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Quantifying the unknown impact of segmentation
uncertainty on image-based simulations
Michael C. Krygier 1, Tyler LaBonte 2,4, Carianne Martinez2, Chance Norris 3, Krish Sharma2,

Lincoln N. Collins 1, Partha P. Mukherjee3 & Scott A. Roberts 1✉

Image-based simulation, the use of 3D images to calculate physical quantities, relies on

image segmentation for geometry creation. However, this process introduces image seg-

mentation uncertainty because different segmentation tools (both manual and machine-

learning-based) will each produce a unique and valid segmentation. First, we demonstrate

that these variations propagate into the physics simulations, compromising the resulting

physics quantities. Second, we propose a general framework for rapidly quantifying seg-

mentation uncertainty. Through the creation and sampling of segmentation uncertainty

probability maps, we systematically and objectively create uncertainty distributions of the

physics quantities. We show that physics quantity uncertainty distributions can follow a

Normal distribution, but, in more complicated physics simulations, the resulting uncertainty

distribution can be surprisingly nontrivial. We establish that bounding segmentation uncer-

tainty can fail in these nontrivial situations. While our work does not eliminate segmentation

uncertainty, it improves simulation credibility by making visible the previously unrecognized

segmentation uncertainty plaguing image-based simulation.
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I
mage-based simulation is the process of performing quanti-
tative numerical calculations, such as 3D finite-element
simulations, on geometries constructed directly from 3D

imaging techniques, including X-ray computed tomography (CT)
and scanning electron microscopy. Image-based simulation has
become a crucial part of modern engineering analysis workflows,
alongside integrated computational materials engineering
(ICME)1 and digital twin2–5 efforts. It has also been adopted by
many disciplines, including medical imaging for patient
treatment6–10, improving the manufacturing process of
batteries11–14, composite material development15–18, biological
physics19, neuroscience20,21, and geomechanics22.

Image-based simulation traditionally involves three steps. The
first step, image segmentation, is the classification of each voxel
(3D pixel) in the image to a distinct class or material (Fig. 1). For
instance, the blue and purple regions in Fig. 1b represent two
different materials captured in the image in Fig. 1a. The second
step is the reconstruction of a computational domain from the
image segmentation. The third step is the numerical simulation of
physics quantities on this reconstructed domain. The outcome of
this image-based simulation (Fig. 2c) is a single value for the
physics quantity of interest (Fig. 2d).

For this process (Fig. 2b), traditional image segmentation
approaches involve manual segmentation, whereby a person
applies a combination of image filtering techniques (e.g.,
smoothing, noise removal, contrast enhancement, or non-local
means filters) and segmentation algorithms (e.g., simple thresh-
olding, watershed, or multi-Otsu thresholding algorithms) to
segment the image. However, manual segmentation is fraught
with irreproducibility and person-to-person variability. While the
tools themselves are scientifically sound, the way that people
deploy them makes it more of an art than a science. Two qualified
individuals performing segmentation on the same image are likely
to choose a different combination of filtering and segmentation
techniques (or parameters for those techniques) leading to dif-
ferent segmentations23–26. While to the human eye, one algorithm
may be subjectively better than another algorithm for a given
image, each segmentation is a plausible and valid segmentation.
This suggests that even when a clear segmentation is achieved (e.g.
the black curve in Fig. 1b), it can never be verified as the most
correct segmentation. The range of possible segmentations,
accounting for all tools and variables, represents the range of
image segmentation uncertainty (the yellow regions in Fig. 1b),
within which the correct answer will be found. However, because
there are infinite combinations of manual segmentation algo-
rithms and parameters, it is difficult to fully characterize seg-
mentation uncertainty using manual segmentation approaches.

Machine learning techniques, and convolutional neural net-
works (CNNs) in particular, have revolutionized image segmen-
tation by alleviating three main disadvantages in manual
segmentations27. First, manual segmentation is a labor-intensive
task, and CNNs help to remove this burden. Second, CNNs can
often achieve better accuracy than humans28,29, even when trained
on imperfect manual segmentations. Third, CNNs produce con-
sistent segmentations that are deterministic at inference, gen-
erating reproducible results over many images of a similar
domain. Because of these advantages, CNNs have gained immense
popularity for image segmentation in a variety of applications,
including in energy storage30, materials analyses31–33, and medical
diagnosis34,35.

However, although CNN-based segmentation has many advan-
tages, it is not without segmentation uncertainty. Strikingly, the
same problem that plagues manual segmentation also plagues
CNN-based segmentation. For instance, each CNN is designed
using different stencils, varying number of layers, and para-
meterizations, similar to the application of manual segmentation
algorithms. In addition, image artifacts, noisy input images, and
imperfect manual segmentations used for model training introduce
variability in inference samples, resulting in segmentation uncer-
tainty. Therefore, it is rational to ask—how reliable are CNN-based
segmentations? In the medical field, such reliability concerns are
preventing neural networks from being fully utilized in a clinical
setting36,37 and have led to a grand challenge for the quantification
of uncertainties in biomedical image quantification38. At present,
the most common way to address CNN-based segmentation
uncertainty is through Monte Carlo dropout networks (MCDNs)39,
which have been applied in numerous disciplines36,40–44. However,
MCDNs do not inherently capture segmentation uncertainty within
the CNN design; instead, probing segmentation uncertainty
through a stochastic sampling of dropout layers is an established
approach, albeit with questionable statistical validity45. However,
LaBonte et al. 46 has developed a Bayesian CNN (BCNN) that
measures uncertainty in the weight space, resulting in statistically
justified sample inferences for segmentation uncertainty quantifi-
cation. While these advances indicate that there is uncertainty in
image segmentation and provide a method to visualize it, they
provide no quantitative method to propagate the image segmen-
tation uncertainty through physics simulations.

