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Abstract Growing computing capacity and algorithmic advances have facilitated the
study of increasingly large biomolecular systems at longer timescales.
However, with these larger, more complex systems come questions about
the quality of sampling and statistical convergence. What size systems can
be sampled fully? If a system is not fully sampled, can certain ‘‘fast variables’’
be considered well converged? How can one determine the statistical
significance of observed results? The present review describes statistical
tools and the underlying physical ideas necessary to address these
questions. Basic definitions and ready-to-use analyses are provided, along
with explicit recommendations. Such statistical analyses are of paramount
importance in establishing the reliability of simulation data in any given
study.

Keywords: error analysis; principal component; block averaging;
convergence; sampling quality; equilibrium ensemble; correlation time;
ergodicity

1. INTRODUCTION

It is a well-accepted truism that the results of a simulation are only as good as the
statistical quality of the sampling. To compensate for the well-known sampling
limitations of conventional molecular dynamics (MD) simulations of even
moderate-size biomolecules, the field is now witnessing the rapid proliferation of
multiprocessor computing, new algorithms, and simplified models. These
changes underscore the pressing need for unambiguous measures of sampling
quality. Are current MD simulations long enough to make quantitative
predictions? How much better are the new algorithms than the old? Can even
simplified models be fully sampled?

Overall, errors in molecular simulation arise from two factors: inaccuracy in
the models and insufficient sampling. The former is related to choices in
representing the system, for example, all-atom vs. coarse grained models, fixed
charge vs. polarizable force fields, and implicit vs. explicit solvent, as well as
technical details like the system size, thermodynamic ensemble, and integration
algorithm used. Taken in total, these choices define the model used to represent
the system of interest. The second issue, quality of sampling, is largely
orthogonal to the choice of model. In some sense, assessing the quality of the
sampling is a way of asking how accurately a given quantity was computed for
the chosen model. While this review will focus on the issue of sampling, it is
important to point out that without adequate sampling, the predictions of the
force fields remain unknown: very few conclusions, positive or negative, can be
drawn from an undersampled calculation. Those predictions are embodied most
directly in the equilibrium ensemble that simulations have apparently failed to
produce in all but small-molecule systems [1,2]. Thus, advances in force field
design and parameterization for large biomolecules must proceed in parallel
with sampling advances and their assured quantification.
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This review will attempt to acquaint the reader with the most important ideas
in assessing sampling quality. We will address both the statistical uncertainty in
individual observables and quantification of the global quality of the equilibrium
ensemble. We will explicitly address differing approaches necessary for standard
dynamics simulations, as compared to algorithms such as replica exchange, and
while we use the language of MD, virtually all of the arguments apply equally to
Monte Carlo (MC) methods as well. Although this review will not specifically
address path sampling, many of the ideas carry over to what amounts to
equilibrium sampling of the much larger space of paths. We will recommend
specific ‘‘best practices,’’ with the inevitable bias toward the authors’ work. We
have tried to describe the intellectual history behind the key ideas, but the article
is ultimately organized around practically important concepts.

For the convenience of less experienced readers, key terms and functions have
been defined in the appendix: average, variance, correlation function, and
correlation time.

1.1 Examples big and small: butane and rhodopsin

Example trajectories from small and large systems (to which we will return
throughout the review) illustrate the key ideas. In fact, almost all the complexity
we will see in large systems is already present in a molecule as simple as n-
butane. Nevertheless, it is very valuable to look at both ‘‘very long’’ trajectories
and some that are ‘‘not long enough.’’ Concerning the definition of ‘‘long,’’ we
hope that if ‘‘we know it when we see it,’’ then we can construct a suitable
mathematical definition. Visual confirmation of good sampling is still an
important check on any quantitative measure.

1.1.1 Butane
Let us first consider butane, as in Figure 1. Several standard molecular
coordinates are plotted for a period of 1 ns, and it is clear that several timescales
less than 1 ns are present. The very fastest motions (almost vertical in the scale of
the figure) correspond to bond length and angle vibrations, while the dihedrals
exhibit occasional quasi-discrete transitions. The CH3 dihedral, which reports on
methyl spinning, clearly makes more frequent transitions than the main dihedral.

Perhaps the trajectory of butane’s C–C–C angle is most ambiguous, since
there appears to be a slow overall undulation in addition to the rapid vibrations.
The undulation appears to have a frequency quite similar to the transition rate of
the main dihedral, and underscores the point that generally speaking, all degrees of
freedom are coupled, as sketched in Figure 2. In the case of butane, the sampling
quality of the C–C–C angle may indeed be governed by the slowest motions of
the molecule and isomerization of the central torsion.

1.1.2 Rhodopsin
It is perhaps not surprising that all of the degrees of freedom are tightly coupled in
a simple system like butane. It seems reasonable that this coupling may be less
important in larger biomolecular systems, where there are motions on timescales
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Figure 1 Widely varying timescales in n-butane. Even the simple butane molecule (upper left)
exhibits a wide variety of dynamical timescales, as exhibited in the three time traces. Even in
the fast motions of the C–C–C bond angle, a slow undulation can be detected visually.
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Figure 2 Slow and fast timescales are generally coupled. The plot shows a schematic
two-state potential. The y coordinate is fast regardless of whether state A or B is occupied.
However, fast oscillations of y are no guarantee of convergence because the motions in x will
be much slower. In a molecule, all atoms interact — even if weakly or indirectly — and such
coupling must be expected.

26 Alan Grossfield and Daniel M. Zuckerman



ranging from femtoseconds to milliseconds; indeed, it is commonly assumed that
small-scale reorganizations, such as side-chain torsions in proteins, can be
computed with confidence from MD simulations of moderate length. While this
assumption is likely true in many cases, divining the cases when it holds can
be extremely difficult. As a concrete example, consider the conformation of the
retinal ligand in dark-state rhodopsin. The ligand is covalently bound inside the
protein via Schiff base linkage to an internal lysine, and contains an aromatic
hydrocarbon chain terminated by an ionone ring. This ring packs against a highly
conserved tryptophan residue, and is critical to this ligand’s role as an inverse
agonist.

