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Abstract

As low-field MRI technology is being disseminated into clinical settings, it is important
to assess the image quality required to properly diagnose and treat a given disease. In this
post-hoc analysis of an ongoing randomized clinical trial, we assessed the diagnostic utility of
reduced-quality and deep learning enhanced images for hydrocephalus treatment planning.
Images were degraded in terms of resolution, noise, and contrast between brain and CSF
and enhanced using deep learning algorithms. Both degraded and enhanced images were
presented to three experienced pediatric neurosurgeons accustomed to working in LMIC for
assessment of clinical utility in treatment planning for hydrocephalus. Results indicate that
image resolution and contrast-to-noise ratio between brain and CSF predict the likelihood of
a useful image for hydrocephalus treatment planning. For images with 128x128 resolution, a
contrast-to-noise ratio of 2.5 has a high probability of being useful (91%, 95% CI 73% to 96%;
P=2e-16). Deep learning enhancement of a 128x128 image with very low contrast-to-noise
(1.5) and low probability of being useful (23%, 95% CI 14% to 36%; P=2e-16) increases CNR
improving the apparent likelihood of being useful, but carries substantial risk of structural
errors leading to misleading clinical interpretation (CNR after enhancement = 5; risk of mis-
leading results = 21%, 95% CI 3% to 32%; P=7e-11). Lower quality images not customarily
considered acceptable by clinicians can be useful in planning hydrocephalus treatment. We
find substantial risk of misleading structural errors when using deep learning enhancement of
low quality images. These findings advocate for new standards in assessing acceptable image
quality for clinical use.

Keywords— Low Field MRI, Image Quality, Deep Learning, Risk Assessment, Hydro-
cephalus Treatment Planning
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1 Introduction

With an estimated 400,000 new cases each year, childhood hydrocephalus is the most com-
mon pediatric condition requiring neurosurgery globally. Over 90% of cases occur in low- and
middle-income countries (LMIC) [1]. In sub-Saharan Africa, approximately 180,000 infants per
year are affected [2]. Hydrocephalus is characterized by a build up of intracranial cerebrospinal
fluid (CSF) that in infants causes the head to enlarge. These infants need surgical treatment to
survive requiring intracranial imaging for planning. In planning surgery it is important to know
where the CSF is in relation to brain, and how many compartments are loculated where fluid
is trapped. An imaging technology capable of showing contrast between brain and CSF at an
appropriate resolution is required. We have previously suggested that a voxel size approaching
100 mm3 could be sufficient for planning treatment [3].

The brain is a body organ where the soft tissue and fluid encased within the skull have limited
alternatives for imaging. Ultrasound is only effective within the first year of life before skull
fusion closes the acoustical windows of the fontanels. The ionizing radiation associated with CT
poses exceptional risks to infants [4,5]; however, in sub-Saharan Africa CT is more prevalent than
MRI [6] due to its lower cost. Although MRI is the gold standard for pediatric neuro-imaging,
the high cost, strict siting requirements, and demanding maintenance schedule render high-field
cryogenic systems infeasible for most of the developing world [6–9].

According to a 2014 baseline country survey on medical devices conducted by the World Health
Organization, Uganda has 0.45 CT machines per million people and only 0.08 MRI machines
per million people. By comparison, a high income country such as the Netherlands, has 12 CT
and 12 MRI machines per million people (roughly 27 times more CT/million and 150 times more
MRI/million people) [6]. Placed in the context of new hydrocephalus cases per year, with rates at
least 10 times more per year in Africa than in Europe [1], the clinical need for globally sustainable
diagnostic imaging devices is clear. Low-field MRI devices have been recently developed that are
feasible for the developing world and show diagnostic promise for the treatment and management
of illnesses such as hydrocephalus [3, 10–12].

The quality of an MRI image ultimately depends on the signal-to-noise ratio (SNR) per voxel.
Higher field strength systems (>1.5 Tesla) can produce increased signal-to-noise pushing voxel
size as low as hundreds of micrometers [13]. Low-field systems (<0.1 Tesla) inherently suffer from
low signal-to-noise placing limits on achievable voxel size with typically more baseline noise than
most clinicians are accustomed to. Figure 1 demonstrates the difference in brain image quality
between a high-field (Figure 1A) and a low-field (Figure 1B) MRI system.

The adoption of low-field MRI into clinical practice depends largely on a longstanding and
recently growing body of evidence that higher image quality does not always lead to better
diagnostic accuracy or better patient outcome [14]. In clinical practice there exists a threshold
of image quality for specific pathologies, above which no further outcome-based value can be
observed [15]. It has been demonstrated that 0.5 Tesla MRI can be as diagnostically accurate as
1.5 Tesla MRI for a variety of diseases including central nervous system pathologies [16], heptic
lesions [17], and multiple-sclerosis [18]. It has also been shown that a 64 milli-Tesla MRI can have
comparable diagnostic accuracy to a 1.5 Tesla MRI for neoplasms and white matter disease [19].
Although the threshold of image quality required to plan effective hydrocephalus treatment has
not been previously explored, we hypothesized that the level of resolution, tissue contrast, and
SNR provided by CT or high-field MRI substantially exceeds this threshold.
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Figure 1: A comparison of the image quality between a high-field (3T) and a low-field (50 mT)
image of brain taken at the Leiden University Medical Center. A) A 512x512 resolution T1
weighted multi-slice turbo spin-echo image at 3T; B) A 128x128 resolution image at 50 mT. FoV:
230x230x175 mm, resolution: 1.8x1.8x3.5mm, TR/TE = 500 ms/20 ms, echo train length = 4,
acquisition time: 10 min 40 sec.

