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ABSTRACT In the cloud-based Internet of Things (IoT) environments, quantifying uncertainty is an

important element input to keep the acceptable level of reliability in various configurations. In this paper,

we aim to address the pricing model of delivering data over the cloud while taking into consideration the

dynamic uncertainty factors such as network topology, transmission/reception energy, nodal charge and

power, and computation capacity. These uncertainty factors are mapped to different nodes with varying

capabilities to be processed using Artificial Intelligence (AI)-based algorithms. Accordingly, we aim to find

a way to calculate and predict the price per big data service over the cloud using AI and deep learning.

Therefore, in this paper, we propose a framework to address big data delivery issues in cloud-based IoT

environments by considering uncertainty factors. We compare the performance of the framework using two

AI-based techniques called Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA) in both

centralized and distributed versions. The use of AI techniques can be applied in multilevel to provide a kind

of deep learning to further improve the performance of the system under study. The results reveal that the

distributed algorithm outperforms the centralized one. In addition, the results show that the GA has lower

running time compared to the SAA in all the test cases such as 68% of improvement in the centralized

version, and 66% of improvement in the distributed version in case when the size of uncertainty array is 256.

Moreover, when the size of uncertainty array increases, the results show 60% speed up in the distributed GA

compared to its centralized version. The improvements achieved would help the service providers to actually

improve their profit using the proposed framework.

INDEX TERMS IoT, cloud, trading model, AI, deep learning, big data.

I. INTRODUCTION

Internet of Thing (IoT) paradigm is influencing the world and

people’s life where cloud computing plays a significant role

in realizing it. IoT allows people and things (e.g. sensors,

actuators, and smart devices) to be connected anytime and

anywhere, with anyone and anything. Most of these things

are expected to communicate with each other, collect data and

provide services via the cloud paradigm. Delivering data in a

cost-effective and scalable manner is vital in order to support

the continued growth of cloud services [1]. In a modern data

center, the majority of data is generated by bandwidth-hungry

The associate editor coordinating the review of this article and approving
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long flows [2]. According to [3], more than 90% of flows

are short flows with the size of less than 100 MB. However,

more than 90% of bytes are in flows bigger than 100 MB.

The overall quality of the computation can be degraded if the

short flows cannot deliver the associated data on time. There-

fore, efficient data delivery is crucial in order to enhance

the overall quality and performance of various cloud services

such as transport, traffic and healthcare while reducing their

overall cost of delivery and energy consumption. On the other

hand, there would be huge cost for the cloud providers if an

unplanned data delivery is utilized without paying attention

to the price and resource scarcity. Furthermore, cost effec-

tiveness is one of the main characteristics defined on an

IoT setting [4]. Therefore, an efficient IoT-specific pricing
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model would help cloud providers to identify different factors

affecting the level of service that aggregates data from various

sources. This in turn causes enhancements in the reliability of

services.

Nowadays, we are all connected with our computers,

smart-phones, and many other objects and devices that can

send and receive data. This in turn raises a couple of questions

such as; how much does it require to send data over the

network? and, what happens if the pricing model of energy

or the topological order of the nodes change? Therefore, it is

significant to investigate different approaches to optimize the

pricing schemes in order to have cost-efficient data delivery

in cloud-based IoT infrastructures. However, since the IoT is

growing fast, a problem that any service provider may face

is the uncertainty problem. Uncertainty in cloud-based IoT

solutions arise mainly from the heterogeneity of the utilized

devices and communication links towards the cloud. This

important issue has an impact on computing efficiency, and

brings additional challenges to scheduling problems in cloud

environment [5]. Therefore, uncertainty analysis should be an

important part of design and service provisioning approaches

in the IoT era. Moreover, quantifying uncertainty is an impor-

tant element input to keep the acceptable level of reliability

in various cloud-based IoT setups.

Artificial Intelligence (AI) is expected to be a $70 billion

industry by 2020 [6]. It is an important technology for smart

machine development. For instance, AI is used by the U.S.

Automobile Association to provide safety for self-driving

cars [7]. Moreover, the great interest in AI and big data has

created opportunities for companies such as Google to utilize

AI in their cloud-based services [8]. The use of AI at the edge

of the network will improve the computational speed and

the range of IoT-based industrial applications. In addition,

in Industrial IoT (IIoT) a large amount of data is collected

by sensing devices and is then transmitted to the cloud-

data centers using Wireless Sensor Networks (WSNs) or the

Internet [9]. Then, the cloud data-center can monitor and

analyze the collected IoT big data. Therefore, the big data

analytics in the cloud data center is crucial in the IoT era in

order to provide intelligent services such as smart healthcare.

