive to radiance between 9.6 and 11.5 µm and

have an absolute accuracy of about 0.6 K. Two KT15.85 IIP

radiometers are mounted at 25-m height and observe neighbor-

ing surface areas of about 13 m2 each under a view angle of

30◦ in direction north (Fig. 9). A third KT15.85 IIP measures

downwelling long-wave radiance at 52◦ zenith angle. In situ

LST is calculated as the average of the measurements taken

by the downward-looking radiometers, previously corrected for

surface emissivity (taken to be 0.959 as representative of gravel

plains [30]) and reflected downwelling radiance (further details

in [24]).

Comparisons between Gobabeb LST and LST obtained for

the nearest SEVIRI/MSG pixel north of the station (i.e., exclu-

sively located in the gravel plain) were performed for the period

from May 2008 to March 2009. Fig. 10 shows scatter plots

of in situ versus satellite LST retrievals for six representative

months. Overall, there is good agreement between the two data

sets, with root-mean-square (rms) differences between 1 ◦C and

2 ◦C. The high cloud cover during the rainy season significantly

reduces the number of retrieved LST values, explaining the

fewer data points in the July 2008 plot (Fig. 10, upper right

panel). The higher discrepancies between the two data sets

generally occur when SEVIRI/MSG LST is lower than the cor-

responding station LST (e.g., the data points substantially above

the 1 : 1 line in January 2009). These are likely to be caused

by cloud contamination or cloud shadows within the MSG

pixel and thus also related to the different spatial scales of the

in situ “point” measurements and the satellite measurements.

The monthly average error estimated for SEVIRI/MSG LST

lies between 2 ◦C and 3 ◦C, which is larger than the rms differ-

ences between the in situ and the satellite measurements. The

area surrounding Gobabeb is dominated by bareground gravel

plains, which are associated with relatively large emissivity

uncertainties. Under the arid conditions prevalent at Gobabeb,

these uncertainties constitute the major source of error for LST

satellite estimates (see Fig. 5).

VI. DISCUSSION AND CONCLUDING REMARKS

The GSW algorithm is a semiempirical algorithm that allows

the estimation of LST from TOA brightness temperatures of

two adjacent channels within the atmospheric window part of

the spectrum, assuming that the channel surface emissivities are

known. A version of the GSW was trained for the series of MSG

satellites and is currently used for operational retrievals of LST

by the Land-SAF. To maximize the algorithm performance over

a wide range of conditions, the GSW parameters are tuned for

classes of satellite view angle and TCWV [14].

A reliable estimation of the uncertainty of remote sensing

retrievals is often essential for the optimal use of the retrieved

variable. This paper focuses on the quantification of error bars

associated to LST estimations from SEVIRI/MSG through a

careful characterization of the following: 1) the uncertainty of

the GSW algorithm itself, which is highly dependent on the

retrieval conditions—view angle and atmospheric water vapor

content, and 2) the uncertainty of the input variables and their

propagation through the GSW algorithm. For the latter, we

take into account the expected sensor noise for the SEVIRI

window channels onboard the MSG series, the error bars of

surface emissivity retrievals (discussed in [30]), and forecast

errors of TCWV (W ). Since the GSW is applicable to clear-sky

pixels only, the misclassification of a (partially) cloud-covered

scene would lead to erroneous LST values. The resulting error

is difficult to estimate a priori, as it depends on, for example,

the extent of the cloud cover or cloud top height. Considering

that the overall performance of the cloud mask used is fairly

good [25], the LST error bars do not take into account the

uncertainty of the pixel classification, but instead, the cloud

mask confidence is made available to the user through the LST

quality flag.

Authorized licensed use limited to: Instituto Meteorologia. Downloaded on January 5, 2010 at 10:18 from IEEE Xplore.  Restrictions apply. 



532 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 1, JANUARY 2010

Fig. 10. Scatter plots of LST (in degree Celsius) measurements at Gobabeb validation station (y-axis) versus corresponding SEVIRI/MSG LST retrievals
(x-axis) taken over a seasonal cycle; the 1 : 1 line is shown for reference. Each panel indicates the mean difference between satellite retrievals and in situ

observations (bias), the standard deviation around the bias, the rms difference, the linear regression equation, the number of available points, and month and year.
Crosses, diamonds, and triangles represent data in the morning, afternoon, and evening, respectively.

Satellite zenith view angle (SZA) and W are implicit input

variables for LST retrievals, in the sense that their values are

used to determine the best set of GSW parameters [Ai, Bi,

and C in (3)]. The uncertainty of ∼1/3 pixel in the geolocation

of level 1.5 SEVIRI data has a marginal effect on LST error

bars, since only pixels with SZA close to the upper/lower limits

may risk being misclassified to a neighboring SZA class. The

probability of choosing inappropriate GSW parameters due to

a misclassification of W is estimated from error statistics of

humidity forecasts of the current version of ECMWF model;

the procedure described in this paper can easily be duplicated

for future model releases. Such probability is then combined

with the results of a sensitivity analysis of the GSW to estimate

their contribution to LST error bars.

LST retrievals representative for a seasonal cycle are com-

pared with in situ measurements taken at Gobabeb validation

station (Namibia), which is part of Land-SAF’s validation

effort. The permanent validation station is located within an arid

region characterized by vast gravel plains. SEVIRI and in situ

LST are found to be in good agreement with rms differences

of 2 ◦C or less, which is within the estimated error for SEVIRI

LST. Such validation results provide further confidence in the

retrieval algorithm and error bar estimations.

The spatial coverage of LST retrievals from SEVIRI/MSG

data presented here is then essentially based on the respective

uncertainty, in contrast with most (split-window) algorithms

for LST, where estimations are restricted to SZA below

a fixed threshold (often ∼ 60◦; see, e.g., [14] and [15]).
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Fig. 11. (a) LST (in degree Celsius) retrievals for the 7:15 UTC time slot of the March 23, 2008 and (b) respective error bars (in degree Celsius); the diamonds
show the relative contribution of (“north”) uncertainty in emissivity, (“east”) water vapor content, (“west”) sensor noise, and (“south”) uncertainty in the GSW
associated with specific retrieval conditions.

Within the MSG disk, the atmosphere is often fairly dry for

clear-sky conditions and for relatively large (∼ 60◦−70◦)
SZA, partially compensating for the poorer performance of

the GSW algorithm due to the long optical path. Fig. 11

shows one such example, where parts of Northern Europe, the

Middle East, and Saudi Arabia, which are cloud free, present a

relatively low atmospheric water vapor content, which allows

the estimation of LST with a reasonable degree of accuracy.

The far west region of Southern America is also viewed at

relatively high angles as the aforementioned areas but presents

a much higher atmospheric humidity, which would lead to

meaningless retrievals of LST. Thus, the analysis of the various

error sources of remotely sensed LST allows the maximization

of the product spatial coverage. In the case of LST provided

by the Land-SAF, the fields are distributed along with realistic

estimations of the respective error bars on a pixel-by-pixel

basis, allowing users to make the ultimate decision on the

applicability of the retrieved product.
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