Machine learning techniques have previously been used to perform super-resolution enhance-
ment of low-quality MRI images. Interpolation based methods [20] are simple to implement
but lack prior information often resulting in blurring. Model-based methods [21–23] explore
the stochastic mechanism in the MRI generating process and model it with prior information;
nevertheless, the design of a suitable regularization for the model can be difficult. Learning-based
methods have the advantage of modeling and learning the mapping of low-quality images to
high-quality images from data alone [24–27]. Recently, deep learning has shown impressive
performance in the field of super-resolution of MRI [28–32].

In the present work, we assess the diagnostic utility of reduced-quality and deep learning
enhanced images for hydrocephalus treatment planning. We focus on the most common form of
infant hydrocephalus in sub-Saharan Africa – postinfectious [33]. This form of hydrocephalus
is uncommon outside of LMIC [1], and the only abundant high-resolution comparative images
are from CT. We developed an image utility assessment which was completed by three senior
neurosurgeons with extensive experience in the treatment and management of hydrocephalus in
low-resource settings [33–35]. Qualitative and quantitative measures of image utility are used to
classify images revealing the quality threshold for treatment planning of hydrocephalus in terms of
resolution, noise, and contrast between brain and CSF. We further evaluate how machine learning
can lead to misleading modifications during the enhancement of low-resolution imagery.
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2 Methods

Three experienced pediatric neurosurgeons accustomed to working in LMIC, with particular
experience in interpretation of postinfectious hydrocephalus imagery of African infants, were
chosen as participants in the image utility assessment. CT images were acquired from a reposi-
tory of 90 patients enrolled in an ongoing randomized clinical trial (median age of 3.1 months,
39% female [34]) and treated at the CURE Children’s Hospital of Uganda with post-infectious
hydrocephalus. The center-most image slice from each patient was chosen for the assessment as
either a test image (10 randomly selected, Figure S5) or a learning library image (remaining 80).
The images are 512X512 resolution with 0.4 mm pixel width (20.48 cm field of view). Each slice
is 5 mm thick.

The 10 test images were degraded in terms of resolution (number of pixels), noise, and contrast
between brain and CSF. An image parameter space, as shown in Figure 2A-B, was constructed
consisting of the variables: 1) resolution (32X32, 64X64, 128X128, 512X512); 2) contrast reduction
(20 levels between 0 and 1), 3) and noise added (20 levels between 0 and 1) resulting in 1,600
possible parameter combinations.

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.21.21260949doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.21.21260949
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Schematic of study. In A) the image parameter space describing all possible combinations
of noise, contrast between brain and CSF, and image resolution are visualized. There is likely
to be a region of parameter combinations yielding images which are useful for hydrocephalus
treatment planning (green volume), a region of parameter combinations that are not useful (red
volume), and region of uncertainty in between (orange volume). In B) we show a single plane
from image parameter space in which all images have 512X512 resolution. The lower right corner
has maximum contrast between brain and CSF and least noise considered in this study and the
upper left corner has the lowest contrast and most noise. In C) the starred image from panel B)
is chosen to be enhanced with a single encoder dual decoder (SEDD) architecture following the
DenseNet network described in [31, 36]. The output of such enhancement is seen in the upper
panel of D) with corresponding segmentation in the lower panel of D). The ground truth version
of the enhancement and segmentation from the undegraded original image is shown in E).

Resolution was down-sampled from the isotropic 512x512 image using bi-linear interpolation.
The averaging between pixels in bi-linear interpolation can be considered an approximation of a
partial volume effect.

Contrast between brain and CSF was reduced using histogram compression (Figure S6), an
algorithm developed specifically for this purpose. In histogram compression the histogram of
gray-scale values for brain and CSF are iteratively compressed into a smaller gray-scale bandwidth
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to simulate loss in tissue contrast.

Gaussian noise with mean equal to variance was added according to known noise characteristics
of CT images [37]. Since lower resolution images are more sensitive to noise, the noise added
was scaled by clinical inspection for each resolution so that both useful and not useful images
would exist in each resolution. The noise variance added was scaled by resolution as follows and
normalized to the maximum value: from 0 to 0.001 (32x32), 0 to 0.01 (64x64), 0 to 0.05 (128x128,
and 0 to 0.13 (512x512).