Using AI techniques in addressing data delivery in the IoT

environment provides a kind of deep learning which can be

applied to manage the uncertainties. Deep learning methods

provide precise results and high performance in big data

applications [10]. Moreover, deep learning helps to improve

IoT security by performing classification tasks directly from

the images and texts [11]. With recent advancements in deep

learning, several applications such as tracking and localiza-

tion, audio sensing, and user identification have utilized Deep

Neural Networks (DNNs) to better make sophisticated map-

ping between the input measurements from the sensors and

the predicted values. In addition, deep learning techniques

such as Convolution Neural Networks (CNNs), Long Short-

TermMemory (LSTM), auto-encoders, deep generative mod-

els and deep belief networks have already been applied

to efficiently analyze possible large collections of data.

Applications of these methods in medical signals and images

can aid the clinicians in clinical decision-making. Deep learn-

ing is one of the extensively applied techniques that provides

state of the art accuracy. It opened new doors in medical

image analysis as well. Applications of deep learning in

healthcare cover a broad range of problems ranging from can-

cer screening and disease monitoring to personalized treat-

ment suggestions. For example, in [12], the authors proposed

a methodology for classifying DNA microarray. Artificial

Bee Colony (ABC) is used for dimensionality reduction to

select the best set of genes to find out particular diseases.

The reduced genes are then utilized to train Artificial Neu-

ral Networks (ANNs) to classify the DNA microarray. The

study in [13] presents a hybrid method of forward neural

network and improved ABC to classify a magnetic resonance

brain image as normal and abnormal. Parameters of forward

neural network are optimized using improved ABC which is

based on both fitness scaling and chaotic theory. In addition,

the study in [14] uses ant colony technique for optimization

of the weights of neural networks. Moreover, it trains the

neural network for pattern classification. In [15], a hybrid

technique is used for training of the neural network in order

to provide back propagation with good initial weight using

global optimization algorithm. A few studies build a relation-

ship between people’s personal health and smartphone sensor

data using a traditional deep learning method called Deep

Stacked AutoEncoder (DSAE). In this method, data from the

smartphones can be categorized based on various states of

the user motions (e.g. running, walking, standing and sitting).

In addition, the authors build the quantitative correlation

between individual health and the classified sensor data. The

performance of the proposed method is also verified using a

simulation experiment.

Apart from the healthcare, deep learning techniques have

been extensively utilized in signal processing applications.

For example, the study in [16] describes some of the

neuro-modeling methodology used for applications in signal

processing and pattern classification and recognition. The

authors indicate their original contributions such as hybrid

optimization for optimal design of frequency selective sur-

faces, optimization of neural network for pattern classifica-

tion and recognition using wavelet transforms.

As discussed in this section, various studies consider AI

algorithms and deep learning in several applications such as

healthcare and signal processing as well as in tracking and

localization, audio sensing, and user identification. However,

no study considered the use of AI technology and deep

learning in quantifying uncertainty for big data cloud services

delivery which is an important part of the design and service

provisioning approaches in the IoT Era. The computational

power needed to find the optimal pricing is already a com-

putationally expensive task while introducing the uncertainty

problem makes this to a highly computational problem that

would require more power to solve compared to a single com-

puter. This introduces the IoT solution by itself where using

distributed systems can actually help solving the problem
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by taking all the uncertainty factors into consideration. This

would allow companies not only to solve the uncertainty in

their mathematical models but also predict future pricing if

used properly.

Therefore, our main contributions in this paper are as

follows.

• We propose an optimized pricing framework covering a

cost-effective IoT infrastructure.

• To be best of our knowledge, this study is the first study

to address data delivery issues in the cloud-based IoT

era using AI technology and deep learning considering

uncertainty factors.

• The performance of the proposed framework is inves-

tigated using two AI-based algorithms called GA and

SAA in both centralized and distributed versions.

In order to assist the readers, a list of abbreviations along with

their brief definitions used throughout the paper is provided

in Table 1. Moreover, the general overview of the whole

system in this study is depicted in Figure 1 showing how

the information is coming to the cloud and being processed

intelligently using GA and SAA.

