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Abstract. The potential for measurement redundancy to re-

duce uncertainty in atmospheric variables has not been in-

vestigated comprehensively for climate observations. We

evaluated the usefulness of entropy and mutual correla-

tion concepts, as defined in information theory, for quan-

tifying random uncertainty and redundancy in time series

of the integrated water vapour (IWV) and water vapour

mixing ratio profiles provided by five highly instrumented

GRUAN (GCOS, Global Climate Observing System, Ref-

erence Upper-Air Network) stations in 2010–2012. Results

show that the random uncertainties on the IWV measured

with radiosondes, global positioning system, microwave and

infrared radiometers, and Raman lidar measurements dif-

fered by less than 8 %. Comparisons of time series of IWV

content from ground-based remote sensing instruments with

in situ soundings showed that microwave radiometers have

the highest redundancy with the IWV time series measured

by radiosondes and therefore the highest potential to reduce

the random uncertainty of the radiosondes time series. More-

over, the random uncertainty of a time series from one instru-

ment can be reduced by ∼ 60 % by constraining the mea-

surements with those from another instrument. The best re-

duction of random uncertainty is achieved by conditioning

Raman lidar measurements with microwave radiometer mea-

surements. Specific instruments are recommended for atmo-

spheric water vapour measurements at GRUAN sites. This

approach can be applied to the study of redundant measure-

ments for other climate variables.

1 Introduction

The use of redundant measurements is considered the best

approach to reduce the uncertainty of an atmospheric vari-

able. For this reason, several atmospheric observatories have

extended their observing capabilities and have acquired mul-

tiple instruments that measure the same atmospheric vari-

ables with different measurement techniques and retrieval al-

gorithms.

Redundancy can be defined as the duplication or the mul-

tiplication of the estimation of an atmospheric variable with

the aim of increasing reliability in the study of the same vari-

able over the time. Without doubt, redundant measurements

provide added value towards the full exploitation of the syn-

ergy among different measurements techniques: the main ad-

vantages are related to

– filling gaps and improving measurement continuity over

time and vertical range;

– increasing the sampling rate by merging measurements

from different instruments;
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– addressing instrument noise and identifying possible bi-

ases or retrieval problems by comparing different tech-

niques and instruments.

Comprehensive studies to quantify the effective value of re-

dundant measurements and their ability to reduce uncertainty

of essential climate variables (ECVs), as retrieved by multi-

ple ground-based techniques and in situ active and passive

remote sensing, are missing. To this end, GRUAN (GCOS,

Global Climate Observing System, Reference Upper-Air

Network) aims at providing long-term, highly accurate

measurements of atmospheric profiles, complemented by

surface-based state-of-the-art instrumentation, for full char-

acterization of ECVs and their changes in the complete at-

mospheric column (Seidel et al., 2009; Thorne et al., 2013).

GRUAN, which is now being implemented, is aimed at sup-

porting a network of 30–40 high-quality, long-term upper-

air observing stations, building on existing observational net-

works.

Cross-checking of redundant measurements for consis-

tency is an essential part of the GRUAN quality assurance

procedures. A fully equipped GRUAN site should make at

least three redundant measurements of all GCOS ECVs (Sei-

del et al., 2008). As a consequence, the GRUAN commu-

nity has fostered GATNDOR (GRUAN Analysis Team for

Network Design and Operations Research), a scientific team

charged with addressing key scientific questions of major in-

terest to GRUAN and identifying reliable metrics for quanti-

fying the value of redundant measurements.

The present study used observations of the vertical-profile

of water vapour mixing ratio and the integrated water vapour

(IWV) content from a few GRUAN sites equipped with ra-

diosondes, global positioning system (GPS), lidars, radiome-

ters, spectrometers, and radars. Studies of redundant mea-

surements should be based on the preliminary identification

of a reliable metric. Linear correlation (Pearson’s or Spear-

man’s) has typically been used to study redundant measure-

ments and their reliability. More recently, Fassò et al. (2014)

presented a new approach for an advanced statistical mod-

elling based on functional data analysis of the relationships

among collocation uncertainty and a set of environmental

factors (e.g. wind speed and wind direction). The approach,

which can decompose the total collocation uncertainty, could

be adapted to evaluate the measurement redundancy. In this

paper, we present the results of the GATNDOR study of re-

dundant measurements at GRUAN sites. The present study

identifies mutual correlation (MC), which is related to the

concept of entropy, as a suitable metric for quantifying the

value of measurement redundancy. In information theory, en-

tropy is a measure of the probabilistic uncertainty associated

with a random variable. The approach presented here repre-

sents a fast, efficient way to quantify the value of redundant

measurements and to correlate the value with factors such

as number of instruments, as reported in this work, type of

measurement techniques, and retrieval algorithms.