In [31, 32], deep learning networks took advantage of low-rank structural prior information to
enhance low quality images. Building on this work, we developed a deep learning network capable
of simultaneously enhancing and segmenting CT images of infant hydrocephalus that have been
artificially degraded. Following the DenseNet network described in [38], a single encoder dual
decoder (SEDD) architecture was used to enhance CT images that have reduced quality. Deep
learning networks, as shown in Figure 2C-E, were trained for two resolutions (64X64 and 128X128)
at seven locations in parameter space using library images. With noise added as the x-coordinate
and contrast reduction as the y-coordinate, networks were trained for both resolutions at: 1)
(0.3,0.3), 2) (0.6,0.3), 3) (0.3,0.6), 4) (0.6,0.6), 5) (0.9,0.6), 6) (0.6,0.9), 7) (0.9,0.9) (Figure S7).
The least degraded network is network 1. The networks were built by degrading the 80 library
images at each of the 14 network locations and training with the original undegraded image as
ground truth. After training, the 10 test images were degraded at the network locations and
enhanced generating 140 deep learning enhanced images.

From the 1,600 parameter combinations applied to the 10 test images, 420 cases were randomly
presented to the panel of experts along with all 140 deep learning enhanced images. The image
utility assessment was divided into two parts. In Part 1, the images were shown in 140 panels of
4 images each, as shown in Figure 3A. In each of the 140 panels, 1 image location was randomly
selected for an enhanced image and the other three were degraded images. The expert was not
told that there would be enhanced images. In each panel, the expert was asked to select which, if
any, of the 4 images are clinically useful for planning hydrocephalus treatment (see Supplementary
Methods for full instructions). Degraded images are classified as useful, uncertain, or not useful.

In Part 2, the experts were shown enhanced images in a side-by-side comparison with their
corresponding 512X512 non-degraded versions as seen in Figure 3D. The experts were asked to
assess whether the spatial errors in the enhanced version were acceptable or would alter treatment
decisions (see Supplementary Methods for full instructions). Enhanced images are classified as
either useful (useful in both Part1 and Part2), not useful (not useful in Part 1), or misleading
(useful in Part 1, but shown to have unacceptable error in Part 2).

The data from the three experts were combined by addition of scores at each data point
between Part 1 and Part 2. If all three experts agreed that a point was useful, this point received
a 3. If all experts agreed that a point was not useful this point received a 0. Uncertain images
received a score of either 1 or 2.

Univariate and multivariate logistic regression was used to investigate the ability of contrast,
noise, and contrast-to-noise ratio to predict image classification. A deviance statistic was used to
assess goodness of fit of the logistic regression models. The deviance of the model is a chi-squared
statistic which assesses the difference between the maximum log likelihood of the chosen model
and that of the null model (i.e. the average probability of a classification at a given resolution
being useful).
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3 Results

3.1 Part 1: What makes an image useful?

We first characterize the relationship between resolution, contrast, noise and usefulness. In
Figure 3A we show several degraded images, of which the lower left is enhanced by deep learning.
The left panel of Figure 3B shows how the contrast and noise of each image relates to the image
classification determinations at 64x64 resolution (see Figure S8 for full dataset results). The
solid contour lines in Figure 3B show lines of constant contrast-to-noise ratio between brain and
CSF averaged from the full dataset of images. In comparison, the dotted lines show constant
usefulness likelihood based upon a multivariate logistic regression model with contrast and noise
as predictors (p32X32 = 7e-6, p64X64 = 4e-27, p128X128 = 2e-17, p512X512 = 8e-32). Note that there
is qualitative agreement between the average contrast-to-noise contours and the lines of constant
likelihood that the image is useful. On the right of Figure 3B receiver operating characteristic
curves demonstrate that average contrast-to-noise and likelihood are both comparably effective
classifiers of image utility with areas under curves > 0.85 (curves for full dataset in Figure S9).

Since average contrast-to-noise appeared an effective classifier, Figure 3C shows that individual
image contrast-to-noise alone is a significant predictor of usefullness likelihood, stratified by
resolution. The black datapoint shows the usefullness likelihood of the 512X512 resolution brain
image from the 3 Tesla system in Figure 1A based on its contrast-to-noise ratio (CNR=13). The
cyan datapoint shows the same for the 128X128 resolution brain image from the 50 mili-Tesla
system in Figure 1B (CNR=4). Though the image generated by the 3T system has more than
3 times the resolution and CNR, both share a predicted usefulness likelihood of 1. For each
resolution, the raw classification data from Part 1 can be seen in the bottom four panels of
Figure 3C. The solid lines show the logistic regression model and the dashed lines show the 95%
confidence intervals around the fit.
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Predicted Part 1 Part 2

128x128 64x64 128x128 64x64 128x128 64x64

Useful 1 0.88 1 0.97 0.39 0.25

Not Useful - - 0 0.03 - -

Uncertain - - - - 0.46 0.65

Misleading - - - - 0.16 0.10

Part 1: Which is Useful? Part 2: Error acceptable?