TABLE 1. List of abbreviations.

The rest of this paper is organized as follows. Section II

outlines the related works and background behind the pric-

ing model and uncertainty factors which are introduced in

FIGURE 1. An overview of the system model.

Section III. Moreover, the algorithms used in the study are

presented in section IV. Section V discusses the results and

findings of the study. Finally, section VI concludes this paper.

II. BACKGROUND

Uncertainty features can be utilized to provide services in

a way that the overall requirements of the communication

systems are satisfied. Cloud-based IoT paradigms provide

unique services that are possible only through smart devices

such as smartphones, tablets, sensors, tags, etc. connected

via the Internet. These services can be classified into three

categories; computing services, storage services, and com-

munication services. In cloud-based IoT systems, several

configurations for the shared computing load among various

devices/nodes can be considered and the processing require-

ments may differ according to the actual work. Pricing the

uncertainty in these configurations plays a key role in pro-

viding a real-time response and improves the reliability of the

system.

Meanwhile, in IoT systems, a massive amount of data

can be generated using billions of sensor devices in smart

environments. These devices are not even capable of storing

the generated data for one day.Moreover, it is not necessary to

push all the data directly to the cloud, if there is redundancy or

irrelevance in data. Therefore, a few of these devices can vol-

unteer to store partial data based on a pricingmodel temporar-

ily. Together with computing services, storage services can

filter, analyze, and compress data for efficient transmissions.

On the other hand, the utilized wireless protocols control

the communication services in the cloud-based IoT systems.

These protocols can adapt for narrow-band transmission, low-

power operation, or longer range of coverage because of the

constrained resources per smart device. An efficient pricing

model can combine these protocols into a single globalized

communication system utilized by the cloud. This would help

to manage subnetworks of smart devices such as sensors and

actuators in addition to providing security and reliability in

the IoT system.

Nowadays, these three categories of services are offered

based on static/mobile devices in the IoT paradigm.
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However, the data delivery in these services varies as well

based on the utilized device and technology. For example,

4GLong TermEvolution (LTE) has lower costs since no radio

network controller for 3G Wideband Code Division Multiple

Access (WCDMA) and service continuity can be obtained by

interfacing different systems such as WCDMA [17]. More-

over, costs are measured and distributed between different

service layers in production of cloud services. For various

communication technologies, hardware-, software-, cooling-,

and cloud utilization- cost would be different and therefore,

the price of services vary accordingly.

There have been a number of attempts for addressing data

delivery problem by providing a pricing framework in the

IoT-based cloud environment. For example, Hybrid Energy-

Efficient Distributed clustering (HEED) algorithm [18] tack-

les the computational power that is needed when it comes

to distributed systems. The new simplified version of this

algorithm reduces communication between the master node

and the slave nodes [19]. In this study, the approach is based

on scattering data into the computing nodes, since every

node computes a completely independent uncertainty prob-

lem. The master node will only gather the data after it is

completely processed a coupled analysis approach.

Addressing data delivery and exchange in the IoT-based

cloud by providing a pricing framework is considerably

important nowadays [4]. It allows us to compute the required

price for each node in the cloud. Different incentives can take

part in the pricing model that dictates the choice of a group

of candidates for data processing. Recent results in incentive-

based data exchange have been well studied. For example,

in [20], the authors present a comprehensive investigation on

routing and forwarding in MANETs by focusing on the gain

per individual node.

Moreover, quantifying uncertainty in data driven equip-

ment health monitoring is a research topic considered in

various studies and it is of paramount importance in machine-

assisted medical decision making. For example, analytical

algorithms are used to estimate the uncertainty in prognostic.

The authors consider different sources of uncertainty such

as inaccurate measurement of sensors, and the operating and

loading conditions of the system in order to quantify their

integrated effect on prognostics or remaining useful life pred-

ication. In these studies, different types of uncertainties are

propagated to formulate an uncertainty propagation problem

using the state space model until failure. The state space

models are also used to estimate the future states of the

system. Unlike the presented analytical approaches, other

studies focus on the same problem using a much simpler

approach. The authors utilize a group of DNNs to model the

available sensor data time-series until a specific point in time

without estimating the future state of the system. In addi-

tion, the use of dropout at the interface time is proposed to

provide Bayesian approximation in the remaining useful life

predication. Similarly, other studies utilize a group of neural

networks to estimate predictive uncertainty and show their

use compared to Bayesian models.