Because image-based simulations use segmented images,
uncertainty in those image segmentation will necessarily lead to
uncertainty distributions in the physics quantities predicted by
image-based simulations. For high-consequence applications,
quantifying uncertainty distributions derived from image seg-
mentation uncertainty leads to a credible image-based simulation
workflow. To date, this concept has received very little attention in
the literature. Very recently the impact of segmentation uncer-
tainty on physics quantities has been acknowledged for manual
segmentation9,26,47. However, because these works focus exclu-
sively on manual segmentation, the scope of their proposed
solutions is limited to relatively subjective method-to-method
comparisons, which are both irrelevant for CNN-based segmen-
tation and potentially overlook the more comprehensive question
of how segmentation uncertainty directly impacts the physics
simulations. There is clearly a need for a more consistent and
systematic approach to quantify the uncertainty distributions of
physics quantities resulting from segmentation uncertainty and
preferably an approach that makes use of more modern and
objective CNN-based image segmentation techniques.

Herein, we address this challenge by presenting a systematic
method of quantifying segmentation uncertainty and propagating
that uncertainty through image-based simulations to create
uncertainty distributions on predicted physics quantities, as illu-
strated in Fig. 2e–j. Our efficient quantification of uncertainty in
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Fig. 1 Illustration of image segmentation and segmentation uncertainty.

A grayscale image (a) is segmented into white (blue region) and black

(purple region) classes in (b), with black curves denoting one possible

interface boundary between classes. The yellow region is a visual

representation of the segmentation uncertainty that results from all

possible image segmentations.
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image-based physics simulation (EQUIPS) workflow is general in
that it is agnostic to the physical system (i.e., material) being stu-
died, the image-segmentation approach, the method for perform-
ing the image-based simulation, and the physics quantities. In our
workflow, EQUIPS employs both MCDNs and BCNNs to perform
image segmentation to quantify segmentation uncertainty, with
both approaches creating a set of image segmentation samples
(Fig. 2f). These samples are combined to create a single prob-
ability map (Fig. 2g) that objectively represents the probability
that a certain voxel is in the segmented material class. To explore
the impact of segmentation uncertainty on physics quantities,
we threshold the probability map at certain percentiles to
obtain percentile segmentations (Fig. 2h), which are then used to
perform multiple physics simulations (Fig. 2i) and calculate
uncertainty distributions in physics quantities of interest (Fig. 2j).
In the next section, we describe this approach in more detail,
demonstrating the value of EQUIPS by quantifying the effect
of segmentation uncertainty on physical quantities in three
distinct exemplars: woven composites, battery electrodes, and a
human torso.

Results
We begin by illustrating the EQUIPS workflow for quantifying
segmentation uncertainty and propagating it to physics

simulations on the exemplar of a woven composite material
(Fig. 2). We train a BCNN to segment 3D grayscale CT images
(Fig. 2e). The output of the network is a softmax layer that, when
thresholded at 0.5, creates a binary representation of voxels that
are inside the segmented class. Next, we Monte Carlo sample the
network to generate N unique image segmentation samples
(Fig. 2f). Each image segmentation sample represents a valid
inference through the model, with each sample probing the image
and model uncertainty stochastically.

The probability map (ϵ, Fig. 2g) is the per-voxel mean of the N
image segmentation samples (Fig. 2f), as mathematically defined
in the “Methods” section. Intuitively, the probability map repre-
sents the probability that a voxel is in a segmented class. As a
result, this per-voxel probability distribution can be probed by
thresholding the data with the desired probability value, creating
a binarization that represents that probability threshold. For
example, thresholding at ϵ ≥ 0.20 generates a binarization con-
taining all voxels that have at least a 20% probability of being in
the segmented class. Conceptually, this process can be thought of
as probing the cumulative distribution function (CDF) of the
segmentation uncertainty, where the chosen probability value
represents a percentile in that distribution. The result of this
process produces a percentile segmentation, illustrated by each of
the image stacks in Fig. 2h. For a multi-class problem, this
workflow is repeated on each class individually.
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Fig. 2 Traditional image-based simulation workflow (top) versus proposed efficient quantification of uncertainty in image-based physics simulation

(EQUIPS) workflow (bottom). A traditional image-based simulation workflow (top) converts 3D images (a) into image segmentations (b) using manual or

CNN-based algorithms, then performs a numerical simulation on the reconstructed segmented image domain (c) to calculate a deterministic physics

quantity (d). In EQUIPS (bottom), segmentation uncertainty is calculated from 3D images (e) by creating many image segmentation samples (f) and

combining them into a probability map (g). The probability map is thresholded at different percentile values to construct percentile segmentation domains

(h), each of which are used to perform physics simulations (i) whose output is combined into an uncertainty distribution (j), represented as a cumulative

distribution function (CDF) for that physics quantity. The colors in (i) show localized heat flux in a thermal conductivity simulation on a relative (arbitrary)

color scale.
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EQUIPS then probes the segmentation uncertainty at three
probability values: μ−σ, μ, and μ+ σ, which we will call the
standard segmentations (Fig. 2h). Here, μ is the mean, 50.0 per-
centile, and σ is the standard deviation away from the mean, 15.9
and 84.1 percentiles at μ−σ and μ+ σ, respectively. We chose
these particular percentile values to quickly model the uncertainty
distribution in a physics quantity using a characteristic distribu-
tion. However, any percentile from the probability map could be
used to generate an image segmentation representing that
probability value.