The aims of the paper are

– to show the potential of entropy and MC as metrics for

quantifying uncertainty (in a probabilistic sense) and the

value of redundancy in climate time series;

– to study, according to GRUAN standards, the uncer-

tainty and the value of redundancy of in situ and ground-

based remote sensing techniques for estimating ECVS;

– to provide the GRUAN community and others interested

in the observation of atmospheric thermodynamics with

recommendations for the establishment of an observa-

tion protocol to reduce the uncertainty of a measurement

time series through measurement redundancy;

– to aid site scientists, managers, and funders in making

informed decisions on new instrument procurements to

maximize the scientific return on the capital expendi-

ture.

Section 2 outlines information theory concepts used for

the study of redundancy and presents the data sets consid-

ered in this work. The data sets were provided by five can-

didate GRUAN sites: the Atmospheric Radiation Measure-

ment (ARM) Program Southern Great Plains in Oklahoma,

USA (Miller et al., 2003); CIAO (Consiglio Nazionale delle

Ricerche, Istituto di Metodologie per l’Analisi Ambientale

(CNR-IMAA) Atmospheric Observatory) in Potenza, Italy

(Madonna et al., 2011); Lindenberg in Germany (Adam et

al., 2005); Payerne in Switzerland (Calpini et al., 2011); and

Sodankylä in Finland (Hirsikko et al., 2014). Section 3 pro-

vides results and preliminary remarks on the value of redun-

dant measurements in reducing uncertainty and introduces a

possible criterion for addressing redundancy in the frame of

GRUAN. Section 4 summarizes the conclusions.

2 Methodology

2.1 Comparison methods

Comparisons among time series of in situ and ground-based

remote sensing measurements have been performed mostly

by using the concept of variance and root-mean-square dif-

ference, less frequently in terms of “information” content

(e.g. Majda and Gershgorin, 2010). In information theory,

as in thermodynamics, entropy is a measure of the number of

specific ways a system can be arranged. Entropy is often con-

sidered a measure of disorder or uncertainty in the outcome

or the prediction of an event. Commonly used in time series

analysis is the Shannon–Wiener entropy measure (Cover and

Thomas, 1991). Given x events in the population X occur-

ring with probabilities p(x), the Shannon entropy is defined

as

H (x) = −
∑

x∈X

p(x) log(p (x)) . (1)
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Therefore, H is a measure of probabilistic uncertainty or dis-

persion of the probabilities of events. The entropy is calcu-

lated from a histogram of probabilities; it has a maximum

value if all measurements have equal probability of occur-

rence and a minimum value of 0 if the probability of one

measurement is 1 and the probability of all the others is 0.

The H is not equivalent to variance (σ ), though for particu-

lar classes of distributions (e.g. Gaussian), H is simply some

function of σ , and they can be considered almost equivalent.

Entropy generalizes the concept of measurement uncertainty

for calculations of MC. Normalized H is used here to quan-

tify the uncertainty of a time series, and H is normalized by

dividing H by the logarithm of the number of states (i.e. the

number of possible entries in the related histogram).

In information theory, MC is a measure of the statisti-

cal dependence of two random variables or, equivalently, the

amount of information that one variable contains about the

other (Cover and Thomas, 1991). The MC value can be con-

sidered a qualitative indication of how well one measurement

explains the other. This means that MC quantifies the reduc-

tion of uncertainty in a variable Y after one observes another

variable X. The advantage in using MC with respect to Pear-

son’s or Spearman’s correlation coefficient (ρ) is that MC is

a more general measure than ρ, because it does not assume

linear or even monotonic correlation. Entropy and mutual in-

formation are both rather insensitive to outliers, but even a

single outlier can arbitrarily impact both the variance and

correlation between two distributions, obscuring the similar-

ity of two closely related variables.

The MC of two discrete random variables X and Y can be

defined as (Cover and Thomas, 1991)

MC(X,Y ) =
∑

y∈Y

∑

x∈X

p(x,y) log
( p(x,y)

p (x)p (y)

)

, (2)

where p(x,y) is the joint probability distribution function of

X and Y , and p(x) and p(y) are the marginal probability dis-

tribution functions of X and Y , respectively. For continuous

random variables, the summation is implemented with a defi-

nite double integral. The redundancy concept is a generaliza-

tion of mutual information to N variables (X1, X2, . . .,XN ).

Given as marginal entropies H(X) and H(Y), MC can be

also defined as

MC(X,Y ) = H(X) + H(Y) − H(X,Y ). (3)

The joint entropy H(X,Y ) is the total amount of informa-

tion for two time series and is calculated by using the joint

histogram of the two series. If the two measurements are

totally unrelated, then the joint entropy will be the sum of

the entropies of the individual measurements. In general,

H(X,Y ) ≤ H(X)+H(Y). The entropy gained from a mem-

ber of a mixture of distributions is the difference between

the entropy of the average distribution and the average of the

entropies of the individual distributions. H(X,Y ) can be cal-

culated by using the joint histogram of X and Y .