The pricing model presented in this study is based on the

laws of supply and demand [4]. Moreover, uncertainty is

available in delivering data through the cloud but a proper

research about the uncertainty in the cloud has not been con-

ducted yet. This allows us to address the problem of pricing

model simultaneously with uncertainty factors in terms of the

topological order, transmission and reception energy, nodal

charge and nodal power as well as computation capacity in

the pricing model. Adaptive optimization algorithms have

been applied in this study in order to overcome prices uncer-

tainty in cloud-based services. The GA and SAA were used

to find sub-optimal solutions using distributed and parallel

systems [20]. A summary of the state of the art studies in

the literature in presented in Table 2 in comparison with our

study.

TABLE 2. Summary of the studies in comparison with our study.

III. SYSTEM MODEL

There are different tools available for testing uncertainties

in cloud-based IoT systems such as SALSA [21]. However,

the problem with these tools is that the developers need

to have fixed the current virtual structures and they must

determine the description of the system for accurate deploy-

ment. Moreover, cloud-based IoT systems can be modelled

using software engineering tools [22] but it is not possible

to integrate them with the deployment tools or incorporate

them with uncertainty objectives [23]. Other tools lack char-

acteristics for specifying test configuration based on uncer-

tainty models. Therefore, an optimized pricing framework

covering a cost-effective IoT infrastructure is proposed in this

study to address the data delivery issues in the IoT era using

intelligence and deep learning technology by considering

uncertainty factors.

In this section, we describe our main system model used in

addressing the pricing uncertainty in cloud-based IoT infras-

tructure. The assumed pricing is as follows [4]:

pi = γi ∗ [
Etx + Erx

Ei
+ π + Ui + S + CSBs] (1)

where γi is a pricing factor for each node providing the same

service in the IoT paradigm. This factor can be calculated
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based on the state of the current resources in the system.

Etx and Erx are transmission and reception energy respec-

tively. Ei, π and Ui represent nodal charge, nodal power

and computation capacity respectively. Furthermore, S is the

security level and CSBs represent the accuracy of the brokers

in the pricing framework.

Moreover, another issue in this regard can be related to the

uncertainty in wireless signal strength. The signal level from a

transmitter to a receiver at distance D can be varied according

to the environment. These differences can be captured using a

model called log-normal distribution model. The signal level

at distance D follows this distribution centered on the average

value of the power at that point. This model can be formulated

as follows:

PR = M0 − 10PL log (D) − µD (2)

In Equation (2), D is the distance between transmitter

and receiver, PL represents the path loss content computed

according to the data obtained from the experiment, M0 is

the constant computed according to the average height of

the receiver and transmitter, and µ is a normally distributed

random variable with the variance of σ 2 and the mean

of zero.

In this study, genetic and simulated annealing algorithms

are used to solve the problem as we are trying to optimize

the outcome of the mathematical model. Together with the

uncertainty factors, it would be hard to actually compute

on a single node since this would require too much time

to compute if the uncertainty arrays are significantly large.

Uncertainty factors are represented by the constants of the

pricing model where γi, π , Ui, and Ei are assigned different

values every time the algorithmworks. This would allow us to

simulate various conditions that might actually be present in

the future based on a level of probability of uniform distribu-

tion. The constants are represented in an array of uncertainty

numbers. For example, [0.6, 4, 55, 14] is an uncertainty

array where 0.6 represents the network inter-connectivity.

The numbers 4 and 55 would represent the amount of charge

every node will need and the capability per node respectively.

The number 14 in the uncertainty array would represent the

number of packets the node has to process and relay. More-

over, the size of the uncertainty array can vary ranging from

8 to 2000 entries. The issue of uncertainty would be crucial

when it comes to the whole networks of smart environments

integrated with other complex IoT networks such as smart

cities, smart healthcare, and smart energy systems. The afore-

mentioned factors may influence the occurrence of the uncer-

tainty in the cloud-based IoT environments. Heterogeneity

of devices and wide scale use of wireless technology may

cause uncertainty in transferring speeds, and delay in delivery

of data. For example, uncertainty is one of most important

problems in most IoT systems based on Radio Frequency

Identification (RFID) technology [24]. In this context, uncer-

tainty can happen due to inconsistent data. Since RFID tags

can be read using different readers simultaneously, therefore,

it is possible to obtain inconsistent data about the precise

location of the tags. Captured data may include redundant

data with significant amount of additional information which

may be another cause of uncertainty.