The ring’s orientation, relative to the hydrocarbon chain, is largely described
by a single torsion, and one might expect that this kind of local quantity would be
relatively easy to sample in a MD simulation. The quality of sampling for this
torsion would also seem easy to assess, because as for most torsions, there are
three stable states. However, Figure 3 shows that this is not the case, because of
coupling between fast and slow modes. The upper frame of Figure 3 shows a
time series of this torsion from a MD simulation of dark-state rhodopsin [3]; the
three expected torsional states (g+, g!, and t) are all populated, and there are a
number of transitions, so most practitioners would have no hesitation in
concluding that (a) the trajectory is reasonably well sampled, and (b) that all three
states are frequently populated, with g! the most likely and trans the least. The
middle panel, however, shows the same trajectory extended to 150 ns; it too
seems to suggest a clear conclusion, in this case that the transitions in the first
50 ns are part of a slow equilibration, but that once the protein has relaxed the
retinal is stable in the g! state. The bottom panel, containing the results of
extending the trajectory to 1,600 ns, suggests yet another distinct conclusion, that
g! and t are the predominant states, and rapidly exchange with each other, on
the nanosecond scale.

These results highlight the difficulties involved in assessing the convergence
of single observables. No amount of visual examination of the upper and middle
panels would have revealed the insufficiency of the sampling (although it is
interesting to note that the ‘‘effective sample size’’ described below is not too
large). Rather, it is only after the fact, in light of the full 1,600 ns trajectory, that
the sampling flaws in the shorter trajectories become obvious. This highlights
the importance of considering timescales broadly when designing and inter-
preting simulations. This retinal torsion is a local degree of freedom, and as
such should relax relatively quickly, but the populations of its states are coupled
to the conformation of the protein as a whole. As a result, converging the
sampling for the retinal requires reasonable sampling of the protein’s internal
degrees of freedom, and is thus a far more difficult task than it would first
appear.

1.2 Absolute vs. relative convergence

Is it possible to describe a simulation as absolutely converged? From a statistical
point of view, we believe the answer is clearly ‘‘no,’’ except in those cases where
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the correct answer is already known by other means. Whether a simulation
employs ordinary MD or a much more sophisticated algorithm, so long as the
algorithm correctly yields canonical sampling according to the Boltzmann factor,
one can expect the statistical quality will increase with the duration of the
simulation. In general, the statistical uncertainty of most conceivable molecular
simulation algorithms will decay inversely with the square root of simulation
length. The square-root law should apply once a stochastic simulation process is
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Figure 3 Time series for the torsion connecting the ionone ring to the chain of rhodopsin’s
retinal ligand. All three panels show the same trajectory, cut at 50, 150, and 1,600 ns,
respectively.
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in the true sampling regime — that is, once it is long enough to produce multiple
properly distributed statistically independent configurations.

The fundamental perspective of this review is that simulation results are not
absolute, but rather are intrinsically accompanied by statistical uncertainty [4–8].
Although this view is not novel, it is at odds with informal statements that a
simulation is ‘‘converged.’’ Beyond quantification of uncertainty for specific
observables, we also advocate quantification of overall sampling quality in terms
of the ‘‘effective sample size’’ [8] of an equilibrium ensemble [9,10].

As a conceptual rule-of-thumb, any estimate for the average of an observable
which is found to be based on fewer than B20 statistically independent
configurations (or trajectory segments) should be considered unreliable. There
are two related reasons for this. First, any estimate of the uncertainty in the
average based on a small number of observations will be unreliable because this
uncertainty is based on the variance, which converges more slowly than the
observable (i.e., average) itself. Second, any time the estimated number of
statistically independent observations (i.e., effective sample size) is B20 or less,
both the overall sampling quality and the sample-size estimate itself must be
considered suspect. This is again because sample-size estimation is based on
statistical fluctuations that are, by definition, poorly sampled with so few
independent observations.

Details and ‘‘best practices’’ regarding these concepts will be given below.

1.3 Known unknowns

1.3.1 Lack of ergodicity — unvisited regions of configuration space
No method known to the authors can report on a simulation’s failure to visit an
important region of configuration space unless these regions are already known
in advance. Thus, we instead focus on assessing sampling quality in the regions
of space that has been visited. One can hope that the generation of many
effectively independent samples in the known regions of configuration space
with a correct algorithm is good ‘‘insurance’’ against having missed parts of the
space — but certainly it is no guarantee. Larger systems are likely to have more
thermodynamically relevant substates, and may thus require more independent
samples even in the absence of significant energetic barriers.

1.3.2 Small states rarely visited in dynamical simulation
This issue is also related to ergodicity, and is best understood through an
example. Consider a potential like that sketched in Figure 4, with two states of
98% and 2% population at the temperature of interest. A ‘‘perfect’’ simulation
capable of generating fully independent configurations according to the
associated Boltzmann factor would simply yield 2 of every 100 configurations
in the small state, on average. However, a finite dynamical simulation behaves
differently. As the barrier between the states gets larger, the frequency of visiting
the small state will decrease exponentially. Thus, estimating an average like /xS
will be very difficult — since the small state might contribute appreciably.
Further, quantifying the uncertainty could be extremely difficult if there are only
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a small number of visits to the small state — because the variance will be poorly
estimated.

1.4 Non-traditional simulation methods

The preceding discussion applied implicitly to what we classify as dynamical
simulations — namely, those simulations in which all correlations in the final
trajectory arise because each configuration is somehow generated from the
previous one. This time-correlated picture applies to a broad class of algorithms:
MD, Langevin and Brownian dynamics, as well as traditional Monte Carlo (MC,
also known as Markov-chain Monte Carlo). Even though MC may not lead to
true physical dynamics, all the correlations are sequential.