E)

A)

B)

D)

F)

C)

Figure 3: (Caption next page.)
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Figure 3: (Previous page.) In A) we show an example panel from Part 1 of the assessment. The
lower left image is an enhanced image and all other images are degraded. The experts must
indicate which (if any) is useful. The left panel of B) shows raw classification data from Part 1 for
64x64 images. Solid lines are lines of constant contrast-to-noise ratio (CNR). Dashed lines show
lines of constant usefulness likelihood from the multivariate logistic regression. The right panel
of B) shows the receiver operating characteristic curves. In C) we show the univariate logistic
regression models for each resolution with CNR as the predictor. The bottom four panels of
C) show the raw classification data for each resolution. D) shows an example panel from Part
2 of the assessment. The left column of images are ground truth and the right column are the
corresponding enhanced images deemed Useful in Part 1. E) shows the usefulness likelihood curves
based on image CNR for the two enhanced resolutions. The triangles show the average CNR
for each network location before enhancement and the circles show the average CNR for each
network after enhancement. The table in E) shows the predicted probability of classification of
the enhanced images based on the Part 1 logistic models, the Part 1 classification of the enhanced
images, and the Part 2 re-classification of the enhanced images after comparison with ground
truth. In F) we compare the usefulness likelihood of the degraded images with the risk of a
misleading result if the image is enhanced based on image CNR for 128X128 images. The left
vertical axis shows the usefulness likelihood of the degraded image and the right vertical axis
shows the risk of a misleading result if the corresponding degraded image were enhanced. Risk of
misleading results is calculated to be 1 minus the usefulness likelihood of the enhanced images
based on a univariate logistic regression with CNR as the predictor.

3.2 Part 2: Is reconstruction error acceptable?

Next we investigate the effect of deep learning enhancement on image classification. Figure 3D
shows a side by side comparison of ground truth (left column) with corresponding enhanced
images (right column). Note the subtle errors in brain and CSF locations in the top right image
and the more substantial errors in the lower right image. Regardless of these spatial errors, CNR
is significantly increased by the enhancement network, as shown in the plot in Figure 3E where
average CNR of test images at each network location are shown before and after enhancement
using the logistic models developed in Part 1. These data predict very high usefulness likelihood
for enhanced images based on increased CNR. The table in Figure 3E shows that while the Part
1 classification of enhanced images does closely follow the prediction of high usefulness likeli-
hood, re-classification of enhanced images in Part 2 reveals that many enhanced images contain
errors that are not clinically acceptable. We use an additional classification of Misleading for
these images (i.e. images that were deemed Useful in Part 1, but had unacceptable errors in Part 2).

Since the logistic models developed in Part 1 do not describe the Part 2 classification, a new
logistic regression model was constructed for Part 2 with pre-enhancement noise and contrast
of images as predictors. Only contrast showed significance (Figures S10 and S11) so noise was
removed from the model. In order to compare the usefulness likelihood of a degraded image (Part
1) with the risk of misleading errors in an enhanced image (Part 2), an additional logistic regression
model with CNR as the predictor was computed based on Part 2 classification (Figure 3F). As
CNR increases, a 128x128 image is more likely to be useful in its degraded state (left vertical
axis) and less likely to be misleading if enhanced (right vertical axis). Note that there exists no
CNR value for which there is low usefulness likelihood of the degraded image and low risk of
generating a misleading image through enhancement.
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4 Discussion

4.1 Utility of Low CNR Images

The image quality threshold required for treatment planning of hydrocephalus is significantly
lower than the quality typically provided by CT or high-field MRI imaging systems. The results
in Figure 3B-C can be viewed in several different ways. CNR is a comparison between the
signal-to-noise ratio of two regions of interest. This implies that the true limiting factor of image
quality is per voxel signal-to-noise, for which high-field MRI has an inherent advantage over
low-field MRI. However, Figure 3B-C suggests that there are options for using low CNR or low
resolution images that may be advantageous. For a high-field system imaging infant hydrocephalus,
a short scan time is desirable, in which case resolution and signal-to-noise can be traded for a
faster scan. Alternatively, in the resource limited setting of an LMIC, a low-field MRI system
has the potential to provide equivalent diagnostic information at a significant reduction in cost
and complexity. The trade-off for this low cost and complexity is lower signal-to-noise and in-
terpretability. It is the interpretability that sets the threshold for the lower bound of signal-to-noise.

The usefulness likelihood for the 3T (CNR = 13) and 50 mT (CNR = 4) MRI images featured
in Figure 1 are indicated in Figure 3C. Although the visual quality of the two images is strikingly
different, they are predicted to have the same utility for hydrocephalus treatment planning.

To put this in the context of global sustainability, the acquisition cost of the 50 mT system
used for producing the image in Figure 1B is less than $20 thousand USD. A 3T system costs at
least an additional $2.8 million USD (excluding siting, maintenance, and consumables) and it can
provide over three times the CNR (Figure 1A). However, for the cost of a single 3T system, 150
low-field MRI systems could be placed throughout the region, providing increased access to the
hydrocephalus patient population without compromise in diagnostic utility.