In this paper, using a distributed computation approach,

the uncertainty array is mapped to different nodes with the

same algorithm that is ready to perform the computation. This

would allow different nodes to take apart of the heavy process

instead of one processor doing all the tasks. The array of a

certain size would be mapped to these different nodes and

this provides a speed up of 60% since both algorithms are

distributed according to Amdahl’s law.

IV. PROPOSED ALGORITHM

In this section, we propose two AI-based algorithms called

GA and SAA to solve the pricing framework discussed in

Section III in the cloud-based IoT infrastructure in order to

compute the required price for each node in the cloud. The

main idea here is to optimize the abovementioned uncertain

values in the pricing framework presented in Equation 1.

First, GA is used to quantify the uncertainty in the pricing

model.

GA is a metaheuristic and AI-based probabilistic searching

algorithm that helps to optimize the solution of the pricing

framework in the cloud-based IoT era. The pseudocode for

the algorithm is given as follows in Algorithm 1.

Algorithm 1 Genetic Algorithm (GA)

1. Initialize: Gmax, PoC, PS, PoM

2. Generate initial random solution (δ)

3. Compute Pi in Eq. (1)

4. Select best found solution

5. For i = 1 to Gmax

6. For j = 1 to PS/2

7. Select two parents using tournament_selection

8. Apply crossing-over between the parents with PoC

9. Apply mutation with PoM

10. End For

11. Replace parents with children

12. Generate the new population

13. Compute Pi in Eq. (1)

14. End For

15. Return best found solution

In the GA, the algorithm begins by initializing Gmax ,

PoC, PS, and PoM in line 1.Gmax is the maximum generation

number such that the best solution is found. PS represents the

population size. PoM and PoC are probabilities of mutation

and crossover respectively. The initial random solution based

on PS is generated in line 2. In line 3, pi is computed in

accordance with Equation 1. And in line 4 we select the best

found solution. In lines 5 – 14, we iterate over a specific

generation number, and in lines 6 – 10, we iterate over half

of the PS since we choose two parents at each generation

for applying crossover. In line 7, two parents are selected

using tournament selection. In line 8, we apply crossover

operation to generate two children and mutate them using PM
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in line 9. Line 10 ends the inner ‘‘for’’ loop. In line 11, all

the parents are replaced with the newly generated children.

In lines 12 and 13, we generate the new population and

compute the pi in Equation 1 respectively. Line 14 ends the

outer ‘‘for’’ loop. And in line 15, the best found solution is

returned. The centralized version of the algorithm would run

on a single node which is processing all the entries of the

uncertainty array and running the algorithm on each entry.

However, the distributed version of the GA utilizes the map

function that will chunk the uncertainty array and will scatter

the entries upon the number of nodes that are available.

Simulated Annealing Algorithm (SAA) is used to compare

the performance of the GA in its centralized and distributed

forms. SAA is another AI-based algorithm which can be used

to solve NP complete optimization problems in a heuristic

approach [25]. The usefulness of the SAA is related to two

heuristics of iterative enhancement approach and divide and

conquer [25]. For instance, SAA is an effective approach

in the mitigation of Virtual Machine (VM) in the cloud or

edge [26] because by increasing the number of VMs in the

data center it would be computationally difficult to check the

number of Physical Machines (PMs) to be turned off, and

which VMs to be chosen and moved to other PMs. Therefore,

SAA can be utilized to find an approximate (if not optimal)

solution for the problem. The pseudocode for the SAA is

given in Algorithm 2.

Algorithm 2 Simulated Annealing Algorithm (SAA)

1. Initialize T0, δ0, α, a, b

2. δ = δ0, δF = δ0, T1 = T0

3. For i = 1 to a

4. For j = 1 to b

5. Generate a random solution (δ)

6. Calculate its price using Pi in Eq. (1) (f(δ))

7. Generate a random neighboring

(close to) solution (δTemp)

8. Calculate the new solution’s price (f(δTemp))

9. Compare them:

10. If: f(δTemp) ≤ f(δ) then

11. δ = δTemp

12. End If

13. Else If: U(0, 1) ≤ e
−(

(f (δTemp)−f (δ))

Tt
)
then

14. δ = δTemp

15. End Else If

16. If: f(δ) ≤ f(δF) then

17. δF = δ

18. End If

19. End For

20. Tt+1 = α.Tt

21. End For

22. ReturnδF

In line 1 of algorithm 2, we initialize T0, δ0, α, a, and b.

