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[1] The quantification of uncertainties in projections of climate impacts on river streamflow
is highly important for climate adaptation purposes. In this study, we present a methodology
to separate uncertainties arising from the climate model (CM), the statistical postprocessing
(PP) scheme, and the hydrological model (HM). We analyzed ensemble projections of
hydrological changes in the Alpine Rhine (Eastern Switzerland) for the near-term and far-
term scenario periods 2024–2050 and 2073–2099 with respect to 1964–1990. For the latter
scenario period, the model ensemble projects a decrease of daily mean runoff in summer
(�32.2%, range [�45.5% to �8.1%]) and an increase in winter (þ41.8%, range [þ4.8% to
þ81.7%]). We applied an analysis of variance model combined with a subsampling
procedure to assess the importance of different uncertainty sources. The CMs generally are
the dominant source in summer and autumn, whereas, in winter and spring, the uncertainties
due to the HMs and the statistical PP gain importance and even partly dominate. In addition,
results show that the individual uncertainties from the three components are not additive.
Rather, the associated interactions among the CM, the statistical PP scheme, and the HM
account for about 5%–40% of the total ensemble uncertainty. The results indicate, in
distinction to some previous studies, that none of the investigated uncertainty sources are
negligible, and some of the uncertainty is not attributable to individual modeling chain
components but rather depends upon interactions.
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1. Introduction

[2] The projected impacts of climate change on river
streamflow are associated with large uncertainties. For water
management, these projection uncertainties importantly con-
tribute to the total uncertainty, in addition to factors such as
natural variability and changes in water demand [Kundze-
wicz et al., 2008]. Although the use of climate-impact pro-
jections for water management planning purposes has been
debated [Kundzewicz and Stakhiv, 2010], most published
strategies actually make use of such information [Dessai
and Hulme, 2007; Milly et al., 2008]. The quantification of
uncertainties in climate-impact projections is therefore of
particular interest [Pappenberger and Beven, 2006]. So
far, the overall uncertainty of projected climate impacts is
probably underestimated, which is due to an incomplete

sampling of the uncertainty sources [Knutti, 2008; Wilby,
2010]. Improving the knowledge about the importance of dif-
ferent uncertainty sources might thus help to design climate-
impact studies with a more complete uncertainty assessment.
[3] Impact modeling systems that include a cascade of

different models are commonly used to assess climate
impacts (for some recent studies, see, e.g., Vicuna et al.
[2010], Campbell et al. [2011], Quintana-Segu�ı et al.
[2011], Köplin et al. [2012], and Teutschbein and Seibert
[2012]) and to provide information for water management
[e.g., Schaefli et al., 2007; Lopez et al., 2009]. Elements of
this cascade are an emission scenario, a global circulation
model (GCM), a dynamical downscaling step by means of
a regional climate model (RCM), a statistical postprocess-
ing (PP), and a hydrological model (HM). Alternatively,
the dynamical downscaling and the PP steps can be
replaced by a statistical downscaling. In the remainder of
this article, we call this cascade of emission scenarios and
models an impact modeling chain. Uncertainties in hydro-
logical climate-impact projections arise due to different
assumptions and model combinations in the whole impact
modeling chain (e.g., CM or HM structure uncertainty
[Masson and Knutti, 2011; Seiller et al., 2012]), CM or HM
parameter uncertainty [Bellprat et al., 2012; Beven, 2006],
instationarity of PP parameters [Buser et al., 2009; Boberg
and Christensen, 2012], and natural variability [see, e.g.,
Lucas-Picher et al., 2008]. For a complete analysis of
uncertainty in runoff projections, it is therefore important to
investigate the contributions of all existing sources.
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[4] Numerous previous studies have investigated hydro-
logical climate-impact projections and their sensitivity to
different uncertainty sources. Here, a nonexhaustive sum-
mary of studies conducted in the Rhine basin follows.
Shabalova et al. [2003] compared two PP methods and
found that for the end of the 21st century, both methods
agree on a decrease of summer runoff and an increase of
winter runoff, but the two methods lead to different
increases of winter flood risk. Lenderink et al. [2007] also
investigated uncertainties due to PP and confirmed the
results of Shabalova et al. [2003] that the choice of the PP
rather affects the changes in runoff extremes than in the
mean runoff. Jasper et al. [2004] investigated the projected
impact on runoff of an ensemble of 17 climate scenarios
derived from seven GCMs and four emission scenarios in
two Swiss catchments. They found that changes in the sea-
sonality of runoff are robust, but the magnitude of the
changes is strongly affected by the choice of the climate
scenario. Combined uncertainties from emission scenarios,
GCMs and RCMs, were investigated by Graham et al.
[2007] who found that the choice of the GCM has a larger
impact on projected hydrological changes than the choice
of the RCM or emission scenario.
[5] More recently, studies that systematically investigate