However, in other types of molecular simulation, any sampled configuration
may be correlated with configurations not sequential in the ultimate ‘‘trajectory’’
produced. That is, the final result of some simulation algorithms is really a list of
configurations, with unknown correlations, and not a true trajectory in the sense of a
time series.

One increasingly popular method which lead to non-dynamical trajectories is
replica-exchange MC or MD [11–13], which employs parallel simulations at a
ladder of temperatures. The ‘‘trajectory’’ at any given temperature includes
repeated visits from a number of (physically continuous) trajectories wandering
in temperature space. Because the continuous trajectories are correlated in the
usual sequential way, their intermittent — that is, non-sequential — visits to the
various specific temperatures produce non-sequential correlations when one of
those temperatures is considered as a separate ensemble or ‘‘trajectory’’ [14]. Less
prominent examples of non-dynamical simulations occur in a broad class of
polymer-growth algorithms (e.g., refs. 15–17).

x

U

98%

2%

0

Figure 4 Cartoon of a landscape for which dynamical simulation is intrinsically difficult to
analyze. As the barrier between the states gets higher, the small state requires exponentially
more dynamical sampling, even though the population may be inconsequential. It would seem
that, in principle, a cutoff should be chosen to eliminate ‘‘unimportant’’ states from analysis.
In any complex molecular system, there will always be extremely minor but almost
inaccessible basins.
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Because of the rather perverse correlations that occur in non-dynamical
methods, there are special challenges in analyzing statistical uncertainties and
sampling quality. This issue has not been well explored in the literature; see
however [10,18,19]. We therefore present some tentative thoughts on non-
dynamical methods, based primarily on the notion that independent simulations
appear to provide the most definitive means for analyzing non-dynamical
simulations. In the case of replica exchange, understanding the difference
between ‘‘mixing’’ and sampling will prove critical to any analysis.

2. ERROR ESTIMATION IN SINGLE OBSERVABLES

One of the main goals of biomolecular simulation is the estimation of ensemble
averages, which should always be qualified by estimates of statistical uncertainty.
We will review the two main approaches to estimating uncertainty in averages,
but a general note of caution should be repeated. Because all variables can be
correlated in a complex system, the so-called ‘‘fast’’ variables may not be as fast
as they appear based on standard error estimation techniques: see Figure 2. As in
the examples of the rhodopsin dihedral, above, even a single coordinate
undergoing several transitions may not be well sampled. Also, investigators
should be wary of judging overall sampling quality based on a small number of
observables unless they are specifically designed to measure ensemble quality, as
discussed below.

The present discussion will consider an arbitrary observable f, which is a
function of the configuration x of the system being simulated. The function f(x)
could represent a complex measure of an entire macromolecule, such as the
radius of gyration, or it could be as simple as a single dihedral or distance.

Our focus will be on time correlations and block averaging. The correlation-
time analysis has been in use for some decades [7], including to analyze the first
protein MD simulation [20], and it embodies the essence of all the single-
observable analyses known to the authors. The block-averaging approach [5,21]
is explicitly described below because of its relative simplicity and directness in
estimating error using simple variance calculations. Block averaging ‘‘short cuts’’
the need to calculate a correlation time explicitly, although timescales can be
inferred from the results. Similarly, the ‘‘ergodic measure’’ of Thirumalai and
coworkers [22–24], not described here, uses variances and correlation times
implicitly.

Both the correlation-time analysis and the block-averaging scheme described
below assume that a dynamical trajectory is being analyzed. Again, by
‘‘dynamical’’ we only mean that correlations are ‘‘transmitted’’ via sequential
configurations — which is not true in a method like replica exchange.

2.1 Correlation-time analysis

The correlation-time analysis of a single observable has a very intuitive
underpinning. Consider first that dynamical simulations (e.g., molecular and
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Langevin dynamics), as well as ‘‘quasi-dynamical’’ simulations (e.g., typical MC
[25]), create trajectories that are correlated solely based on the sequence of the
configurations. As described in the Appendix, the correlation time tf measures
the length of simulation time — whether for physical dynamics or MC —
required for the trajectory to lose ‘‘memory’’ of earlier values of f. Therefore, the
correlation time tf for the specific observable f provides a basis for estimating the
number of statistically independent values of f present in a simulation of length
tsim, namely Nind

f " tsim=tf. By itself, Nind
f # 1 would suggest good sampling for

the particular observable f.
The correlation time is computed from the correlation function (see

Appendix), and it is useful to consider an example. Figure 5 shows the time-
correlation functions computed for individual state lifetimes as measured by a
100 ns simulation of butane. Specifically, for each snapshot from the trajectory, the
central torsion was classified as trans, g+, or g!. A time series was then written
for each state, with a value of 1 if the system was in that state and 0 otherwise.
The autocorrelation functions for each of those time series are shown in Figure 5.
All three correlation functions drop smoothly to zero within 200 ps, suggesting
that a 100 ns simulation should contain a very large number of independent
samples. However, the populations for the three states over the course of the
trajectory are 0.78, 0.10, and 0.13 for the trans, g+, and g! states, respectively. The
g+ and g! states are physically identical, and thus should have the same
populations in the limit of perfect sampling. Thus even a very long simulation of
a very simple system is incapable of estimating populations with high precision.
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Figure 5 State autocorrelations computed from 100 ns butane simulations. The central
torsion was labeled as either trans, g+, or g!, and the autocorrelation function for presence in
each state was computed.
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To obtain an estimate of the statistical uncertainty in an average /fS, the
correlation time tf must be used in conjunction with the variance s2f (square of the
standard deviation; see Appendix) of the observable. By itself, the standard
deviation only gives the basic scale or range of fluctuations in f, which might be
much larger than the uncertainty of the average /fS. In other words, it is possible
to know very precisely the average of a quantity that fluctuates a lot: as an
extreme example, imagine measuring the average height of buildings in
Manhattan. In a dynamical trajectory, the correlation time tf provides the link
between the range of fluctuations and the precision (uncertainty) in an average,
which is quantified by the standard error of the mean, SE,