For each standard segmentation, we perform a physics simu-
lation to predict the physics quantities (Fig. 2i). Each inset in
Fig. 2i highlights a region of the domain geometry that undergoes
significant alterations. These geometry changes impact the phy-
sics quantity behavior and, as a result, these changes manifest in
the physics quantity uncertainty distribution. For example, in the
μ−σ case, the middle inset shows a material region that is dis-
connected from the surrounding region and therefore has low
heat flux. In contrast, the μ+ σ case shows a material region that
is fully connected to its neighbors and therefore has a much
higher heat flux.

Throughout this work, we focus on a Normal (Gaussian) dis-
tribution as the characteristic distribution to rapidly approximate
a physics quantity uncertainty distribution using the fewest pos-
sible simulations. Only the three standard segmentation simula-
tions are necessary to specify this characteristic distribution. The
physics quantity evaluated using the 50.0 percentile segmentation
provides the distribution mean, while the 15.9 and 84.1 percentile
segmentations provide the standard deviation. The curve in
Fig. 2j is the CDF of the characteristic distribution estimate cal-
culated using this method while the red, black, and green points
are the standard segmentation values. This characteristic CDF
estimates the uncertainty distribution of a physics quantity as a
result of segmentation uncertainty. If the characteristic distribu-
tion estimate fits the physics quantity data points well, then the
calculation of additional percentile segmentations is likely
unnecessary. However, if the characteristic distribution is poor
(i.e. the unknown distribution is non-Normal), then additional
percentile segmentations are required to capture the underlying
physics quantity uncertainty distribution.

In the following discussion, we present three exemplar pro-
blems demonstrating the propagation of segmentation uncer-
tainty from image segmentation through physics simulations to
physics quantities. In each of these exemplars, simulation con-
ditions and model parameters are held constant to draw attention
to the impact that segmentation uncertainty has on the uncer-
tainty distribution of physics quantities.

Woven composite. In this exemplar, we use 3D CT scans of a
woven composite material (Fig. 2e) to simulate thermophysical
quantities relevant to its application as a thermal protection
system for an atmospheric entry vehicle. In these scans, we seg-
ment fabric yarn material from the resin phase. We focus on three
physics quantities: fabric volume fraction, effective thermal con-
ductivity, and fluid permeability.

We introduce an uncertainty map (Fig. 3a) to visualize and
quantify uncertain regions within the image. We use the
probability map ϵ to calculate the voxel-wise uncertainty map
using the Shannon entropy. A voxel is most uncertain when it can
be assigned to any class with equal probability. Regions with high
uncertainty tend to occur at the boundaries between material
phases, as these are the voxels in the grayscale image that are the
most ambiguous for segmentation. While it is typical that the
uncertainty is concentrated near material phase boundaries, it
does not necessarily have to be so; CNNs can identify regions that

are nominally within a material but whose grayscale image values
suggest ambiguity in its assignment to that material. Additionally,
the standard segmentation contours (μ−σ, μ, μ+ σ) are overlaid
on the probability map as red, blue, and yellow lines, to illustrate
their respective class interface boundaries in the probability map
using a zoomed-in image section (Fig. 3b).

This segmentation uncertainty affects different physics simula-
tions differently, as we illustrate in Fig. 3c for volume fraction and
effective thermal conductivity, with both physics quantities
normalized to their mean values. The volume fraction is the
natural outcome of image segmentation, as it does not require a
physics simulation to calculate and therefore has no potential
amplifications or nonlinear interactions with the physics model.
Thermal conductivity, however, is more sensitive to small
changes in the geometry, as previously illustrated in the insets
of Fig. 2i. The addition of only a few voxels to a high conductivity
material may connect previously isolated regions, adding a new
pathway for heat conduction and drastically increasing the
effective thermal conductivity. Fig. 3c shows this to be the case, as
the uncertainty distribution in thermal conductivity is nearly
twice the uncertainty in volume fraction, with the physics
interactions amplifying the uncertainty distribution.

In spite of their varying uncertainty magnitudes, both thermal
conductivity and volume fraction follow a Normal distribution.
We performed eleven simulations to produce the data points in
Fig. 3c. Calculated using only the standard segmentation results
(black and green markers), the CDF (solid curves) adequately
captures the propagation of segmentation uncertainty to these
two physics quantities. We found that the extra percentile
segmentation simulation results (red markers), which were not
used to calculate the CDF, fall on the CDF curves. Thus, the
physics quantity uncertainty distribution that follows this Normal
distribution can be adequately represented with only three
physics simulations. This outcome validates our choice of this
characteristic distribution.

However, three physics simulations are not adequate for fluid
permeability, which is better approximated by a beta distribution
(Fig. 3d). We hypothesize that the non-Normal uncertainty
distributions are often the result of nonlinear physics interactions.
For instance, the characteristic Normal distribution suggests that
it is possible to have negative permeability, which is physically
impossible. In this scenario, we needed to perform 10 percentile
segmentations and physics simulations to acquire the uncertainty
distribution.

Graphite electrodes in lithium-ion batteries. For the next
exemplar, we studied two visually distinct CT scans of graphite
battery electrode microstructures: Electrode I (E1, Fig. 4a) and
Electrode II (E2, Fig. 4e), where the segmented class describes the
particle phase. This exemplar was selected to explore the role that
image quality has on segmentation uncertainty. Subjective visual
inspection of these two images suggests that the E2 image is
sharper, with more visually distinct particles, while E1 has much
less contrast between the particle and void phases and has blurrier
edges. This subjective assessment is confirmed with the blind/
referenceless image spatial quality evaluator (BRISQUE)48,49,
where E1 scores a 159 and E2 scores a 125 (where a smaller
BRISQUE score indicates superior perceptual image quality).
Additionally, the grayscale histograms of each image (Fig. 4b, f)
confirm this assessment, with E1 showing a much broader and
single-mode distribution. It would be quite difficult to choose a
simple threshold value for image segmentation based solely off of
the histogram for E1. Given the qualitative and quantitative image
quality differences between these two electrodes, we hypothesized
that a credible segmentation uncertainty quantification approach
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Fig. 3 Segmentation uncertainty in a woven composite material. a Graphical 2D representation of uncertainty, with the highest uncertainty occurring near

material boundaries. b Visualization of the standard segmentation contours in a zoomed-in region of the probability map that uses the same slice plane

shown in (a), where the red, blue, and yellow contours are the standard segmentations, μ − σ, μ, and μ+ σ, respectively. c CDF for two physics quantities,

thermal conductivity (circles) and volume fraction (triangles), highlighting that some physics quantities are more sensitive to segmentation uncertainty

than others. d CDF of fluid permeability, which exhibits a non-Normal distribution.