In addition to being a substantial global health need for children’s medicine, hydrocephalus is
also an exceptionally straightforward technical challenge for low-field MRI systems. In the vast
majority of hydrocephalic children, there is no need to differentiate contrast within the brain
parenchyma for diagnosis, triage, monitoring, or treatment planning. For MRI the signal strength
from the water-based CSF is the strongest signal within the head. Although our results support
substantial utility from images with reduced quality in hydrocephalus management, more complex
diagnostic and treatment decision-making in other diseases will pose additional challenges to such
technologies.

4.2 Enhanced Images: Benefit or risk?

Image enhancement appears to perform exceptionally well based on Part 1 data, as shown in
Figure 3E where even the worst network locations are more than 85% likely to be rendered useful.
However, data from Part 2 reveals that enhancement yields images that appear useful, but in fact
would mislead treatment decisions due to unacceptable errors in brain and CSF location. Subtle
features in the configuration of the CSF spaces, such as increased rounding of brain ventricles,
are important signs of increased intracranial pressure suggesting that surgery might be required
to improve CSF diversion through a shunt or endoscopic fenestration. If features such as these
are a product of the enhancement network and not indicative of the true condition of the disease,
clinicians may be led to make poor treatment decisions.

The key difference in using a degraded image versus an enhanced degraded image in a clinical
setting is the source of risk. A degraded image is either useful or it is not - the risk of using it to
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diagnose or treat disease rests with the judgement of the clinician. Enhanced images in this study
yield useful looking images 99% of the time, however 75% of these images are shown to have
uncertain utility or to be misleading after comparison with ground truth. The risk of enhancement
arises from the black box of the deep learning network. Furthermore, as shown in Figure 3F, there
is never a CNR for which there is low risk of producing a misleading image and low usefulness
likelihood of the unenhanced degraded image. This means that enhancing highly degraded images
can improve the usefulness likelihood, but with substantially increased risk of misleading results.
Since at 75% usefulness likelihood in a degraded image there exists a 14% chance of producing a
misleading image through enhancement, we found no scenario in which enhancement was safely
beneficial. Note also that the CNR of the 50 mT system studied had a very high useful likeli-
hood and would not have required enhancement. Yet acceptance of such unenhanced images as
shown in Figure 1B would constitute a cultural shift in current standards of diagnostic acceptability.

Machine learning can generate attractive images from patterns with highly degraded infor-
mation content. Philosophically, a learning library of other patient images enables utilization of
information not present in the individual case undergoing enhancement. Such learned information
brought to a new case image can be clinically misleading. This is a very different situation from
machine learning faces or objects, or diagnosis classification from images, where there is only one
correct match and the information required is already in the learning library. Hydrocephalus, as
in so many other pathological conditions, tends to produce a unique structural pattern for each
patient. For machine learning, automating the choice of a diagnosis is therefore very different
from reconstructing an unknown unique architecture. This fundamental issue implies that while
this study only employed one learning network architecture, this risk likely exists in other machine
learning strategies and great care should be taken when employing these methods for anatomic
reconstruction. A challenge for the machine learning community working with low-resolution and
low-contrast images is to improve interpretation while minimizing risk of clinical errors.

4.3 Limitations

This study has limitations. Only three experts participated in the assessment. The single
central slice from the image stack was chosen to demonstrate image quality and enhancement.
Only image quality concerns inherent to low-field systems such as noise and contrast were con-
sidered, while distortions in the low-field image were not. Only one deep learning network
architecture was employed and the number of training samples was relatively low (80). However,
the size of available image archives is typically not large for diseases unique to LMIC such as
post-infectious hydrocephalus in sub-Saharan Africa. A more complex machine learning strategy
could incorporate a 3D array of connected slices for enhancement and clinical review.

Although motivation for this study stems from the advent of clinical low-field MRI as a tool
for hydrocephalus treatment planning, the work was conducted with CT images. In high-resource
settings where low-field MRI is being deployed (such as intensive care units), CT remains the
high-resolution alternative of choice [11]. CT is the high-resolution modality most available in
LMIC, and currently the only available repository of postinfectious hydrocephalus images where
low-field MRI will soon be deployed. Note that we argue the potential benefits of low-field MRI
using only one example image in Figure 1B. This can be extended in the future as reliable low-field
MR image repositories become available. Nevertheless, the measures of image quality and utility
employed in this present work are applicable to any images without regard to underlying technical
modality.
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5 Conclusion

The true value of a clinical medical image is in treatment guiding information that it conveys
to those providing care and in the patient outcomes that result, rather than its visual appeal. We
have shown that lower quality images that are not customarily considered acceptable can be useful
in planning hydrocephalus treatment. In addition, image resolution and contrast-to-noise ratio of
brain and CSF predict the likelihood of a useful image for hydrocephalus treatment planning.
Although deep learning can dramatically improve the visual quality of a highly degraded image,
there is a substantial risk of misleading results, and algorithmic guidelines should be developed
to avoid structural alterations which are potentially hazardous to clinical interpretation. At
present, the most valuable low-resolution images may be less enhanced versions which maintain
the structural details undistorted by excessive deep learning processing; indeed, emerging low-field
MRI technologies are capable of producing useful images for hydrocephalus treatment planning
without enhancement. Our findings advocate for new standards in assessing the cost-effectiveness
of sustainable imaging technologies that can broaden global access to diagnostic imaging, and a
reconsideration of acceptable image quality for clinical use.
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7 Supplementary Methods

7.1 Part 1 Instructions and Examples

During Part 1 of the assessment, you will be shown CT images of infant hydrocephalus. The
images shown will be from a variety of different quality levels.