SEðfÞ ¼
sfffiffiffiffiffiffiffiffiffiffi
Nind

f

q " sf

ffiffiffiffiffiffiffiffi
tf
tsim

r
(1)

In this notation, Nind
f is the number of independent samples contained in the

trajectory, and tsim the length of the trajectory. The standard error can be used to
approximate confidence intervals, with a rule of thumb being that 72SE
represents roughly a 95% confidence interval [26]. The actual interval depends on
the underlying distribution and the sampling quality as embodied in
Nind

f " tsim=tf ; see ref. 25 for a more careful discussion.
It has been observed that the simple relation between correlation time and

sampling quality embodied in the estimate Nind
f ¼ tsim=tf is actually too

conservative in typical cases [27]. That is, even though the simulation may require
a time tf to ‘‘forget’’ its past (with respect to the observable f ), additional
information beyond a single estimate for f is obtained in the period of a single
correlation time — that is, from partially correlated configurations. However, the
improvement in sampling quality is modest — the effective sample size may be
double the estimate based simply on tf. Such subtleties are accounted for
automatically in the block-averaging analysis described below.

Understanding the correlation-time analysis, as well as the habitual
calculation of correlation functions and times, is extremely useful. Yet the
analysis has weaknesses for quantifying uncertainty that suggest relying on other
approaches for generating publication-quality error bars. First, like any single-
observable analysis, the estimation of correlation times may fail to account for
slow timescales in observables not considered: recall the rhodopsin example.
Second, the calculation of correlation times becomes less reliable in precisely
those situations of greatest interest — when a second, slower timescale enters the
intrinsically noisier tail of the correlation function. The third weakness was
already described: a lack of full accounting for all statistical information in the
trajectory. These latter considerations suggest that a block-averaging procedure,
described next, is a preferable analysis of a single observable.

2.2 Block averaging

When executed properly, the block-averaging analysis automatically corrects
two of the weaknesses in correlation-time estimates of the error based on
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equation (1). In particular, any slow timescales present in the time series for the
particular observable are accounted for (although only in regard to the observable
studied). Second, because block averaging uses the full trajectory, it naturally
includes all the information present. The block-averaging analysis was first
reported by Flyvbjerg and Petersen [5], who credited the previously unpublished
idea to others.

The approach can be described simply (although it is not easily understood
from the original reference). A trajectory with N ¼ M' n snapshots is divided
into M segments (‘‘blocks’’), with an initial very short block length, such as n ¼ 1
(see Figure 6). The average of the observable is calculated for each block yielding
M values for /fSi, with i ¼ 1,y,M. The block length n is gradually increased and
the set of block averages is recalculated for each length. Further, for each value of
n, the standard deviation among the block averages, sn, is used to calculate a
running estimate of the overall standard error, namely,

BSEðf ;nÞ ¼
snffiffiffiffiffi
M

p (2)

This is the standard error in estimates of the mean based on blocks (trajectory
segments) of length n. Clearly, for small n (and largeM ¼ N/n) when consecutive
blocks are highly correlated, blocked standard error (BSE) greatly underestimates
the statistical error, since equation (2) only yields the true standard error when all
M blocks are statistically independent. On the other hand, once the blocks are
essentially independent of one another (i.e., when the block length is
substantially greater than the correlation time, n # tf=Dt), BSE will cease to
vary with n and become a reliable estimator of the true SE. Figure 6 illustrates this
behavior for a trigonometric function of butane’s main (C–C–C–C) dihedral.

The function BSE(f, n) therefore increases monotonically with n and asymp-
totes to the true standard error associated with /fS, as seen in Figure 6. Thus, a
plot of BSE(f, n) includes a ‘‘signal’’ as to whether or not the error estimate has
converged, which is not subject to the extremes of numerical uncertainty
associated with the tail of a correlation function. Furthermore, the block-
averaging analysis directly includes all trajectory information (all frames).

The only weakness of the block-averaging approach, which is minor in our
opinion, is that it does not directly render the correlation time. Having the
correlation time in hand provides important physical intuition. Nevertheless, we
note that the correlation time can be estimated cleanly using the block-averaging
results. Specifically, using the trajectory f(t), one can directly calculate the vari-
ance sf and then solve for Nind

f using Equation (1). The correlation time is then
given approximately by tf " tsim=N

ind
f , which will somewhat underestimate the

correlation time (as noted implicitly by Berg and Harris, ref. 27) perhaps by a
factor of B2.

It is not uncommon for researchers to use the name ‘‘block averaging’’ to
describe a second, far simpler procedure. In this case, a single time series is split
into M blocks, and the variance between the averages for those blocks is
presented as the uncertainty. However, unlike the true block-averaging protocol
described above, this procedure is not statistically meaningful, because the
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single-block size is chosen arbitrarily; it is only by systematically varying the
block size that one can reliably draw conclusions about the uncertainty.

2.3 Summary — single observables in dynamical simulations

Several points are worth emphasizing: (i) single observables should not be used
to assess overall sampling quality. (ii) The central ideas in single-observable

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 100  200  300  400  500

B
S

E
 =

 B
lo

ck
ed

 S
ta

nd
ar

d 
E

rr
or

Block length (psec)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  500  1000 1500 2000

co
s2 (

C
-C

-C
-C

)

Time (ps)

Large blocks-weak correlation

Small blocks-strong correlation
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analysis are that the correlation time separates statistically independent values of
the observable, and that one would like to have many statistically independent
‘‘measurements’’ of the observable — that is, Nind

f # 1. (iii) The block-averaging
analysis is simple to implement and provides direct estimation of statistical
uncertainty. We recommend that the correlation time and effective sample size
also be estimated to ensure Nind

f # 1. (iv) In a correlation-time analysis, one
wants to ensure the total simulation time is a large multiple of the correlation
time — that is, tsim=tf # 1.