hf
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Fig. 4 Segmentation uncertainty in two graphite electrodes for lithium-ion batteries. Electrode I (a–c) and Electrode II (e–g). a, e 2D slices of the 3D

X-ray CT image. b, f Histogram of voxel intensities for the whole image (gray), for voxels segmented as particle (red), and for voxels segmented as void

(green). The BRISQUE image quality score is overlaid on the histograms and quantitatively measures the perceptual quality of an image, with a lower score

indicating superior image quality. c, g Segmentation in transparent orange overlaid on the original 2D image. d, h Uncertainty distribution for both electrode

images, with electrical conductivity in (d) and tortuosity in (h), both relative to their mean values.
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should report a wider uncertainty distribution for a lower quality
image such as E1.

It is worth noting that the CNN is performing a non-trivial
segmentation. Gray histograms in Fig. 4b, f show the overall
distribution of grayscale values for each image. For simple
thresholding, the histogram would ideally exhibit a bimodal
distribution, and the valley between the two peaks would be
chosen as the threshold value. The red and green histograms
represent the grayscale values that the network assigned to the
particle and void classes, respectively. If a simple threshold had
been used, then there would be a sharp vertical delineation
between these two histograms. Instead, there is a region of
grayscale values showing significant overlap between particle and
void phase assignments. The overlap highlights the fact that the
CNN is not simply a method for calculating a grayscale threshold;
it is actually learning shapes and features in the image.
Interestingly, the overlapping region is larger for the lower
quality image (E1), confirming that the segmentation of this
image is more difficult. Finally, the accuracy of the CNN
segmentation is highlighted in Fig. 4c, g which show the μ
percentile segmentation overlaid on the grayscale image. While
the segmentation is accurate for both images, the accuracy is
qualitatively better for the higher quality E2 image.

We chose to characterize two physics quantities relevant to
battery performance: effective electrical conductivity and effective
tortuosity, whose respective uncertainty distributions are shown
in Fig. 4d, h relative to their mean values. The characteristic
Normal distribution captures the uncertainty in electrical
conductivity well for both electrodes (Fig. 4d), with only the tails
deviating slightly from the Normal distribution values. However,
the tortuosity uncertainty distribution follows the characteristic
distribution less closely (Fig. 4h). For both E1 and E2, the
characteristic distribution overestimates the data in the
distribution tails.

Even more important are the relative uncertainty distributions
between E1 and E2 for both physics quantities. As expected, the
lower-quality image E1 has higher uncertainty than E2 for both
the electrical conductivity (22.2% higher standard deviation) and
the tortuosity (58.7% higher standard deviation). This discre-
pancy is direct evidence that EQUIPS is capturing the uncertainty
associated with image quality (both noise and edge sharpness)
and is propagating the uncertainty through the governing
physical equations to the physics quantities. Finally, this exemplar
provides credibility to EQUIPS, as our results intuitively correlate
to both the visual assessment of the quality of the two CT scans
(as blurry and sharp, respectively) and their verified BRISQUE
scores.

Human torso. In our final exemplar, we focus on the segmen-
tation and simulation of both the spine and aorta from a human
torso. A MCDN is used for this exemplar rather than the BCNN
because of its ability to perform multi-class segmentations, but
also to highlight the flexibility of EQUIPS, which can work with a
variety of segmentation algorithms. We show the spine and aorta
as green and orange, respectively, in 2D CT stacked slices to
illustrate their location in the 3D image (Fig. 5a). A 3D repre-
sentation of the μ-percentile segmentation of the spine and aorta
class combination is shown in Fig. 5b. While simulations for each
of these component organs are performed independently, this
exemplar highlights the ability of our MCDN-based approach to
perform multi-class analysis, segmenting and assessing the
uncertainty of multiple organs simultaneously.

We begin with the spine, where the effective axial Young’s
modulus is the scalar physics quantity. Full-field vertical and
lateral displacements are visualized in Fig. 5c, d, respectively.

Because of the intricately complex structure of the spine, which is
comprised of irregular bone segments (vertebrae) connected by
small joint regions, this exemplar shows more non-trivial
nonlinear solution results than the previous exemplars. This
connectivity results in a complex load path that admits numerous
rotations of individual vertebrae, with the second vertebra from
the bottom showing the highest vertical displacement and the
fifth vertebra giving a negative displacement (net downward
movement) in the anterior portion. The complex interconnec-
tions also result in a lateral bowing displacement on the same
order of magnitude as the applied vertical displacement.

The complex spinal load path and displacements predictably
lead to complex interactions between segmentation uncertainty
and physics simulations, with the modulus distribution estimates
shown in Fig. 5e. To accurately resolve the non-trivial physics
uncertainty distribution, we ran 25 percentile segmentation
simulations rather than the 10 used in previous exemplars.
Clearly, the Normal distribution is a particularly poor fit to the
simulation data. A half-Cauchy distribution fits much better
because the additional voxels segmented as bone above the 75th
percentile appears near the free-moving joint regions of the spine,
significantly stiffening up the load path. In this case, not all bone
is created equal as it contributes to the effective stiffness of
the spine.