Your task will be to assess whether you think the images shown could be USEFUL to start
treatment in a low resource setting.

To make a selection of an image that you think IS useful click the button below the corresponding
image.

After you have reviewed all four images and made the desired selections, click the SUBMIT button
to log the data and generate four new images.

Thank - you for your participation.
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Figure S1: An example panel from Part 1 of the assessment showing A) An enhanced image with
resolution: 64X64, characteristics before enhancement of noise variance: 0.006 and contrast loss:
60%, and classification: Useful; B) Image with resolution: 64X64, noise variance: 0.001, contrast
loss: 71%, and classification: Not Useful; C) Image with resolution: 128X128, noise variance:
0.03, contrast loss: 0%, and classification: Uncertain; D) Image with resolution: 512X512, noise
variance: 0, contrast loss: 42%, classification: Useful.
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Figure S2: An example panel from Part 1 of the assessment showing A) Image with resolution:
512X512, noise variance: 0.05, contrast loss: 35%, classification: Uncertain. B) Image with
resolution: 512X512, noise variance: 0.1, contrast loss: 64%, classification: Not Useful. C) Image
with resolution: 64X64, noise variance: 0.003, contrast loss: 14%, and classification: Useful; D) An
enhanced image with resolution: 128X128, characteristics before enhancement of noise variance:
0.03 and contrast loss: 60%, and classification: Useful.

7.2 Part 2 Instructions

A selection of images shown during Part 1 of the assessment were low quality images enhanced
using library learning. You chose some of these images for the "useful" category. All enhanced
images contain errors.

In Part 2 of the assessment, you will be shown pairs of images, two at a time. Images on the left
will be high-resolution "ground-truth" slices of a particular case and images on the right will be
the enhanced version of the degraded image for the same slice and same case.

Would the error affect treatment in terms of risks and benefits? You will be asked to indicate
whether the error is acceptable by pressing the button associated with each pairing.
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Figure S3: An example panel from Part 2 of the assessment showing A) A ground-truth 512X512
CT image, and B) the enhancement of a degraded version of (A) with resolution: 128X128,
characteristics before enhancement of noise variance: 0.05 and contrast loss: 60%. Part 1
classification: Useful. Part 2 classification: Not Useful. C) A ground-truth 512X512 CT image,
and D) the enhancement of a degraded version of (C) with resolution: 64X64, characteristics
before enhancement of noise variance: 0.003 and contrast loss: 60%. Part 1 classification: Useful.
Part 2 classification: Useful.
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Figure S4: An example panel from Part 2 of the assessment showing A) A ground-truth 512X512
CT image, and B) The enhancement of a degraded version of (A) with resolution: 128X128,
characteristics before enhancement of noise variance: 0.02 and contrast loss: 60%. Part 1
classification: Useful. Part 2 classification: Uncertain. C) A ground-truth 512X512 CT image,
and D) the enhancement of a degraded version of (C) with resolution: 128X128, characteristics
before enhancement of noise variance: 0.02 and contrast loss: 60%. Part 1 classification: Useful.
Part 2 classification: Useful.

7.3 CT Images

There were 90 CT images used in this study. Of these, 10 were randomly selected as test
images and are shown in Figure S5. All degradations and enhancements presented in the image
utility assessment were performed on these 10 images. The remaining 80 images were used as a
learning library for the deep learning enhancement networks.
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Figure S5: The 10 randomly selected central slice test images chosen for the image utility
assessment.

7.4 Histogram Compression

Prior segmentation of brain and CSF for the 10 test slices is necessary in order to perform this
algorithm. Figure S6 shows an example of the histogram compression technique on a test image.
In this figure, the original image is shown at the top next to the histogram of gray-scale values for
CSF and brain. This is compared to histogram overlapping (middle) in which the entire histogram
for brain is translated so that it overlaps the histogram for CSF. While this does significantly
reduce contrast between brain and CSF, the displacement of histogram values for pixels bordering
brain and CSF creates a bright line at the interface of the tissues (gray scale values of CSF pixels
bordering brain are translated to higher gray scale values and gray scale values of brain pixels
bordering CSF are translated to lower gray scale values). This is not desirable as it highlights the
boundary. Histogram compression (bottom) reduces contrast without highlighting boundaries,
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which simulates an image generated with little contrast between tissues.