2.4 Analyzing single observables in non-dynamical simulations

As discussed earlier, the essential fact about data from non-dynamical
simulations (e.g., replica exchange and polymer-growth methods) is that a
configuration occurring at one point in the ‘‘trajectory’’ may be highly correlated
with another configuration anywhere else in the final list of configurations.
Similarly, a configuration could be fully independent of the immediately
preceding or subsequent configurations. To put it most simply, the list of
configurations produced by such methods is not a time series, and so analyses
based on the explicit or implicit notion of a correlation time (time correlations are
implicit in block averaging) cannot be used.

From this point of view, the only truly valid analysis of statistical errors can be
obtained by considering independent simulations. Ideally, such simulations
would be started from different initial conditions to reveal ‘‘trapping’’ (failure to
explore important configurational regions) more readily. Running multiple
simulations appears burdensome, but it is better than excusing ‘‘advanced’’
algorithms from appropriate scrutiny. Of course, rather than multiplying the
investment in computer time, the available computational resources can be
divided into 10 or 20 parts. All these parts, after all, are combined in the final
estimates of observable averages. Running independent trajectories is an
example of an ‘‘embarrassingly parallel’’ procedure, which is often the most
efficient use of a standard computer cluster. Moreover, if a simulation method is
not exploring configuration space well in a tenth of the total run time, then it
probably is not performing good sampling anyway.

How can statistical error be estimated for a single observable from
independent simulations? There seems little choice but to calculate the standard
error in the mean values estimated from each simulation using Equation (1),
where the variance is computed among the averages from the independent
simulations and Nind

f is set to the number of simulations. In essence, each
simulation is treated as a single measurement, and presumed to be totally
independent of the other trajectories. Importantly, one can perform a ‘‘reality
check’’ on such a calculation because the variance of the observable can also be
calculated from all data from all simulations — rather than from the simulation
means. The squared ratio of this absolute variance to the variance of the means
yields a separate (albeit crude) estimate of the number of independent samples.
This latter estimate should be of the same order as, or greater than, the number of
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independent simulations, indicating that each ‘‘independent’’ simulation indeed
contained at least one statistically independent sample of the observable.

It is interesting to observe that, in replica-exchange simulations, the physically
continuous trajectories (which wander in temperature) can be analyzed based on
time-correlation principles [10,14]. Although each samples a non-traditional
ensemble, it is statistically well defined and can be used as a proxy for the regular
ensemble. A more careful analysis could consider, separately, those segments of
each continuous trajectory at the temperature of interest. The standard error
among these estimates could be compared to the true variance, as above, to
estimate sampling quality. A detailed discussion of these issues in the context of
weighted histogram analysis of replica-exchange simulation is given by Chodera
et al. [14].

3. OVERALL SAMPLING QUALITY IN SIMULATIONS

In contrast to measures of convergence that reflect a single local observable, for
example, a torsion angle, some methods focus on the global sampling quality. For
a simulation of a macromolecule, the distinction would be between asking ‘‘how
well do I know this particular quantity?’’ and ‘‘how well have I explored the
conformational space of the molecule?’’ The latter question is critical, in that if the
conformational space is well sampled, most physical quantities should be known
well.

This review will describe two classes of analyses of overall sampling quality:
(i) qualitative and visual techniques, which are mainly useful in convincing
oneself a simulation is not sufficiently sampled; and (ii) quantitative analyses of
sampling, which estimate the ‘‘effective sample size.’’

3.1 Qualitative and visual analyses of overall sampling effectiveness

There are a number of techniques that, although they cannot quantitatively assess
convergence or statistical uncertainty, can give tremendous qualitative insight.
While they cannot tell the user that the simulation has run long enough, they can
quickly suggest that the simulation has not run long enough. Thus, while they
should not replace more rigorous methods like block averaging and sample-size
estimation, they are quite useful.

3.1.1 Scalar RMSD analyses
One of the simplest methods is the comparison of the initial structure of the
macromolecule to that throughout the trajectory via a distance measure such as
the root mean square deviation (RMSD). This method is most informative for a
system like a folded protein under native conditions, where the molecule is
expected to spend the vast majority of the time in conformations quite similar to
the crystal structure. If one computes the RMSD time series against the crystal
structure, one expects to see a rapid rise due to thermal fluctuations, followed by
a long plateau or fluctuations about a mean at longer timescales. If the RMSD
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time series does not reach a steady state, the simulation is either (a) still
equilibrating or (b) drifting away from the starting structure. In any event, until
the system assumes a steady-state value — one that may fluctuate significantly,
but has no significant trend — the system is clearly not converged. Indeed, one
can argue that under that circumstance equilibrium sampling has not yet even
begun. However, beyond this simple assessment, RMSD is of limited utility,
mostly because it contains little information about what states are being sampled;
a given RMSD value maps a 3N-dimensional hypersphere of conformation space
(for N atoms) to a single scalar, and for all but the smallest RMSD values this
hypersphere contains a broad range of structures. Moreover, the limiting value
for the RMSD cannot be known in advance. We know the value should be non-
zero and not large, but the expected plateau value is specific to the system
studied, and will vary not only between macromolecules, but also with changes
to simulation conditions such as temperature and solvent.

An improvement is to use a windowed RMSD function as a measure of the
rate of conformation change. Specifically, for a given window length (e.g., 10
consecutive trajectory snapshots), the average of the all of the pairwise RMSDs
(or alternatively, the average deviation from the average over that interval) is
computed as a function of time. This yields a measure of conformational
diversity over time, and can more readily reveal conformational transitions.

3.1.2 All-to-all RMSD analysis
A more powerful technique is to compute the RMSDs for all pairs of snapshots
from the trajectory and plot them on a single graph [28]. Figure 7 shows the
results of such a plot, made using the alpha-carbon RMSD computed from a
1.6 ms all-atom simulation of dark-state rhodopsin in an explicit lipid membrane
[3]. The plot reveals a hierarchical block structure along the diagonal; this
suggests that the protein typically samples within a substate for a few hundred
nanoseconds, and then rapidly transitions to a new conformational well.
However, with the exception of two brief excursions occurring around 280 and
1,150 ns into the trajectory, the system never appears to leave and then return to a
given substate. This suggests that this simulation, although very long by current
standards, probably has not fully converged.