The aorta investigation focuses on the risk of abdominal aortic
aneurysms, quantified by the ratio of the vessel wall area above a
threshold shear stress (δ

τ
, yellow regions in Fig. 5f)50. A second

physics quantity that we explore is the ratio of outlet flow rates
between the side vessel branches and the main aorta (Fig. 5g).
Unlike the previous examples, the physics quantities in this
exemplar are transient, as they are driven by a time-dependent
pulsatile pressure gradient (gray curve in Fig. 5g).

Because of the relatively high flow rates, it takes at least four
full pulse periods to reach a pseudo-steady-state flow solution, as
shown by the flow-rate ratio in Fig. 5g. Instead of CDFs, which we
have shown for scalar and steady-state physics quantities
previously, we represent the uncertainty in this flow-rate ratio
as a set of transient curves for each of the three standard
segmentations, with the orange shaded region representing the
μ ± σ uncertainty estimate. Larger percentile segmentations lead
to a higher flow-rate ratio, as the added aorta voxels more
significantly increase the available vessel flow area for the smaller
side-branch vessels than the vertical main branch. Inertial effects
of the flow additionally lead to both smoothing and delay in the
peak of the flow-rate ratio compared to the applied inlet pressure.

Of all of the physics quantities up to this point, the aorta wall-
shear-stress threshold ratio, δ

τ
, shows the most complex (and

initially counter-intuitive) interactions with segmentation uncer-
tainty. Figure 5h shows the calculated ratio for each of the 11
calculated percentiles over the final pressure pulse, with line color
representing the simulation’s percentile segmentation and thick
solid curves representing the standard segmentations. While the
behavior and trends during the peak of the flow, where the ratio is
the highest, are monotonic and intuitive, the ratio later in time
gradually becomes increasingly non-monotonic with the percen-
tile segmentation. Surprisingly, the μ-percentile segmentation’s
ratio crosses outside the bounds calculated from the (μ ± σ)-
percentile segmentations. This result is unexpected but shows the
sensitivity of propagating segmentation uncertainty in image-
based simulations to calculated physics quantities, particularly
when the physics model is complicated and nonlinear, such as the
Navier–Stokes equations at a high Reynolds number.

To help further illustrate this critical result, the region between
the (μ+ σ)- and (μ−σ)-percentile segmentation ratio curves are
shaded dark gray and the region between the 10- and 90-
percentile segmentation curves is shaded light gray. At the ratio
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peak, the behavior is intuitive (i.e., monotonic) with the shaded
regions enveloping all their respective curves. However, later in
time, the ratio gradually becomes increasingly non-monotonic
with percentile segmentation. At t= 7.8 s the 10- and 90-
percentile segmentation ratios fail to bound other percentile
segmentation ratios and ultimately intersect each other moments
later. Moreover, each ratio becomes progressively intertwined
with others, such that it becomes difficult to predict how a new
percentile segmentation ratio calculation would fall on this graph.

The δ
τ
curves portrayed in Fig. 5h emphasize the caution

required in bounding segmentation uncertainty using only a few
simulations. In the first two exemplars, the results are monotonic
with increasing percentile segmentations, and the approximation
of the uncertainty distribution using a CDF is representative.
However, that does not have to be the case with more
complicated models. For example, simply using (μ ± σ)-percentile
segmentations to bound the segmentation uncertainty not only
fails to encompass all of the intermediate percentile values, it also
fails to capture the mean behavior. While this does not invalidate
our approach to segmentation uncertainty quantification, it does
urge caution in blindly performing simulations for only the
standard segmentations for a new exemplar without first checking
more intermediate segmentations.

Discussion
In this work, we developed EQUIPS, a framework for quantifying
image segmentation uncertainty and propagating that uncertainty
to physics simulations to create uncertainty distributions for
physics quantities. We demonstrated the general value and flex-
ibility of EQUIPS in a multi-disciplinary context by using three
carefully chosen exemplars. First, we used a woven composite

material to show that EQUIPS can capture varied uncertainty
distributions for different physics quantities, including both
Normal and non-Normal distributions. Second, we used a battery
electrode to show that lower-quality images have higher seg-
mentation uncertainty than higher-quality images. Third, we
applied EQUIPS to both time-dependent and multi-class datasets
in a medical context. In doing so, we further discovered that
physics simulations can amplify or suppress segmentation
uncertainty in both linear and non-linear manners, leading to
unpredictable results and requiring caution when simply propa-
gating lower and upper segmentation uncertainty bounds to
physics quantities.

We use a characteristic distribution, chosen as Normal dis-
tribution, to quickly approximate the underlying uncertainty dis-
tribution of a physics quantity using only the standard
segmentations, which minimized the number of physics simulations
necessary to recover a physics quantity uncertainty distribution
from the probability map. If the characteristic distribution fits the
data points well, then additional image-based simulations are not
necessary. However, when the characteristic distribution fails to
adequately capture individual physics quantity data points, then the
probability map must be probed further. Using this rapid approach,
we show that estimating the uncertainty distribution using the
characteristic distribution works wells for some physics quantities.
For example, thermal and electrical conductivity calculated from
image-based simulations of the woven-composite material and
battery electrodes both fit the Normal distribution nicely. However,
we also show that the characteristic CDF for permeability of the
woven composite and tortuosity of the battery electrodes poorly
matches the distribution tails. Thus, EQUIPS is promising but is
currently system- and physics-quantity-dependent. Nevertheless,
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h