The MC can be also linearized; differences between non-

linear and linear redundancy provide a qualitative test for the

non-linearity of the investigated problem. The linear MC is

defined as (Cover and Thomas, 1991)

LMC =
1

2

m
∑

i=1

Cii −
1

2

m
∑

i=1

λC
i , (4)

where the Cii values are the diagonal elements of the co-

variance matrix C of the m time series investigated, and the

λ values are the eigenvalues of C. A comparison between

linear and non-linear MC is in Sect. 3.4.

Many applications require a metric – a distance measure

not only between points but also between data clusters (or

time series of data). Different distances are defined in the

literature (Arkhangel’skii and Pontryagin, 1990). Here, D is

defined as

D(X,Y ) = 1 − MC(X,Y )/max(H(X),H(Y )), (5)

where D is a metric that satisfies the triangle inequality (i.e.

given X, Y , Z, the sum of D of any two of the considered

variables must be greater than or equal to the value of D for

the remaining variable). Calculation of MC is an effective

way to compare clustering and study relationships between

time series (Correa and Lindstrom, 2012).

Finally, the conditional entropy is defined as H(X|Y ) =

H(Y) − MC(X,Y ). This definition can be generalized for

two or more conditioning variables through the chain rule

for joint entropy (Cover and Thomas, 1991).

2.2 Data sets and instruments

The data sets considered in this study include radiosonde,

Raman lidar, infrared and microwave radiometry (MWR)

observations from the GRUAN sites (Lindenberg, Payerne,

Potenza, Sodankyla and ARM Southern Great Plains). The

data sets are collected by each station according to their

quality assurance criteria. More information about the se-

lected sites can be found at www.gruan.org. This study fo-

cused on the investigation of atmospheric water vapour mea-

surements, both profiling and columnar, from these sites for

2010–2012. The instruments considered at the five selected

sites are identified in Table 1. It is important to note that

not all the considered station are routinely providing the un-

certainties related to each instrument. However (to help the

reader in the interpretation of the results), typical uncertain-

ties affecting the considered measurements are mentioned:

radiosonde water vapour mixing ratio profiles have a relative

uncertainty typically lower than 6 % from the surface until

15 kma.g.l., though the uncertainty might change depending

on the measurements conditions (more details in Dirksen et

al., 2014); Raman lidar relative random uncertainty increases

with height and, for the profiles used in this study, it is less

than 25 % at 7–8 kma.g.l. plus a calibration error typically

within 5–10 % affecting the entire profile; the uncertainty

www.atmos-meas-tech.net/7/3813/2014/ Atmos. Meas. Tech., 7, 3813–3823, 2014
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on the integrated water vapour content achievable with mi-

crowave radiometers and profilers is strongly dependent on

the retrieval types, but it is typically within about ±0.07 cm;

the GPS uncertainty on the integrated water vapour content is

typically within about ±0.15 cm (first results from GRUAN

comparisons with CFH). GRUAN is establishing a database

of ECV measurements from the different techniques and in-

struments, including full characterization of the uncertainty

budget (random and bias contributions). The added value of

GRUAN products is related to the implementation of data

processing including several corrections for spurious effects

on the radiosonde measurements and therefore on the fidelity

of the long-term records of radiosondes used for climate ap-

plications (Immler et al., 2010; Immler and Sommer, 2010).

At present, only quality-assured measurements obtained by

RS92-SGP sondes are flowing into the GRUAN data archive.

Unfortunately, the approach presented in this paper cannot be

used to show the advantages of using GRUAN sonde prod-

ucts, mainly because the bias component of the total uncer-

tainty budget cannot be quantified through the entropy anal-

ysis presented here.

Water vapour measurements from sensors not considered

in this study are also available for the considered sites (as

noted in Table 1); they are a subject for future study. The

current water vapour measurements were selected according

to data availability for each site. A similar investigation could

be performed for other ECVs. For coherency, we used sonde

data processed at each site rather than GRUAN products,

which are still not available at all sites and for all radiosonde

types. Moreover, retrieval algorithms for passive instruments

usually take advantage of historical radiosonde data sets as a

statistical constraint.

Simultaneous data from all available instruments were se-

lected according to the conditions of clear sky (per lidar mea-

surements or radiosonde humidity), nighttime, and, if lidar

data are available, a relative error of lidar water vapour mix-

ing ratio at 7 kma.g.l. < 25 %. This error is considered a

good compromise having an adequate lidar signal-to-noise

ratio and also covering the part of the troposphere where

most of the water vapour can be observed. Raman lidar mea-

surements are integrated over 10 min around the sonde syn-

optic launch time to keep a good signal-to-noise ratio in the

investigated region, and MWR and microwave profiler mea-

surements are provided every 10 min. GPS data are provided

only every 15 min, because of constraints on data processing

at the considered sites, and the closest measurements to the

sonde launch time (within 10 min) are compared. The use of

MWR to calibrate the ARM Raman lidar measurements af-

fects the independence of the IWV comparison for lidar at the

SGP; in contrast, at Payerne and Potenza the Raman lidar is

calibrated by using radiosonde humidity profiles in the lower

troposphere (Madonna et al., 2011; Brocard et al., 2013).