3.1.3 Cluster counting
A more general approach, also based on pairwise distances, would be to use
cluster analysis. Although a general discussion of the many clustering algorithms
presently in use is beyond the scope of this manuscript, for our purposes we
define clustering to be any algorithm that divides an ensemble into sets of self-
similar structures. One application of clustering to the assessment of convergence
came from Daura et al., who measured the rate of discovery of new clusters over
the course of a trajectory; when this rate became very small, the simulation was
presumed to be reasonably well converged [29]. However, a closer look reveals
this criterion to be necessary but not sufficient to guarantee good sampling.
While it is true that a simulation that is still exploring new states is unlikely to
have achieved good statistics (at least for a reasonable definition of ‘‘states’’),

38 Alan Grossfield and Daniel M. Zuckerman



simply having visited most of the thermodynamically relevant states is no
guarantee that a simulation will produce accurate estimates of observables.

3.1.4 ‘‘Structural histogram’’ of clusters
As discussed by Lyman and Zuckerman [9], not only must clusters be visited, but
also it is important that the populations of those regions be accurately
reproduced, since the latter provide the weights used to compute thermo-
dynamic averages. In a procedure building on this idea, one begins by
performing a cluster analysis on the entire trajectory to generate a vocabulary
of clusters or bins. The cluster/bin populations can be arrayed as a one-
dimensional ‘‘structural histogram’’ reflecting the full configuration-space
distribution. Structural histograms from parts of the trajectory are compared to
one computed for the full trajectory, and plotting on a log-scale gives the
variation in knot units, indicating the degree of convergence.

3.1.5 Principal components analysis
Principal component analysis (PCA) is another tool that has been used
extensively to analyze molecular simulations. The technique, which attempts to
extract the large-scale characteristic motions from a structural ensemble, was first
applied to biomolecular simulations by Garcia [28], although an analogous
technique was used by Levy et al. [30]. The first step is the construction of the
3N' 3N (for an N-atom system) fluctuation correlation matrix

Cij ¼ hxi ! x̄iihxj ! x̄ji

where xi represents a specific degree of freedom (e.g., the z-coordinate of the 23rd
atom) and the overbar indicates the average structure. This task is commonly
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Figure 7 All-to-all RMSD for rhodopsin alpha-carbons. The scale bar to the right shows
darker grays to indicate a more similar structures.
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simplified by using a subset of the atoms from the molecule of interest (e.g., the
a-carbons from the protein backbone). The matrix is then diagonalized to
produce the eigenvalues and eigenvectors; the eigenvectors represent character-
istic motions for the system, while each eigenvalue is the mean square fluctuation
along its corresponding vector. The system fluctuations can then be projected
onto the eigenvectors, giving a new time series in this alternative basis set. The
diagonalization and time series projection can be performed efficiently using
singular value decomposition, first applied to principal component analysis of
biomolecular fluctuations by Romo et al. [31].

In biomolecular systems characterized by fluctuations around a single
structure (e.g., equilibrium dynamics of a folded protein), a small number of
modes frequently account for the vast majority of the motion. As a result, the
system’s motions can be readily visualized, albeit abstractly, by plotting the time
series for the projections of the first two or three modes. For example, projecting
the rhodopsin trajectory described above [3] onto its two largest principle modes
yields Figure 8. As with the all-to-all RMSD plots (see Figure 7), this method
readily reveals existence of a number of substates, although temporal information
is obscured. A well-sampled simulation would exhibit a large number of
transitions among substates, and the absence of significant transitions can readily
be visualized by plotting principal components against time. It is important to
note that this method does not depend on the physical significance or statistical
convergence of the eigenvectors themselves, which is reassuring because
previous work has shown that these vectors can be extremely slow to converge
[1,32]. Rather, for these purposes the modes serve as a convenient coordinate
system for viewing the motions.
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Figure 8 Projection of rhodopsin fluctuations onto the first two modes derived from
principal component analysis. As with Figure 7, this method directly visualizes substates in the
trajectory.
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PCA can also be used to quantify the degree of similarity in the fluctuations of
two trajectories (or two portions of a single trajectory). The most rigorous
measure is the covariance overlap suggested by Hess [1,33,34]

OA:B ¼ 1!

P3N
i¼1ðl

A
i þ lBi Þ ! 2

P3N
i¼1

P3N
j¼1

ffiffiffiffiffiffiffiffiffiffi
lAi l

B
j

q
ð~vAi )~vBj Þ

P3N
i¼1ðl

A
i þ lBi Þ

2

4

3

5

which compares the eigenvalues l and eigenvectors v computed from two
datasets A and B. The overlap ranges from 0, in the case where the fluctuations
are totally dissimilar, to 1, where the fluctuation spaces are identical. Physically,
the overlap is in essence the sum of all the squared dot products of all pairs of
eigenvectors from the two simulations, weighted by the magnitudes of their
displacements (the eigenvalues) and normalized to go from 0 to 1. Hess used this
quantity as an internal measure of convergence, comparing the modes computed
from subsets of a single trajectory to that computed from the whole [34]. More
recently, Grossfield et al. computed the principal components from 26
independent 100 ns simulations of rhodopsin, and used the covariance overlap
to quantify the similarity of their fluctuations, concluding that 100 ns is not
sufficient to converge the fluctuations of even individual loops [1]. Although
these simulations are not truly independent (they used the same starting
structure for the protein, albeit with different coordinates for the lipids and
water), the results again reinforce the point that the best way to assess
convergence is through multiple repetitions of the same system.