100 mm

Fig. 5 A multi-class, multi-physics uncertainty analysis of a CT scan of a human torso. a 2D slices of the CT image labels for the spine and aorta overlaid

in green and orange, respectively. b A 3D visualization of the μ-percentile segmentation of both classes (spine and aorta). Visualization of spine axial

compression simulation showing c vertical displacements, d lateral displacements, and e the resulting uncertainty distribution in the effective Young’s

modulus, including distribution estimates. f Visualization of the wall shear stress in the aorta resulting from a flow simulation. g Prescribed aorta inlet

pressure profile (gray) overlaid on the time-dependent outlet side-to-bottom flow rate ratio, including uncertainty bounds. h Aorta wall-shear-stress

threshold ratio for each percentile segmentation, with the standard segmentations shown as thick solid curves. The dark gray-shaded region emphasizes

the curves bounded between (μ+ σ)- and (μ−σ)-percentile segmentations, whereas the light gray-shaded region highlights the space between the 10- and

90-percentile segmentations.
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the standard segmentations provide an excellent starting point for
quantifying and propagating segmentation uncertainty to a physics
quantity in image-based simulations.

Furthermore, in the medical exemplar, we show that the
uncertainty distribution is non-trivial and can result in non-
monotonic results. This is direct evidence that slightly changing
the image segmentation can have drastic changes in the calculated
physics quantities. Consequently, we caution against ad-hoc
approaches9,26,47 at bounding uncertainty using only a handful of
segmentations. Even within EQUIPS, the validity of the char-
acteristic distribution must first be verified for a new exemplar
using more percentile segmentations. However, we conjecture
that, once the monotonicity and shape of the resulting distribu-
tion are confirmed for a specific material class and simulation
type, a simpler approach is warranted for future similar images.

In this work, we use CNNs to probe image segmentation
uncertainty through Monte Carlo sampling of the network, but
CNNs are not a requirement in our workflow. Alternative
methods of generating multiple image segmentation samples
include the probing of manual segmentation9,51 and Bayesian
Markov chain Monte Carlo52 algorithms. While we believe that
CNN-based segmentation approaches are generally superior to
these other algorithms, some of these approaches may already be
in heavy use and their replacement with CNNs would be time-
consuming. To quantify segmentation uncertainty using alter-
native segmentation algorithms, each of their output segmenta-
tions could be combined into a probability map by replacing the
CNN model inferences in Fig. 2f with the multiple-image seg-
mentations produced by these algorithms. For manual image
segmentation, probability maps could be generated by having
multiple subject matter experts each segment the image, which
would then be combined into a probability map. However, there
is a potentially unreasonably large overhead in having enough
experts segment images to generate a statistically relevant prob-
ability map. In contrast, segmentation approaches such as ran-
dom walker53 and trainable Weka segmentation54 return a voxel-
wise probability map that can replace the probability map in our
workflow (Fig. 2g), eliminating the need to generate multiple
images segmentation samples. Although we have not demon-
strated these approaches, replacing the CNN in our workflow
with any of these methods would be relatively straightforward,
and this plug-and-play feature of EQUIPS expands our work-
flow’s applicability beyond the requirements of neural networks.

In this exploration of segmentation uncertainty, we did not
differentiate between the effects of aleatoric uncertainty (due to
probabilistic events) and epistemic uncertainty (due to uncer-
tainty in system information). Instead, we explored the combined
effects in propagating segmentation uncertainty to physics pre-
dictions from image-based simulations. Furthermore, our seg-
mentation uncertainty investigation focuses on segmentation
uncertainty on a per-voxel level. However, it could be advanta-
geous to understand correlations between the uncertainties of
neighboring voxels. Future work on segmentation uncertainty can
explore both of these avenues and many more.

In discussing the human torso, we introduced the concept of a
multi-class image, one that includes more than one segmented
phase. However, in our physics calculations for the torso, each
segmented class was treated independently. A generalized
approach to probing the segmentation uncertainty of multi-class
images, where the physics calculation uses all of the classes in the
image, is available in the supplementary information.

As we have shown, plausible changes to segmentations of
image data can have a significant influence on physics quantities.
This startling revelation suggests that segmentation uncertainty
must be included in future image-based simulations to quickly
determine whether the underlying governing equations are

sensitive to image segmentation or image noise. Image-based
simulation workflows with established credibility will spark future
innovation in numerous new applications, including reducing
drug-development time55, developing patient-specific cancer
treatments7,9,56,57, in digital twins, and in qualifying additively
manufactured components. While image collection and proces-
sing techniques will only improve, this work will set the foun-
dation for realizing the impact that image segmentation
uncertainty has on the uncertainty distributions of physics
quantities from image-based simulation.

Methods
Convolutional neural networks. In this work, we use both MCDNs39 or Bayesian
convolutional neural networks (BCNNs)58 to automate the task of CT segmenta-
tion. Each model is implemented with a V-Net architecture27 commonly used for
3D image segmentation. The main structural components are described as follows:
a V-Net first downsamples the input CT scan volume through multiple resolutions,
with each resolution containing convolutional filters ultimately resulting in a larger
receptive field. Copies of the resulting outputs of each of these downsampling
layers are passed on via skip connections to an upsampling half of the network as
features in order to minimize information loss that results from downsampling.
After symmetric upsampling, using deconvolutional layers of complementary size
to the paired downsampling layer, the resulting output from all of the convolu-
tional layers is of the original input size. Finally, a voxel-wise sigmoid or softmax
activation function is applied to the volume, resulting in real-valued output for
each voxel with a value between 0 and 1 for each class.