Figure S6: Example of the histogram compression algorithm. The original image (top) is shown
next to the histogram of brain and CSF gray-scale values. The yellow ‘*’ shows the extents of
CSF values and the purple ‘*’ shows the extent of brain values. Histogram overlap (middle)
creates bright lines at the boundary between brain and CSF. Histogram compression (bottom)
reduces contrast and eliminates the bright lines between brain and CSF by preserving the natural
gray-scale boundary on the histogram.

The histogram compression algorithm works by first finding the maximum and minimum
gray-scale values in both brain and CSF, as shown by the yellow and purple asterisks in Figure S6
at the top. From these points, the median gray-scale value is calculated for brain and CSF and
the distance between the medians is measured. Then, histogram values from the smallest CSF
bins are moved to the next largest bin and histogram values from the largest brain bin are moved
to the next smallest bin. The mean is measured again and the fractional change in the distance
between medians is considered the contrast adjustment. The process is iterated to the desired
contrast level. A contrast reduction of 0 corresponds to the distance between bins that exists in
the native image without histogram compression. A contrast reduction of 1 corresponds to the
case where medians of brain and CSF bins completely overlap (i.e. contrast has been reduced
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to the point where the difference between tissues can no longer be separated). This process was
inspired by the well-established algorithm of histogram equalization for increasing contrast in an
image, in which the histogram of an image is spread across as many gray-scale values as possible
[39,40].

7.5 Noise Degradation

The maximum noise added in parameter space was resolution specific. This is because noise
variance has a higher impact on lower resolution images since, in a sense, more information is
lost per corrupted pixel. The resolution specific levels were chosen experimentally by observing
the quality of the output images and attempting to choose a level that would demonstrate
the threshold between useful and not useful images. In parameter space, each resolution was
normalized to its maximum noise value and 20 levels between 0 (no noise added) and 1 (maximum
noise added) were used.

7.6 CNR

Since contrast, noise, and resolution are the factors in the image parameter space, contrast-to-
noise ratio (CNR) was selected as the quantitative measure of degraded image quality. Average
CNR across parameter space was generated by measuring the CNR between brain and CSF for
each of the 90 images (test + library) at each point in parameter space (1600). Then the mean
CNR was taken across the images at each point in parameter space. This allows for mean CNR
to be mapped into parameter space for further analysis. Additionally the CNR of each individual
test image at the 420 test locations was calculated. CNR for each image was calculated using the
following:

CNR =
‖mean (CSF )−mean (Brain) ‖

std (CSF )
(1)

where CSF and Brain represent the gray-scale values found in the segmented regions of CSF
and Brain. Typical CNR calculations might use the standard deviation of signal in a region of
the image without tissue to estimate noise standard deviation of the entire image. Given the
variable dimensions of the brains in the image set and the existence of the head rest in most
images at variable locations, it was difficult to choose a good location outside of the brain that
would represent purely noise space. Since noise in CT is consistent across the entire image and
since CSF should show a relatively homogeneous signal, the standard deviation of CSF values in
the image was chosen to model for noise standard deviation for the entire image.

7.7 Enhancement Networks

Deep learning networks were trained at locations in parameter space that were likely to be
regions that are not useful, as can be seen in the left panel of Figure S7. The axes of Figure S7
are normalized, however the table in the right panel Figure S7 shows the true noise variance
added and contrast reduction used for 64x64 and 128x128 resolutions.
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Figure S7: Locations of enhanced networks on the noise added vs. contrast reduction parameter
plane. The locations are numbered 1 to 7 with 1 being the least degraded. Actual noise and
contrast reduction values for each network are shown on the right by resolution.

8 Supplementary Results

8.1 Part1

The degraded image classification data is plotted in Figure S8 separated by resolution. The
contrast reduction scale is common across all resolutions and the noise variance added is resolution
specific, as described in methods. Lines of constant mean CNR are plotted for each resolution
shown. Triangles in Figure S8 show datapoints in which all three experts agreed that the image
was useful. Circles show datapoints in which 2 or only 1 expert(s) classified the image useful,
and "X"s show datapoints in which none of the 3 experts classified the image useful. A logistic
regression model was implemented using MATLAB, with contrast reduction and noise added as
predictors, and classification as the response. The number of trials was set to 3 to account for
responses from the 3 participants. The p-values following a deviance test for each resolution is as
follows: p32X32 = 7e-6, p64X64 = 4e-27, p128X128 = 2e-17, p512X512 = 8e-32. The p-values indicate
that the logistic regression models fit the data better than the null model. The null model is
the average probability of a classification at a given resolution being useful. Lines of constant
usefulness likelihood can be seen for each resolution. Values of average CNR across all images
(10 test images + 80 learning library images) at each degradation point were also calculated and
plotted as contours with a solid line.
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Figure S8: The combined classification of degraded images form the image utility assessment
divided into 4 parameter planes of resolution 32X32, 64X64, 128X128, and 512X512. Lines of
constant mean CNR are shown with the solid contour lines. Lines of constant usefulness likelihood
as determined by the logistic regression model are also shown using the dotted lines. Higher
usefulness likelihood is always closer to the origin.