3.2 Quantifying overall sampling quality: the effective sample size

To begin to think about the quantification of overall sampling quality — that is,
the quality of the equilibrium ensemble — it is useful to consider ‘‘ideal
sampling’’ as a reference point. In the ideal case, we can imagine having a perfect
computer program which outputs single configurations drawn completely at
random and distributed according to the appropriate Boltzmann factor for the
system of interest. Each configuration is fully independent of all others generated
by this ideal machinery, and is termed ‘‘i.i.d.’’ — independent and identically
distributed.

Thus, given an ensemble generated by a particular (non-ideal) simulation,
possibly consisting of a great many ‘‘snapshots,’’ the key conceptual question is:
To how many i.i.d. configurations is the ensemble equivalent in statistical
quality? The answer is the effective sample size [1,9,10] which will quantify the
statistical uncertainty in every slow observable of interest — and many ‘‘fast’’
observables also, due to coupling, as described earlier.

The key practical question is: How can the sample size be quantified? Initial
approaches to answering this question were provided by Grossfield et al. [1] and
by Lyman and Zuckerman [10]. Grossfield et al. employed a bootstrap analysis to
a set of 26 independent trajectories for rhodopsin, extending the previous
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‘‘structural histogram’’ cluster analysis [10] into a procedure for estimating
sample size. They compared the variance in a cluster’s population from the
independent simulations to that computed using a bootstrap analysis (boot-
strapping is a technique where a number of artificial datasets are generated by
choosing points randomly from an existing dataset [35]). Because each data point
in the artificial datasets is truly independent, comparison of the bootstrap and
observed variances yielded estimates of the number of independent data points
(i.e., effective sample size) per trajectory. The results were astonishingly small,
with estimates ranging from 2 to 10 independent points, depending on the
portion of the protein examined. Some of the numerical uncertainties in the
approach may be improved by considering physical states rather than somewhat
arbitrary clusters; see below.

Lyman and Zuckerman suggested a related method for estimating sample
size [10]. First, they pointed out that binomial and related statistics provided an
analytical means for estimating sample size from cluster-population variances,
instead of the bootstrap approach. Second, they proposed an alternative analysis
specific to dynamical trajectories, but which also relied on comparing observed and
ideal variances. In particular, by generating observed variances from ‘‘frames’’ in
a dynamical trajectory separated by a fixed amount of time, it can be determined
whether those time-separated frames are statistically independent. The separa-
tion time is gradually increased until ideal statistics are obtained, indicating
independence. The authors denoted the minimum time for independence the
‘‘structural decorrelation time’’ to emphasize that the full configuration-space
ensemble was analyzed based on the initial clustering/binning.

3.2.1 Looking to the future: can state populations provide a ‘‘universal
indicator’’?

The ultimate goal for sample size assessment (and thus estimation of statistical
error) is a ‘‘universal’’ analysis, which could be applied blindly to dynamical or
non-dynamical simulations and reveal the effective size. Current work in the
Zuckerman group (unpublished) suggests a strong candidate for a universal
indicator of sample size is the variance observed from independent simulations
in the populations of physical states. Physical states are to be distinguished from
the more arbitrary clusters discussed above, in that a state is characterized by
relatively fast timescales internally, but slow timescales for transitions between
states. (Note that proximity by RMSD or similar distances does not indicate either
of these properties.) There are two reasons to focus on populations of physical
states: (i) the state populations arguably are the fundamental description of the
equilibrium ensemble, especially considering that (ii) as explained below, relative
state populations cannot be accurate unless detailed sampling within states is
correct. Of course, determining physical states is non-trivial but apparently
surmountable [36].

We claim that if you know state populations, you have sampled well — at
least in an equilibrium sense. Put another way, we believe it is impossible to
devise an algorithm — dynamical or non-dynamical — that could correctly
sample state populations without sampling correctly within states. The reason is
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that the ratio of populations of any pair of states depends on the ensembles
internal to the states. This ratio is governed/defined by the ratio of partition
functions for the states, i and j, which encompass the non-overlapping
configuration-space volumes Vi and Vj, namely,

probðiÞ
probðjÞ

¼
Zi

Zj
¼

R
Vi
dr e!UðrÞ=kBT

R
Vj
dr e!UðrÞ=kBT

(3)

This ratio cannot be estimated without sampling within both states — or
effectively doing so [37,38]. Note that this argument does not assume that
sampling is performed dynamically.

If indeed the basic goal of equilibrium sampling is to estimate state
populations, then these populations can act as the fundamental observables
amenable to the types of analyses already described. In practical terms, following
10, a binomial description of any given state permits the effective sample size to
be estimated from the populations of the state recorded in independent
simulations — or from effectively independent segments of a sufficiently long
trajectory. This approach will be described shortly in a publication.

One algorithm for blindly approximating physical states has already been
proposed [36], although the method requires the number of states to be input. In
work to be reported soon, Zhang and Zuckerman developed a simple procedure
for approximating physical states that does not require input of the number of
states. In several systems, moreover, it was found that sample-size estimation is
relatively insensitive to the precise state definitions (providing they are
reasonably physical, in terms of the timescale discussion above). The authors
are therefore optimistic that a ‘‘benchmark’’ blind, automated method for
sample-size characterization will be available before long.

3.3 Analyzing non-standard simulations — for example, replica
exchange

The essential intuition regarding non-standard/non-dynamical simulations
such as replica exchange has been given in our discussion of single observables:
in brief, a given configuration in a ‘‘trajectory’’ may be highly correlated with
much ‘‘later’’ configurations, yet not correlated with intervening configu-
rations. Therefore, a reliable analysis must be based on multiple independent
simulations — which is perhaps less burdensome than it first seems, as discussed
above.

We believe such simulations should be analyzed using state-population
variances. This approach, after all, is insensitive to the origins of the analyzed
‘‘trajectories’’ and any internal time correlations or lack thereof. No method that
relies explicitly or implicitly on time correlations would be appropriate.