Segmentation uncertainty is inherently captured in both networks. In MCDNs,
dropout layers that remove the output from a randomly selected subset of nodes in
the neural network during each calculation are active during training (to mitigate
overfitting) and during inference (to introduce variance in the model’s predictions).
The standard deviation over many model inferences for the same input is a
measure of the model’s uncertainty. In contrast, BCNNs frame the process of
learning the network parameters as a Bayesian optimization task and, instead of
point estimates, they learn a set of parameters—in most cases the mean and
variance that define a Normal distribution over each network weight. Intuitively,
the magnitude of the standard deviation of every weight’s distribution captures
how uncertain the network is for that specific weight. By sampling the network
multiple times on the same input, we effectively sample the network weight space.
The uncertainty is then quantified in the output space of the network by calculating
the variability in the voxel-wise sigmoid outputs over multiple samples of the
weight space.

The BCNN46 combines the concepts of a BNN, the V-Net architecture, and
several deep learning advances in training paradigms to produce a model capable of
binary segmentation. The BCNN places a Gaussian prior distribution over each of
the weights in the upsampling layers of the V-Net architecture. These distributions
are then optimized to their final values through iterative training with a process
known as Bayes by Backprop59. Bayes by Backprop introduces a physics-inspired
cost function known as variational free energy, which consists of two terms. The
first term is the Kullback–Leibler divergence, which measures the complexity of the
learned distribution against the Gaussian prior distribution. The second term is the
negative log-likelihood, which measures the error with respect to the training
examples.

For training each model, we are faced with memory constraints imposed by
GPUs, and we randomly sample uniformly sized subvolumes from the large CT
scans to fit the model on the GPUs. For inference, we deduce on CT scan
subvolumes (with some overlap) and stitch the results together to generate a
complete segmentation prediction, as in LaBonte et al. 46. We generate 48 such
predictions for each CT scan (Fig. 2f). Nominal predictions are calculated by
turning off dropout in the MCDN and using the mean value of all weights in
the BCNN.

Neural network training and inference were performed on two NVIDIA V100
GPUs with 32GB memory each.

Probability maps and segmentation uncertainty. Consider a collection of N
image segmentation samples of a 3D image in the set of classes C= {1, 2,…, nc}.
The probability map, ϵv,i, for voxel v and class i is calculated from these N image
segmentation samples using

ϵv;i ¼
1

N
∑
N

k
pkv;i: ð1Þ

Here, pkv;i is the binarized value of voxel v in class i in the kth image segmentation

sample, where pkv;i ¼ 1 if v is in the segmented class and pkv;i ¼ 0 if not. For a binary

image (nc= 2) we only consider a single probability map for class i= 1, ϵv.
Segmentation uncertainty is quantitatively defined from the probability maps

using the Shannon entropy measure:

HðϵvÞ ¼ � ∑
i2C

ϵv;ilog 2ðϵv;iÞ=log 2ðncÞ; ð2Þ
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where log 2ðncÞ is utilized to normalize the uncertainty between 0 and 1. After
normalization, a Shannon entropy equal to 1 indicates that the voxel is significantly
uncertain, whereas values close to 0 are highly certain. Moreover, we can also
quantify the segmentation uncertainty on a per-class basis using

Hðϵv;iÞ ¼ �ϵv;ilog 2ðϵv;iÞ=log 2ðncÞ: ð3Þ

Additional in-depth descriptions and demonstrations of the EQUIPS workflow
for multi-class images (nc > 2) can be found in the Supplementary Information.

Discretization. For the woven composite and medical exemplars, our physics
simulation code requires a surface-conformal 3D volumetric mesh (discretization)
of the simulation domain. First, a surface mesh is created from the images using the
Lewiner marching cubes algorithm implemented in Python’s scikit-image. This
algorithm is applied directly to the probability map using a contour level set equal
to the percentile threshold value. By applying the marching cubes algorithm to the
real-valued probability map, the generated surface mesh is smooth rather than the
stair-stepped mesh that would result from applying to a segmented data set. The
resulting surface mesh is exported to the Standard Tessellation Library (STL)
format.

We create volumetric meshes using the conformal decomposition finite-element
method (CDFEM)60, implemented in Sandia’s Sierra/Krino code. First, a
background tetrahedral mesh of the entire simulation domain is created at the
desired mesh resolution using Cubit 15.5. Next, the STL file surface mesh is
overlaid on the background mesh and decomposed using CDFEM.

Woven composite. A compression-molded silica phenolic composite was used for
imaging. The woven composite material is composed of multiple layers of an
8-harness silica fiber cloth (Refrasil) impregnated with a phenolic resin (SC-1008,
Durite) and pressed/cured according to Durite manufacturing specifications. It was
imaged via X-ray computed tomography at a 7.3 micron resolution with a domain
size of 616 × 616 × 979 voxels.

For segmentation, the BCNN was trained using one full CT scan example with a
manually generated label. We divided the scan into 64 subvolumes. For training, we
used 54 subvolume examples and held 10 for model validation. The model was
trained for five epochs with a learning rate of 0.001, and used 64 × 128 × 128 voxel
subvolumes of inputs, with a batch size of 8. The BCNN was given a zero mean,
unit variance Gaussian prior and a Kullback–Leibler loss coefficient introduced at
epoch 2, increasing by 0.25 per epoch thereafter.

Effective thermal conductivity is calculated by solving the steady-state Fourier’s
Law in three dimensions. The matrix is isotropic with thermal conductivity of
0.278W/(m ⋅ K), while the fabric material is transversely isotropic with thermal
conductivity of 4.0W/(m ⋅ K) in the fabric in-plane direction with half that in the
fabric-normal direction. A temperature gradient is applied in the out-of-plane
direction using Dirichlet boundary conditions, and there is zero flux through all
other boundaries. The effective thermal conductivity is calculated from the mean
heat flux through one of the boundaries divided by the imposed temperature
gradient.