T0 is the initial temperature of the system which is used to

enable the acceptance or rejection of the solutions. We assign

a maximum temperature to T0 and reduce it slowly by using

α as the cooling factor which was set to 0.85 in this study. The

initial solution (δ0) is also initialized in line 1 in order to be

used for the selection of better results. In addition, a and b

represent the number of stages, and the count of moves

in each stage with a specific temperature in the algorithm

respectively. In line 2, the initial value is assigned to δ as

well as δF as the final solution. Moreover, the temperature

is initialized to the current temperature. Lines 3 – 21 iterate

over the initialized number of stages. And lines 4 – 19, iterate

over the number of moves in a specific stage. Line 5 generates

a random solution and its price is calculated using pi in

Equation 1 in line 6. Line 7 generates a random neighboring

solution (δTemp) and the new solution’s price is calculated

in line 8. Line 9 compares the solutions. Line 10 checks if

the new solution is better than the current solution. If the

condition in line 10 is met, then the new solution is assigned

to the current solution in line 11. The first ‘‘If’’ statement

is ended in line 12. The current temperature Tt is utilized in

line 13 to find an exponential value. This value is compared

with a random number between 0 and 1 (U (0, 1)) to specify

whether or not the temporary bad solution should be accepted.

If the condition in line 13 is met, then the temporary solution

is assigned to the current one in line 14. Line 15 ends the

‘‘Else if’’ statement. Line 16 checks if the current solution is

better than the final solution (δF ). If the condition in line 16

is satisfied, then the current solution is assigned to the final

solution. Lines 18 and 19 end the ‘‘If’’ statement and the inner

‘‘for’’ loop respectively. The next stage temperature of the

system (Tt+1) is computed in line 20 using the cooling factor.

Line 21 ends the outer ‘‘for’’ loop. Finally, line 22 returns the

final solution.

We remark here, that centralized version of SAA would

have the same processing time as of the centralized version

of the GA. Meanwhile, the distributed version of the SAA

uses all the nodes available to compute the uncertainty array

by mapping each entry to a node. In the next section, both

algorithms are compared in both forms, centralized and dis-

tributed, in terms of various uncertainty factors in the pricing

model.

V. PERFORMANCE EVALUATION

An i7-4770HQ processor and 16GB of Random Access

Memory (RAM) are used to simulate the nodes of the dis-

tributed system. The number of entries used in the experiment

creates the uncertainty array. Each entry represents a number

of constants in the pricing model equation. The equation is

considered as the objective function for the algorithms used

in this experiment. The simulation code is written in python

and uses the multiprocessing library to map the entries of the

uncertainty array to the nodes processing it.

A. SIMULATON METRICS AND PARAMETERS

The simulation tool randomly generates the uncertainty array

based on the amount of entries required. The aforementioned

algorithms are utilized to compute the optimal results for
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each entry. The parameters used in the simulation are as

follows:

1) NETWORK TOPOLOGY (γ i)

This is the topological order that would affect the pricing

model. Companies try to reduce the cost and increase their

profits since moving data from a source to a destination

would have a cost for them. This would help them achieve

that by representing the number of nodes the data package

went through before reaching destination. This factor can be

calculated based on the state of the current resources in the

system.

2) TRANSMISSION ENERGY (Etx)

It is the energy consumed per transmitted packet measured in

joules. This factor represents the varying energy requirement

per connected device to the cloud.

3) RECEPTION ENERGY (Erx)

It is the energy consumed by the received packet measured in

joules.

4) NODAL CHARGE (Ei)

It represents the charge that is needed per node. Nodal charge

varies from a node to another.

5) NODAL POWER (π)

It represents the power consumption per node.

6) COMPUTATION CAPACITY (U i)

It represents the capacity to compute and relay messages as a

factor of utilization.

The following performance metrics are considered to

assess the proposed model.

7) RUNNING TIME

This metric represents the time it takes for the GA and SAA

to solve the pricing model in both centralized and distributed

versions.

8) ENERGY CONSUMPTION

This is the average energy consumed by the nodes consider-

ing both algorithms. This metric is measured in (mJ).

9) AVERAGE DELAY

This metric represents the delay which may occur due to the

increase in the size of the uncertainty array.