Data from different sites are currently processed with dif-

ferent algorithms; this could affect the comparison. However,

the study of entropy is also a good check for the effect of re-

trieval inconsistencies. A linear regression on the entire time

series (3 years) of IWV data and vertical profiles of water

vapour mixing ratio at the altitude levels removed natural or

artificial trends (e.g. calibration drifts). This was done to sup-

press the bias component of the time series uncertainty and

to ensure that the reported entropies are related only to the

random uncertainty.

2.3 Optimal binning choice and minimally sufficient

data

The two crucial issues that need to be considered for entropy

calculation using the histogram of a variable are the minimal

quantity of data required to reduce inaccuracies in the calcu-

lation and the choice of the optimal binning to represent the

actual probability density functions (PDFs) of the variable.

To make our histogram representative of the real un-

derlying PDF of the variable and to calculate the re-

lated entropy, a minimal number of data points is needed.

The data sets considered here include > 140 cases per

station (Lindenberg = 296, Payerne = 174, Southern Great

Plains = 144). For Potenza and Sodankyla, more restricted

data sets (40 and 22 cases, respectively) were used, because

of the unique sampling strategy at Potenza (one radiosonde

launch per week, only in clear sky) and the limited number

of cryogenic frost point hygrometer (CFH) launches made

available by Sodankyla for this study. Knuth (2013) reported

that at least 100 cases should be considered to avoid under-

estimation of entropy, though the number might depend on

the underlying distribution. Nevertheless, values of the en-

tropy calculated for Potenza and Sodankyla are quite similar

to those reported for other sites. This is encouraging, though

a margin of inaccuracy affecting the values can be quanti-

fied only if larger data sets become available for the specific

instruments at both stations.

To determine the optimal binning, several statistical meth-

ods have been proposed (Knuth, 2013). In Fig. 1, entropy is

shown as a function of the number of bins used to build the

histogram for the Payerne radiosonde data sets. The value of

entropy increases up to 0.81 for a histogram with 100 bins.

Between 25 and 100 bins, entropy tends to assume asymp-

totic behaviour. In this work, in view of the behaviour shown

in Fig. 1 and the number of data points available, 50 bins per

histogram are used.

3 Results and discussion

In this section, normalized entropy, MC, and conditional

entropy are calculated for the data sets (and instruments)

identified in Table 1. Both quantities were calculated to quan-

tify uncertainty and redundancy in the IWV time series, as

well as in the times series of the vertical profile of water

vapour mixing ratio. In this investigation of time series of

atmospheric water vapour measurements, entropy includes

Atmos. Meas. Tech., 7, 3813–3823, 2014 www.atmos-meas-tech.net/7/3813/2014/
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Table 1. Instruments available (and model when applicable) at the GRUAN sites generating data sets considered in this study of uncertainty

and redundancy. Symbol ! indicates that the instrument is available at the site, but the data were not used in the study. Abbreviations: CFH,

cryogenic frost-point hygrometer; MWR, microwave radiometer; MWP, microwave profiler; GPS, global positioning system; FTIR, Fourier

transform infrared radiometer; AERI, atmospheric emitted radiance interferometer.

GRUAN site/instrument Sonde CFH Lidar MWR MWP GPS FTIR

Lindenberg RS-92 (4 × day) ! X Radiometrics Radiometrics GFZ

Payerne SRS 400 (2 × day) X HATPRO GFZ

Potenza RS-92 (1 × week) X Radiometrics !

Sodankyla RS-92, I-Met1 RSB X ! ! Bruker

Southern Great Plains RS-92 (4 × day) X Radiometrics Suominet AERI

Figure 1. Entropy as a function of the number of bins used to build

the histogram for the Payerne radiosonde.

all contributions affecting the uncertainty of a measurements

time series – sampling uncertainty, uncertainty due to the

time and vertical average, atmospheric variability, and all

other relevant environmental factors (Kitchen, 1989; Fassò

et al., 2014), such as solar radiation affecting daytime in situ

soundings.