As expected, 32X32 resolution offers very low likelihood of being useful. This is apparent in
the raw data as well since there were no images that all three experts agreed to be useful. The
other three resolutions do however show that a fair amount of degradation at low resolution has a
high likelihood of being useful for planning hydrocephalus treatment. It is important to note that
since the noise added axes are normalized to a different maximum value for each resolution the
effect of resolution on usefullness likelihood is not visually evident in these plots. For example,
the entire 0 to 1 range of normalized noise added for the 64X64 resolution is equivalent to the
range 0 to 0.2 of noise added for the 128X128 resolution, or 0 to 0.07 in the 512X512 resolution.
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As resolution decreases, noisy images are less likely to be useful.

CNR appears to be an effective approximation of the likelihood lines in some cases. It makes
intuitive sense that images which have been degraded by adjusting contrast and adding noise may
be classified well by CNR. Figure S9 shows the receiver operating characteristic (ROC) curves
for CNR and logistic regression as a classifier of useful images by resolution. ROC curves are
generated by tabulating the true positive fraction (TPF) and false positive fraction (FPF) for
a particular metric at all possible levels of classification. For example, when using CNR as a
classifier, the maximum CNR value could be considered as the cutoff for classifying a useful
image vs. a not useful image. All images with a CNR value at or above the maximum CNR
would be classified as useful, and all images with a CNR below the maximum value would be
considered not useful. This classification is compared with the actual, qualitative classification of
the images from the image utility assessment and the TPF and FPF are calculated. The process
can be repeated for each level of CNR down to the minimum generating a range of TPF and FPF
pairs. These pairs create the ROC curve. The area under the curve (AOC) is good measure for
comparison between the two methods and shows relative agreement within resolution. For both
methods, classification is successful at higher spatial resolutions, with 32X32 being the poorest
classification, as expected.

Figure S9: The ROC curves for CNR as a classifier of image utility compared to the logistc
regression model as a classifier of image utility. For all resolutions the area under the curve is
greater than 0.5.

It should be noted that while the two classification methods are comparable, CNR is an innate
feature of the image and is more closely linked to the visual information that is important for
hydrocephalus. Agreement of classification using CNR with logistic regression serves to strengthen
the notion that CNR itself is an estimate of image utility.

8.2 Part 2

The 10 test images were enhanced using the previously described Deep Learning network.
Networks were trained at 7 locations for the resolutions 64x64 and 128x128. Network locations
are shown in Figure S7, and were chosen in regions of parameter space that were likely to produce
images that are not useful. As with the degraded images, logistic regression was used to determine
the regions of usefulness likelihood on the contrast reduction vs. noise added parameter space.
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Figure S10: The combined classification of enhanced image data from the image utility assessment
divided into 2 parameter planes of resolution 64X64 and 128X128. Solid lines of constant usefulness
likelihood as determined by the logistic regression model for the degraded data are plotted with
values indicated inline. Dashed lines of constant usefulness likelihood as determined by the logistic
regression model for the enhanced data are also plotted. The enhancement networks appear to
shift the usefulness likelihood into regions of greater degradation and rotate the slope with a
preference toward noise added.

In the case of enhanced images, noise added was not a substantial predictor of classification
(p64X64 = 0.09, p128x128 = 0.04), however contrast reduction was (p64X64 = 0.003, p128x128 =
8e-6). Despite this, the trend of the multivariate logistic regression for the enhanced images when
compared to the same analysis of the degraded images offers some important insight.

As can be seen in Figure S10, the dashed lines indicate that the enhancement networks
significantly increase the usefulness likelihood in degraded parameter space. For example, in the
128X128 parameter space, a portion of the line indicating degraded images that are 20% likely to
be useful is predicted to be 90% likely to be useful after undergoing enhancement. The 90% line
for 64X64 is less extreme, however the improvement from the network is still significant. The
distance between lines of constant usefulness likelihood is also much larger for the enhancement
networks, indicating slower drop-off toward the not useful region.
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Figure S11: Logistic regression models of image utility with contrast between brain and CSF prior
to enhancement as the single predictor for 64x64 and 128x128 enhanced images. The horizontal
axis shows normalized contrast between brain and CSF with 0 being no contrast and 1 being the
contrast found in the native CT images after downsampling via bilinear interpolation to 64x64 or
128x128 image resolution.

Another potentially important characteristic of Figure S10 is that the slope of the likelihood
lines for the enhancement networks does not match the slope of the likelihood lines for the
degraded images. The network seems to be skewed toward improving higher noise over higher
contrast reduction. This could imply that the reconstruction errors could be a product of the
networks inability to handle loss in contrast between brain and CSF. A network architecture
more robust to addressing loss in contrast might yield fewer reconstruction errors. This concept
represents a potential focus of research effort for the machine learning community to pursue in its
application to biomedical imaging.

Since noise added was not significant for enhanced images, univariate logistic regression
models were constructed for enhanced image classification with brain and CSF contrast prior to
enhancement as the only predictor. Figure S11 shows the logistic regression models for 64x64 and
128x128 (p64X64 = 1e-6, p128x128 = 4e-9).
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