Replica-exchange simulations, because of their growing popularity, merit
special attention. While their efficacy has been questioned recently [19,39], our
purpose here is solely to describe appropriate analyses. To this end, a clear
distinction must be drawn between ‘‘mixing’’ (accepted exchanges) and true
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sampling. While mixing is necessary for replica exchange to be more efficient
than standard dynamics (otherwise each temperature is independent), mixing in
no way suggests good sampling has been performed. This can be clearly appreciated
from a simple ‘‘thought experiment’’ of a two-temperature replica-exchange
simulation of the double square well potential of Figure 9. Assume the two
replicas have been initiated from different states. Because the states are exactly
equal in energy, every exchange will be accepted. Yet if the barrier between the
states is high enough, no transitions will occur in either of the physically
continuous trajectories. In such a scenario, replica exchange will artifactually
predict 50% occupancy of each state. A block averaging or time-correlation
analysis of a single temperature will not diagnose the problem. As suggested in
the single-observable discussion, some information on under-sampling may be
gleaned from examining the physically continuous trajectories. The most reliable
information, however, will be obtained by comparing multiple independent
simulations; Section 2.4 explains why this is cost efficient.

4. RECOMMENDATIONS

1. General. When possible, perform multiple simulations, making the starting
conformations as independent as possible. This is recommended regardless of
the sampling technique used.

2. Single observables. Block averaging is a simple, relatively robust procedure for
estimating statistical uncertainty. Visual and correlation analyses should also
be performed.

3. Overall sampling quality — heuristic analysis. If the system of interest can be
thought of as fluctuating about one primary structure (e.g., a native protein),
use qualitative tools, such as projections onto a small number of PCA modes or
all-to-all RMSD plots to simplify visualization of trajectory quality. Such

U
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)

x

Figure 9 A cartoon of two states differing only in entropy. Generally, in any simulation,
energetic effects are much easier to handle than entropic. The text describes the challenge of
analyzing errors in replica-exchange simulations when only entropy distinguishes two
energetically equal states.
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heuristic analyses can readily identify under-sampling as a small number of
transitions.

4. Overall sampling quality — quantitative analysis. For dynamical trajectories, the
‘‘structural decorrelation time’’ analysis [10] can estimate the slowest timescale
affecting significant configuration-space populations and hence yield the
effective sample size. For non-dynamical simulations, a variance analysis
based on multiple runs is called for [1]. Analyzing the variance in populations
of approximate physical states appears to be promising as a benchmark metric.

5. General. No amount of analysis can rescue an insufficiently sampled
simulation. A smaller system or simplified model that has been sampled well
may be more valuable than large detailed model with poor statistics.
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APPENDIX

For reference, we provide brief definitions and discussions of basic statistical
quantities: the mean, variance, autocorrelation function, and autocorrelation
time.

Mean

The mean is simply the average of a distribution, which accounts for the relative
probabilities of different values. If a simulation produces a correct distribution of
values of the observable f, then relative probabilities are accounted for in the set
of N values sampled. Thus the mean /fS is estimated via

hfi ¼
1

N

XN

i¼1

f i (A.1)

where fi is the ith value recorded in the simulation.

Variance

The variance of a quantity f, which is variously denoted by s2f , var(f), or s2(f),
measures the intrinsic range of fluctuations in a system. Given N properly
distributed samples of f, the variance is defined as the average squared deviation
from the mean:

s2f ¼ hðf ! hfiÞ2i ¼
1

N ! 1

XN

i¼1

ðf i ! hfiÞ2 (A.2)

The factor of N!1 in the denominator reflects that the mean is computed from
the samples, rather than supplied externally, and one degree of freedom is
effectively removed.

The square root of the variance, the standard deviation, sf, thus quantifies the
width or spread in the distribution; it has the same units as f itself, unlike the
variance. Except in specialized analyses (such a block averaging) the variance
does not quantify error. As an example, the heights of college students can have a
broad range — that is, large variance — while the average height can be known
with an error much smaller than the standard deviation.

Autocorrelation function

The autocorrelation function quantifies, on a unit scale, the degree to which a
quantity is correlated with values of the same quantity at later times. The
function can be meaningfully calculated for any dynamical simulation, in the
sense defined earlier, and therefore including MC. We must consider a set of
time-ordered values of the observable of interest, so that f j ¼ fðt ¼ jDtÞ, with
j ¼ 1; 2; . . . ;N and Dt the time step between frames. (For MC simulations, one can
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simply set Dt * 1). The average amount of autocorrelation between ‘‘snapshots’’
separated by a time tu is quantified by

cf ðt0Þ ¼
h½fðtÞ ! hfi,½fðtþ t0Þ ! hfi,i

s2f

¼
ð1=NÞ

PN!ðt0=DtÞ
j¼1 ½fðjDtÞ ! hfi, ½fðjDtþ t0Þ ! hfi,

s2f
ðA:3Þ

where the sum must prevent the argument of the second f from extending
beyond N. Note that for t0 ¼ 0, the numerator is equal to the variance, and the
correlation is maximal at the value cf ð0Þ ¼ 1. As tu increases significantly, for any
given j, the later values of f are as likely to be above the mean as below it —
independent of fi since the later values have no ‘‘memory’’ of the earlier value.
Thus, the correlation function begins at one and decays to zero for long enough
times. It is possible for cf to become negative at intermediate times — which
suggests a kind of oscillation of the values of f.

Correlation time

The (auto)correlation time tf quantifies the amount of time necessary for
simulated (or even experimental) values of f to lose their ‘‘memory’’ of earlier
values. In terms of the autocorrelation function, we can say roughly that the
correlation time is smallest tu value for which cf ðt0Þ - 1 for all subsequent times
(within noise). More quantitatively, the correlation time can be defined via

tf ¼
Z 1

0
dt0 cjðt0Þ (A.4)

where the numerical integration must be handled carefully due to the noise in the
long-time tail of the correlation function. More approximately, the correlation
time can be fit to a presumed functional form, such as an exponential or a sum of
exponentials, although it is not necessarily easy to predetermine the appropriate
form [40].
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