Permeability of the fabric is calculated by solving for Stokes flow around the
fabric phase (assuming the matrix is unfilled). A pressure gradient is imposed in
the out-of-plane direction with no-slip boundary conditions imposed on the fabric
surfaces and no-flux boundary conditions on the other external boundaries.
Permeability is calculated from the resulting fluid flux on an external boundary, the
porosity, and the imposed pressure gradient.

All physics simulations are performed using Sandia’s Sierra/Aria Galerkin finite
element code.

Graphite electrodes in lithium-ion batteries. E1 and E2 are commercially
available Lithium-ion battery electrodes imaged using X-ray computed tomo-
graphy. In particular, E1 and E2 represent Electrode IV13 and Litarion26 graphite
datasets, respectively. E1 has a voxel size of 0.325 microns and an image size of
1100 × 1100 × 194, while E2 has a voxel size of 0.1625 microns and an image size of
1100 × 1100 × 405.

We trained two BCNN models, one with each of the E1 and E2 battery
examples and validated each model using the same examples, but flipped along the
x-axis with manually generated labels. Each model was trained for three epochs
with a learning rate of 0.001. The inputs in one batch size consisted of
88 × 176 × 176 voxel subvolumes. The BCNN used a zero-mean-unit-variance
Gaussian prior and a Kullback–Leibler loss coefficient that started at 0.33. After
each epoch, the loss coefficient increased by 0.33.

An in-house finite-volume method code developed by Mistry et al. 61 solves
Laplace’s equation for tortuosity and electrical conductivity separately, using a
structured voxellated grid (implying that the discretization step described above is
not necessary). Simulations involving E1 and E2 are performed on a subdomain
size of 84.5 × 84.5 × 68.575 and 84.5 × 84.5 × 65.8125 μm, respectively. Laplace’s
equation is solved for both tortuosity and electrical conductivity, with a
nondimensional conductivity value of unity for the transporting phase (pore space
for tortuosity, particle phase for conductivity) and a value of 10−6 for the non-
transporting phase. A potential gradient is applied using Dirichlet boundary
conditions on opposing boundaries with no flux on the remaining boundaries. The
effective transport property is calculated by dividing the resulting flux by the

imposed potential gradient. Similarly, tortuosity is calculated as the porosity over
the effective transport property.

Human torso. Our medical data is taken from an open-source database of
anonymous patient medical images consisting of 3D CT scans and manual seg-
mentations of the chest/abdominal region62. Scan 2.2 is used for this exemplar,
which has a dimension of 512 × 512 × 219 voxels and per-voxel resolution
0.961 × 0.961 × 2.4 mm.

The MCDN is used for this exemplar because of its ability to perform multi-
class (i.e. multi-organ) segmentation, whereas the BCNN currently supports one-
class binary segmentation (suitable only for a single organ/material). The model is
trained using two labeled examples (scans 2.1 and 2.2) that were normalized and
transformed into logarithmic space. Six subvolumes of 64 × 192 × 192 voxels were
used for each image, four down- and up-sampling blocks in the V-Net architecture,
and a dropout rate of 0.1.

Effective Young’s modulus in the axial (vertical) direction is calculated by
solving for the quasi-static conservation of linear momentum using Sandia’s Sierra/
Aria Galerkin finite-element code. The bone is considered to be a linear elastic
material with bulk modulus of 4.762 GPa and Poisson’s ratio of 0.22. The aorta and
other surrounding tissues are omitted from the simulation. The top of the spine is
held fixed in space, while a prescribed vertical displacement of 10−4m is applied to
the bottom spine surface. Young’s modulus is calculated using the normal force on
the bottom surface, the applied displacement, and the domain length.

Aortic blood flow simulations were performed using Sierra/Fuego. The
incompressible Navier–Stokes equations were solved using a Newtonian
constitutive model with dynamic viscosity μ= 0.003 kg ⋅ m−1

⋅ s−1 and blood
density ρ= 1060 kg ⋅ m−3 63. No-slip boundary conditions are enforced on the
aorta walls and zero-pressure boundary conditions at the outlet surfaces. The
inflow pressure is transient to mimic physiological circulation patterns and is
estimated from Benim et al. 63 using the Hagen–Poisuille equation to achieve a
time-averaged volumetric flow rate of 8 L/min. Simulations are initialized with a
stationary fluid and are performed for 10 complete pulses to achieve a pseudo-
steady-state flow profile.

We calculate two physics quantities from these aorta simulations. First is the
flow-rate ratio, which is the ratio of the flow rate through the smaller side vessels
branching off the main abdominal aorta to the flow rate through the main aorta
branch vessels. The second is the wall-shear-stress threshold ratio δ

τ
. We compute

the wall shear stress on the aorta walls and identify any area with a stress
measurement above 0.2 Pa, which indicates a significant risk for aneurysm50. This
value is then normalized by the total aorta surface area for the physics quantity that
we investigate. The aortic wall shear stress is relevant as an indicator for
aneurysms50. Thus, this wall-shear-stress threshold ratio indicates the percentage
of the aorta wall vulnerable to aneurysms.

Data availability
The probability maps and simulation results for each of the exemplar problems has been

deposited in the Mendeley Data database at https://doi.org/10.17632/g3hr4rkb4864.

Probability maps are available as Numpy arrays and each physics quantity uncertainty

distribution is available as a CSV file.

Code availability
The Bayesian Convolutional Neural Network (BCNN) source code is available on

GitHub: https://github.com/sandialabs/bcnn65. The Monte Carlo Dropout Network

(MCDN) source code is available on GitHub: https://github.com/sandialabs/mcdn-3d-

seg66. A python Jupyter notebook demonstrating the entire EQUIPS workflow on a

simple manufactured image is available64.
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