10) THROUGHPUT

This is the overall network throughput which is measured

in Megabytes per second (Mbps). This metric represents the

total amount of successful works per the time unit in terms of

the total data received by the algorithms.

B. RESULTS AND DISCUSSIONS

The flexibility of cloud-based infrastructures requires a cost-

effective pricing model to enhance the reliability of the sys-

tem especially for the ones under uncertainty. Pricing the

uncertainty in the cloud-based IoT configurations plays a

significant role in providing a real-time response and improv-

ing the reliability of the system. Moreover, understanding

the pricing problem in a cloud-based platform will provide

useful insight into the complexity of the problem in the

presence of uncertainty as well as on the cloud monitoring

value network. As discussed earlier, in this paper, various

performance metrics such as network topology, transmission

energy, reception energy, nodal charge, nodal power and

computation capacity are used in the simulation to randomly

generate the uncertainty array based on the amount of entries

required. During experiment, γi was set to have a uniform

distribution between 0 and 1 whereas Ui was set to have

a value between 5 and 20 to have the most random data

packages income and processed. Furthermore, π would have

a uniform disturbed value between 40 and 100 to illustrate

the different power consumption that every node uses. In the

pricing model problem, the SAA and the GA both have the

same entries of data to show which one would be more

accurate on distributed systems. The test is performed by

creating uncertainty arrays that has the following sizes: 8, 16,

32, 64, 128, 256. They are all computed by both algorithms

to find the best algorithm on distributed systems. Moreover,

an initial temperature (T0) of 500 was chosen for the SAA

and the cooling factor (α) in the SAA was set to be equal

to 0.85. Additionally, initialization for the GA was done as

follows. The PS was selected as 50, and the stopping criteria

as 500. Both PoC and PoMwere chosen as 0.5. Table 3 shows

a summary of all the simulation parameters used throughout

the paper.

TABLE 3. Simulation parameters.

The following figures reveal the average execution time

value over 100 runs for both GA and SAA. In the simula-

tion, the relative precision is employed as one of the most

commonly utilized stopping criterion, and therefore, the sim-

ulation is stopped at the first checkpoint when the condition

δ ≤ δmax is satisfied. In this condition, δmax can have a
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value between 0 and 1 (0 < δmax < 1) and it represents

the maximum acceptable value of the relative precision of

the confidence intervals at the 100(1−α)% significance level.

All the results obtained from the simulations are within the

confidence interval of 5% with a confidence level of 95%.

Therefore, the default values for both α and δ in our sim-

ulation are set to 0.05. This in turn helps in evaluating the

evolutionary convergence of the algorithms.

As shown in Figure 2, GA and SAA perform well when

they are distributed but the GA shows its powerful com-

putation power compared to the SAA when it comes to

centralized or distributed systems. The 256 entries reveal

that the running time of the distributed GA is less than

50 seconds with a 4 seconds difference than the previous

experiment which would be counted as computational timing

error.

FIGURE 2. Uncertainty factors.

TABLE 4. Centralized vs. distributed GA & SAA.

The results presented in Table 4 show that how the SAA

grows exponentially when we take an uncertainty value of 2n

in its centralized form. Furthermore, its performance in the

distributed form is reduced to half. However, the GA provides

promising results in terms of running time when it runs

on a distributed manner since every array of uncertainty is

mapped to a node with a GA ready to compute the variables.

For instance, with the centralized GA, it runs more than

2 minutes with the uncertainty array of 256 entries whereas

it just takes 49 seconds with the distributed GA. Moreover,

the SAA shows that it takes longer when calculating the

256 entries with a running time of 4 minutes whereas it

took only 2 minutes and 41 seconds computing the previous

256 entries.

Please note that the experiment was done using a dis-

tributed system that has 4 cores in its computational power.

The following figures represent the uncertainty factors pro-

portional to time. The pricing problem is solved using dif-

ferent core powers to represent the speed up that distributed

systems would achieve when it solves/computes uncertainty.

For this experiment, the test is performed by creating a matrix

of uncertainty that held 64, 88, 128 and 256 entries of uncer-

tainty. In addition, it considers various computational power

to see how it would affect the running time of the algorithms

compared to the centralized approach. Figure 3 shows how

the distributed system helps in computing uncertainty prob-

lems when it comes to time and core efficiency. Considering

the computation on two different nodes, the algorithm shows

that it takes approximately 2 minutes compared to the 50%

speed up. This shows that predicting the pricing model of

any node is possible if the algorithm is efficient enough to

be distributed.