Figure 2 (left) is an example of a series of samples of

the IWV for the Lindenberg instruments (Table 1), while

Fig. 2 (right) shows the corresponding histograms of the time

series. After linear detrending of the time series described

above, the histograms were used to calculate entropy and

MC. The shape of the histograms in Fig. 2 clarifies both how

outliers can occur by chance in any distribution, often indi-

cating either measurement errors or a heavy-tailed distribu-

tion in the population, and also the absence of any guarantee

that the distribution will be a normal one. The discrepancies

between the time series reported in Fig. 2 (left) translate into

a sort of bi-modal distribution characterized by a high kur-

tosis (Fig. 2, right). Thus, caution is needed in assuming a

normal distribution; statistics, like entropy, that are robust to

outliers and independent on the underlying distribution are

more reliable for characterizing the uncertainty of a time se-

ries.

To show the reader the advantages of using entropy and

MC instead of using standard deviation (σ ) and ρ, we show

in Fig. 3 a Taylor diagram (left panel) obtained from the GPS

IWV time series collected at Lindenberg, and the same time

series but adding to the IWV probability density function 5,

10, 20, 30, and 40 outliers respectively. The correlation has

been calculated with respect to an underlying Gaussian dis-

tribution fitted to the data. The value of the σ in the diagram

obtained from the original time series is reported as the “ob-

served” curve. Taylor diagrams provide a concise statistical

summary of the similarity between two patterns, quantified

in terms of their correlation, their centred root-mean-square

difference and the amplitude of their variations (represented

by their σ s). These diagrams are especially useful in evalu-

ating multiple aspects of complex models or in gauging the

relative skill of many different models or measurement tech-

niques.

Following previous studies, the Taylor diagram described

above is compared in Fig. 3 with a modified Taylor dia-

gram (Correa and Lindstrom, 2012) obtained by replacing

the standard deviation with the entropy and ρ with MC (right

panel). Mutual correlation was also calculated with respect to

an underlying Gaussian distribution. The comparison clearly

shows that entropy and, accordingly, MC are much more in-

sensitive than σ and ρ to outliers applied to the original dis-

tribution of GPS IWV data. This supports the use of entropy

and MC as tools to analyse a data set without the need to

make assumptions on the underlying distribution function.

3.1 Normalized entropy for integrated water vapour

and vertical profiles

Figure 4 compares the normalized entropies H/ logn, where

n is the number of states (histogram entries) retrieved for

all instruments measuring IWV at the Lindenberg, Payerne,

Potenza, and Southern Great Plains sites. For Lindenberg,

Payerne, and Southern Great Plains at least four instruments

are available; for Potenza, GPS IWV is available only from

June 2011 and thus is not included in this study.

For the available measurements and in the range of at-

mospheric variability over the analysed stations there are no

large differences in the uncertainties of IWV measurements.

www.atmos-meas-tech.net/7/3813/2014/ Atmos. Meas. Tech., 7, 3813–3823, 2014
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Figure 2. Example of the time series (left) of integrated water vapour obtained with the instruments available at the Lindenberg site (reported

in Table 1) and histograms (right) of the time series shown in the left panel. After detrending of the time series, the histograms were used to

calculate entropy and mutual correlation.

Figure 3. The left panel shows a Taylor diagram obtained for the

GPS IWV time series collected at Lindenberg, and the same time

series but adding to the IWV probability density function 5, 10, 20,

30, and 40 outliers respectively. The correlation has been calculated

with respect to an underlying Gaussian distribution fitted to 637 the

data; in the right panel, a modified Taylor diagram is obtained by

replacing the standard deviation with the entropy and ρ with MC.

With the exception of Payerne, lidar entropy is the closest to

radiosonde entropy, whether calibrated by using the sonde it-

self or the MWR. Moreover, at Payerne the lidar offers the

lowest entropy of the instrument ensemble. At the SGP, GPS

has the lowest entropy, though the values for all considered

instruments are quite close. Similarly, at Lindenberg, where

the MWR has the lowest entropy, all values are similar. At

Potenza, the lowest entropy value is for the microwave pro-

filer. As a whole, differences in the entropy of the time series

between the different instruments are within 8 %. Obviously,

the different atmospheric variability of each site can also re-

sult in large deviations between entropy values. This devi-

ation could be smoothed if a longer temporal data set was

investigated. Moreover, differences in the observation tech-

niques and their experimental implementation (e.g. different

measurement angles and fields of view) might also contribute

to differences in the calculated entropies and to non-linear

calibration drifts.

Figure 4. Comparison of the normalized entropy retrieved for the

instruments measuring integrated water vapour at the Lindenberg

(LIN), Payerne (PAY), Potenza (POT), and Southern Great Plains

(SGP) sites. The data set considered includes all available mea-

surements in 2010–2012. The numbers above the bars represent the

number of cases selected, according to the quality assurance criteria

for each station.

3.2 Mutual correlation and distance for integrated

water vapour and vertical profiles

The statistical distance D, as defined in Eq. (5), is a dimen-

sionless measure of the similarity of pairs of data points,

data clusters or time series. Figure 5 compares the distances

between the IWV time series from all instruments with the

radiosonde series at the Lindenberg, Payerne, Potenza, and

Southern Great Plains sites. The plot reveals very different

results at different sites. In terms of the best performance of

each instrument at the different sites, MWR has the high-

est redundancy and therefore the highest potential to reduce

the uncertainty of the radiosonde IWV time series, with li-

dar, GPS and microwave profiler following. The distances

Atmos. Meas. Tech., 7, 3813–3823, 2014 www.atmos-meas-tech.net/7/3813/2014/
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Figure 5. Comparison of the statistical distances between pairs of

times series data retrieved for the instruments measuring integrated

water vapour with respect to the time series obtained from the ra-

diosondes at the Lindenberg (LIN), Payerne (PAY), Potenza (POT),

and Southern Great Plains (SGP) sites. The data set considered in-

cludes all available measurements in 2010–2012.

from the radiosonde series are > 0.18 for lidar, > 0.32 for

GPS, > 0.14 for MWR, and > 0.28 for microwave profiler.

At Payerne and Potenza, all the techniques show good re-

dundancy, though GPS IWV at Potenza is not included in the

statistics, because the number of measurements is small for

the considered period. However, criteria are needed to de-

termine the acceptable levels of uncertainty and redundancy

for a climate observation network. Section 3.5 deals with this

aspect in more detail.

Normalized entropy and MC are compared for the avail-

able measurements of the water vapour or relative humid-

ity (RH) vertical profiles. In Fig. 6, the distance of the

water vapour vertical profiles obtained with the Raman li-

dar (RL) and atmospheric emitted radiance interferometer

(AERI) with respect to radiosonde (RS92) profiles are com-

pared. Lidar profiles were retrieved by integrating signals

over 10 min around the sonde launch time. The AERI pro-

files were averaged in the same time window. To improve the

comparison among in situ, active and passive remote sensing

measurements, the profiles from the three instruments were

averaged over a vertical range of 1 km. This should strongly

reduce the differences related to instrument signal-to-noise

ratio and to the effective vertical resolution, which differs

for the different techniques. Moreover, for the AERI, the sta-

tistical retrieval provided by the ARM Archive (Turner and

Loehnert, 2014) was considered; this retrieval is based on the

radiosonde profile as a first guess, which affects the calcula-

tion of distance. Nevertheless, the comparison is provided to

test the approach for passive profile retrievals. Figure 6 shows

that, though the difference is small, AERI has lower values of

distance along the entire profile, probably because of the use

Figure 6. Comparison of the statistical distances of the Raman lidar

(RL) and the atmospheric emitted radiance interferometer (AERI)

time series from the RS92 radiosonde time series of water vapour

vertical profile at the Southern Great Plains (SGP) site. The data

set considered includes all measurements available at the SGP in

2010–2012, in 144 profiles.

of collocated radiosonde data as first guesses in the retrieval

algorithm.

Figure 7 (left panel) compares the entropies computed for

the RH profiles provided by RS92 radiosondes, Intermet ra-

diosondes (I-Met), and CFH measuring in situ water vapour

vertical profiles at SOD. Figure 7 (right panel) shows the pro-

files for one case on 15 March 2010. Because only 20 si-

multaneous profiles are included in this comparison, the cal-

culated entropy values might underestimate the real uncer-

tainty for the sensors. A larger data set should be consid-

ered for a full assessment of the differences in entropy for

the various in situ measurements; this will be considered in

future work, taking advantage of the data set available in the

GRUAN network at the Boulder and Lindenberg sites. The

comparison in the left panel of Fig. 7 reveals that the en-

tropy values for all sensors differ by more than 0.2 from

the ground to 2 kma.g.l., by less than about 0.1 from 2 km

to 6 kma.g.l., and differ by more than 0.2 above. This ob-

servation indicates that RS92 and I-Met in situ measure-

ments of atmospheric water vapour have a probabilistic un-

certainty that differs from the CFH within 20 % from most

of the tropospheric range. CFH is considered the reference

in situ profiling instrument (Suortti et al., 2008). The com-

parison of RH profiles in Fig. 7 (right) shows good agree-

ment between RS92 and CFH, with a small bias affecting

the RS92 in the free troposphere (Wang et al., 2013). On the

other hand, the I-Met sondes are able to reproduce the ver-

tical variability of the RH profile, but they are affected by

a negative bias. Moreover, above 8 km the I-Met behaviour

suddenly changes, overestimating RH. The comparison re-

sults are in agreement with literature values (WMO, 2010).