FIGURE 3. Uncertainty factors - GA.

TABLE 5. Simulation time vs. different nodes for GA.

The results presented in Table 5 show how the uncertainty

factors are affected by the number of present nodes. The

centralized GA is compared with the distributed approach

considering 2, 3, and 4 nodes. With 256 entries, it is shown

that the centralized algorithm takes 2 minutes to actually

compute all the entries whereas increasing the nodes would

make the computational time lower. This approach can be

implemented with more nodes and more uncertainty fac-

tors allowing us to compute more factors in the pricing

model.

The same experiment was conducted for the SAA with

different number of distributed nodes to see the effect of
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uncertainty on the computational power of the algorithm.

The uncertainty array that was computed in the previous test

was used again to have a consistent metric.

As shown in Figure 4, the distributed system actually helps

in computing uncertainty problems when it comes to time and

core efficiency. The algorithm shows that running 256 entries

in a single node is computationally expensive using the SAA.

On the other hand, using distributed systems help to find the

optimal solution most of the time.

FIGURE 4. Uncertainty factors - SAA.

FIGURE 5. Running time of GA vs. SAA.

In addition, the results show that the GA has lower running

time compared to the SAA in all the test cases. For exam-

ple, Figure 5 compares the running time of the centralized

GA with the centralized version of the SAA considering

various uncertainty arrays. As the size of uncertainty array

increases, the running time of both algorithms increase. How-

ever, the GA has lower running time in all the cases.

The results presented in Table 6 compare the distributed

SAA and the centralized SAA in terms of running time. With

32 entries, the centralized SAA surpasses the 1-minute mark,

in which the GA is able to compute the 256 entries with a

lower running time. Moreover, the distributed one performs

TABLE 6. Simulation time vs. different nodes for SAA.

FIGURE 6. Energy consumed vs. uncertainty array - GA.

FIGURE 7. Average delay vs. uncertainty array - SAA.

better since multiple nodes perform the heavy computation

instead of a single node.

In Figures 6 – 8, we studied other important parameters

such as energy consumption, average delay and network

throughput, while varying the size of the uncertainty array.

We applied this experiment to compare the performance of

both GA and/or SAA in the centralized and distributed ver-

sions. Figure 6 shows the average energy consumption of

GA per delivered data packet which is a linear relationship.

The results show that the distributed version of GA has up

to 52% improvements compared to the centralized version of

the algorithm.

In Figure 7, the average delay per packet of the SAA in

both centralized and distributed versions is compared while
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FIGURE 8. Throughput vs. uncertainty array - SAA.

varying the size of uncertainty array. As we increase the

size of uncertainty array, the delay in the system increases

too. However, the distributed SAA has a better performance

compared to the centralized SAA. This increase in the delay

reduces the overall network throughput of the SAA as shown

in Figure 8.

VI. CONCLUSION AND FUTURE WORK

Uncertainty is an important issue that affects computing effi-

ciency and brings additional challenges to cloud providers in

the IoT environments. In this paper, we propose a pricing

framework for a cloud node in the IoT era by considering

uncertainty factors such as network topology, transmission/

reception energy, nodal charge and power, and computation

capacity. With all the factors that might change in the net-

work, the aim of this study is to use IoT itself to calcu-

late these uncertainty variables for the pricing of the cloud

nodes. The results presented based on calculating the uncer-

tainty on centralized and decentralized algorithms show a

significant improvement in terms of computing uncertainty

in the cloud-based IoT era. Based on the results presented,

distributed algorithms outperformed the centralized algo-

rithms in all the given test cases. Furthermore, the results

show that the GA has lower running time compared to the

SAA in all the test cases with 68% of improvement in the

centralized version, and 66% of improvement in the dis-

tributed version in case when the size of uncertainty array

is 256. When the size of uncertainty array increases, the algo-

rithms’ speed-up in the distributed systems is phenomenal.

We achieved 60% speed-up in the distributed GA compared

to its centralized version. This would be helpful for the

companies to actually compute their profit and loss when it

comes to IoT.

In the future, the performance of proposed framework

will be evaluated using other AI-based and deep learn-

ing algorithms such as ANN, RF, K-nearest neighbor, and

SVM in order to find the optimal algorithm in providing

big data services in the cloud by considering uncertainty

factors.
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