The differences reported for the two sonde types are related

to systematic effects on the RH profiles that contribute to
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Figure 7. Comparison of the normalized entropy values (left) for

the RS92 and Intermet radiosondes (I-Met) and the cryogenic frost-

point hygrometer (CPH) measuring the in situ water vapour vertical

profile at the Sodankyla site in 2010 (left panel); comparison of

the relative humidity profiles in one case on 15 March 2010 (right

panel).

the total uncertainty budget. This contribution can, in princi-

ple, be modelled and removed, but because of its systematic

nature it cannot be evaluated with the entropy analysis dis-

cussed here. The presented analysis allows us only to state

that the RH time series measured by the RS92, I-Met, and

CFH show similar random uncertainty at all altitude levels

below 10 km.

3.3 Conditional entropy

The conditional entropy quantifies the amount of informa-

tion needed to describe the outcome of a random variable Y ,

given the value of another random variable X. The condition-

ing usually reduces entropy. That is, given two time series X

and Y , the conditional entropy H(X|Y ) ≤ H(X). Equality

occurs only if X and Y are fully independent. Figure 8 shows

the values of conditional entropy retrieved for most of the

possible combinations of instruments measuring IWV at the

SGP (upper panel) and POT (bottom panel) sites, for the data

sets described above. In both plots, the values of the nor-

malized entropies calculated for each single instrument are

also shown as a comparison term to quantify the residual un-

certainty affecting each instrument when one or more other

instruments are assumed as good constraints. Figure 8 shows

that the residual entropy obtained by conditioning one in-

strument with a second instrument is 30–40 % lower than the

entropy obtained for a single instrument. If two instruments

are used for the conditioning, the residual entropy ranges be-

tween 5 and 20 %. This finding indicates that with reliable

constraints, the entropy can be reduced by about 60–65 %

with respect to the use of a single instrument. The minimum

residual uncertainties are obtained when the GPS is condi-

tioned with the RL and the MWR at the SGP site, and when

the RL is conditioned with the microwave profiler at the POT

site.

These results also show that the residual uncertainties ob-

tained with two conditioning constraints (two instruments)

can be better than or similar to the value with only one instru-

Figure 8. Comparison of the normalized conditional entropy values

retrieved for most of the possible combinations of instruments mea-

suring integrated water vapour at the Potenza site (upper panel) and

the Southern Great Plains site (bottom panel).

ment as a constraint. This is relevant when synergetic prod-

ucts must be defined and retrieved by using algorithms that

can integrate information from ground-based or satellite sen-

sors. This is the case for all optimal estimation algorithms

based on the Bayes’ theorem, which is frequently adopted

to improve atmospheric profiling. To quantify the effective

advantages of integration, the presented analysis can be per-

formed in advance of the elaboration of algorithms integrat-

ing measurements from different sensors. Moreover, condi-

tional entropy can be applied similarly for directly measured

quantities, like radiances, as well as for data products such as

water vapour ground-based remote sensing. This is the case

for algorithms making use of satellite measurements from

polar and geostationary satellites to improve the resolution

or reduce the uncertainty affecting the estimation of ECVs,

but it is also true for algorithms merging satellite and ground-

based passive sensor data to improve atmospheric profiling.

3.4 Linear mutual correlation

A comparison between MC and linear mutual correlation

(LMC) provides a qualitative test for the non-linearity of the

investigated problem. The plot in Fig. 9 shows a comparison

between MC and LMC for the lidar and radiosonde at POT.

In this case, both MC and LMC are normalized by the max-

imum entropy (the total number of entries in the joint his-

togram). The LMC underestimates the correlation between

the two variables by about 10 %. Above 5.5 km, the LMC

overestimates the correlation by about 8 %, most likely be-

cause of the presence of outliers in the PDF. This example

supports the use of MC as a more general concept than the
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Figure 9. Comparison of the normalized mutual correlation for the

linear (LMC) and non-linear cases (MC), calculated for the lidar

and radiosonde data sets from the Potenza site.

LMC for quantifying the value of redundant measurements.

The result is in agreement with outcomes from previous stud-

ies that analysed data sets including different types of data

and compared Taylor’s diagrams built by using standard de-

viation versus correlation and entropy versus MC (e.g. Cor-

rea and Lindstrom, 2012).

3.5 Redundancy criteria

The analysis above shows how to approach the problem of

quantifying measurement redundancy by using the concepts

of information theory. However, the usefulness of this ap-

proach can be clarified only if some criteria are identified to

classify when two data sets are redundant. This obviously

depends on the investigated variable and on the uncertainty

limits assumed to be minimum requirements for studying a

certain atmospheric process or climate trend.

Here, we present an example showing the relationship be-

tween distance values and the random uncertainty affecting

IWV measurements. The aim is to clarify the use of MC and

the related distance for quantifying redundant IWV measure-

ments at GRUAN sites. The plot of Fig. 10 shows the dis-

tance between the radiosonde IWV time series at Lindenberg

and the corresponding time series obtained by adding vari-

able random noise to the radiosonde time series. The random

noise is added to reproduce the effect of an additional ran-

dom uncertainty, with relative values of 0–100 % affecting

an IWV time series with respect to the reference series. For

example, a distance value lower than about 0.2 corresponds

to a random uncertainty 20 % larger than that of the original

time series assumed as the reference. This example indicates

a very simple way to approach data sets from different instru-

ments or techniques, fixing a threshold consistent with the

desired redundancy requirements. According to the GCOS

requirements for the state-of-art capability, also reported in

the GRUAN manual (http://www.wmo.int/pages/prog/gcos/

Figure 10. Statistical distance between the integrated water vapour

time series retrieved from the radiosonde at the Lindenberg site and

the corresponding time series obtained by adding random noise to

the radiosonde time series to simulate the effect of increasing rela-

tive random uncertainty.

publications/gcos-171.pdf), atmospheric water vapour must

be measured with a random error < 5 % in the entire tropo-

sphere and stratosphere. This corresponds to a maximum ran-

dom error < 5 % affecting an IWV time series. If the random

uncertainty is quantified by using entropy and the radiosonde

IWV time series (the reference) is affected by random errors

< 5 %, an IWV time series affected by a random error < 5 %

is consistent with the true series if the corresponding distance

value is lower than about 0.2 (total random error < 10 %).

The plot in Fig. 5 shows that the distance values for different

instrument and different sites do not always meet this stan-

dard. The values > 0.2 should be classified as not redundant

in terms of the threshold of 5 % random error affecting the

two compared time series.

4 Conclusions

The ultimate aim of this study is to recommend the best

combination of instruments for monitoring atmospheric wa-

ter vapour. Though entropy and MC are robust concepts pro-

vided in information theory, representing appropriate metrics

to quantify the uncertainty and redundancy of atmospheric

measurements, they have never been applied extensively to

climate data. In this paper, we show how entropy and MC

can be used to evaluate the random probabilistic uncertainty

in the ECV by analysing measurement redundancy.

The following conclusions can be drawn from the results

of this study of data sets of water vapour from five GRUAN

observation stations in 2010–2012:

1. The random uncertainty in the IWV time series obtained

with the different instruments considered in this study
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(Raman lidar, GPS, MWR, microwave profiler, sondes)

differs by < 8 %.

2. In terms of the best performances for each instrument

at the different sites, the comparison of IWV time se-

ries showed that MWR have the highest redundancy and

therefore the highest potential to reduce the random un-

certainty of IWV time series as measured by radioson-

des.

3. The distance between the time series of water vapour

profiles at each altitude level has been also performed

to show how to evaluate the redundancy of collocated

in situ, active and passive profiling instruments, though

for passive instruments this also depends on the retrieval

algorithms and on which first-guess prior covariance is

used.

4. Both RS92 and I-Met radiosondes can measure in situ

atmospheric water vapour with the same random uncer-

tainty as the CFH, though the sondes are affected by a

bias error that cannot be evaluated with the present ap-

proach.

5. A conditional entropy analysis showed that condition-

ing of the time series with more than one instrument,

assumed as constraints, can decrease the residual en-

tropy by at least 60 % versus the use of one conditioning

instrument. Moreover, the use of two conditioning in-

struments versus one results in similar or slightly better

residual uncertainty.

6. An analysis of the relationship between distance and the

random uncertainty showed that a maximum random er-

ror < 5 % affecting the IWV estimated by two differ-

ent techniques corresponds to a distance value less than

about 0.2. That is, an IWV time series whose distance

from a reference time series (i.e. IWV measured by ra-

diosondes) is > 0.2 exceeds the redundancy limits iden-

tified according to the GCOS criteria.

Final recommendations can be provided only if criteria to

support a certain network are clearly defined according to the

uncertainty thresholds assumed in the study of an ECV; how-

ever, the presented approach is versatile enough to be used

with different data sets, stations, and instruments to provide

the required feedback in terms of uncertainty and use of re-

dundant measurements to reduce uncertainty in ECV values.

As a whole the concepts of entropy and mutual correlation

demonstrate their potential if used as metrics for quantifying

random uncertainty and redundancy in time series of atmo-

spheric observations. The examples discussed in this work

support the use of the mutual correlation as a more general

concept than other linear metrics for the study of redundant

measurements. Moreover, the analysis based on the entropy,

MC and conditional entropy can be used for a preliminary

feasibility study of the effective advantages obtained in us-

ing retrieval algorithms integrating measurements provided

by different observation platforms, ground-based or satellite,

both for direct measurements (e.g. radiances) and retrieved

products (e.g. temperature, water vapour content, aerosol op-

tical depth). For example, this is the case of those algorithms

integrating measurements from different sensors using the

Bayes’ theorem (that is based on the concept of conditional

probability) as well as for those algorithms integrating ra-

diances measured by different sensor in different spectral

ranges (e.g. Romano et al., 2007).
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