multiple uncertainty sources along the whole impact mod-
eling chain have been published. Wilby and Harris [2006]
assessed uncertainties from emission scenarios, GCMs, sta-
tistical downscaling, HM structure, and HM parameters.
Using a probabilistic framework, they showed that GCMs
and the downscaling step were the most important sources
of uncertainty in simulating changes of low flows in the
Thames River (UK). In a study of the impact of climate
change on hydropower production in the Mauvoisin catch-
ment (Switzerland), Schaefli et al. [2007] investigated the
importance of uncertainties due to the global mean temper-
ature projection, the regional scaling relationship, the
glacier model, HM parameters, and the hydropower man-
agement model. They found the uncertainty in the global
mean temperature and the regional scaling factors to be of
comparable magnitude and both being more important than
the other uncertainty sources. Prudhomme and Davies
[2009] assessed uncertainties due to emission scenarios,
GCMs, downscaling methods, and HMs in four mesoscale
British catchments and concluded that the driving GCM is
the dominant source of uncertainty. They further stated that
uncertainty due to PP and the choice of the emission sce-
nario are of comparable magnitude, whereas uncertainty
due to the HMs is negligible in two out of four basins. Kay
et al. [2009] investigated the same uncertainty sources as
Wilby and Harris [2006] and also included the effect of in-
ternal variability in a case study that assessed changes of
flood frequency in two British catchments. They found
GCMs being the dominant source of uncertainty. However,
after excluding one outlier from the GCM ensemble, other
uncertainty sources such as RCMs and internal variability
became more important than GCMs. For two catchments in
Oregon (USA), Jung et al. [2011] found the natural vari-
ability and the driving GCM to be the major sources for
uncertainty with respect to flood frequency changes.
[6] In our study, we perform an ensemble of hydrologi-

cal climate-impact projections for an Alpine river catch-
ment and the two scenario periods (SCE) 2024–2050 and

2073–2099 with respect to the control period (CTL) 1964–
1990. From this ensemble, we aim to infer several sources
of uncertainty, and we use the variance as a measure for the
uncertainty. The three uncertainty sources considered are
(i) climate models (CMs) consisting of a GCM and an
RCM, (ii) PP, and (iii) HMs. The Alpine study area is a
challenging region for all three impact modeling chain ele-
ments. CMs, both GCMs and RCMs, for instance, cannot
fully resolve the complex topography; PP methods have to
correct for potentially large biases; and HMs are chal-
lenged by complicated and spatially highly variable hydro-
logical processes such as accumulation and melt of snow.
[7] The limited number of uncertainty sources and mod-

els included in the ensemble results in an underestimation
of the overall uncertainty associated with the hydrological
climate impacts (i.e., the uncertainty if all possible uncer-
tainty sources were fully sampled). Throughout this paper,
we call the spread in our ensemble the total ensemble
uncertainty to clearly distinguish it from the overall (true)
uncertainty.
[8] Our two research questions are as follows: (1) how

large is the total ensemble uncertainty in the runoff projec-
tions and (2) how do different uncertainty sources contrib-
ute to the total ensemble uncertainty in the runoff
projections for both SCEs. In particular, we are interested
in how the contributions vary throughout the annual cycle
and how they affect the uncertainty in changes of different
runoff quantiles. We include fewer sources of uncertainty
than some of the previously mentioned studies, but, instead
of performing single-propagation runs, we conduct a multi-
propagation study; that is, we vary the different CMs, PP
methods, and HMs in all possible combinations. This
approach allows for an assessment of interactions between
the uncertainty sources [Kay et al., 2009; Finger et al.,
2012]. We quantify the contributions of the different uncer-
tainty sources using the decomposition of the sum of squares
as described within the analysis of variance (ANOVA)
theory (see D�equ�e et al. [2007] or Yip et al. [2011] for a
detailed description). Here, we refer to this method as the
ANOVA approach. Following the idea of a multipropagation
experiment, the ANOVA approach allows to consider inter-
actions between the uncertainty sources. These interactions
represent uncertainty contributions that do not behave line-
arly. For instance, a snowmelt bias of an HM may depend
upon the temperature projection of the driving CM that could
lead to a nonlinear response in river runoff. The ANOVA is
complemented with a subsampling scheme to account for
the different sample sizes of the three uncertainty sources.
[9] This paper is structured as follows. Section 2 briefly

describes the study area and the data. Section 3 introduces
the employed HMs, explains the PP methods, and presents
the subsampling procedure in combination with the
ANOVA. In section 4, we present the results of the hydro-
logical climate-impact projections and the ANOVA.
Section 5 summarizes our study and its main findings.

2. Study Region and Data

2.1. Study Region

[10] The study region consists of the Alpine Rhine catch-
ment down to the gauge Diepoldsau in Eastern Switzerland
(see Figure 1). It encompasses an area of 6119 km2 and has
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a mean elevation of about 1800 m above sea level. The run-
off regime is nival, i.e., snow-dominated, but altered to some
extent by hydropower production. The hydropower main
effect is a seasonal redistribution of water from summer to

winter [Verbunt et al., 2005]. The buildup of the hydropower
capacity in the period 1945–2009 is depicted in Figure 2
(solid black line). At the end of the period, the storage
capacity amounts to about 10% of the annual runoff volume.

Figure 1. Map showing the catchment of the Alpine Rhine river down to Diepoldsau. The subbasin
structures used in (left) HBV and (right) PREVAH are shown.

Figure 2. Validation of the two HMs HBV and PREVAH at the gauge Diepoldsau. Lines show the
NSE (solid lines), 99% (dash-dotted lines), and 5% (dashed lines) runoff quantile levels (left-hand scale).
The values are calculated for moving 3 year periods. The thick lines indicate the performance of the
CTL run from 1961 to 1990 with the first 3 years being cutoff. The thin lines show the performance of
the same model configurations in a longer simulation covering the period 1954–2006 (HBV) and 1951–
2009 (PREVAH). The shaded areas depict the calibration period for each HM. The buildup of the total
hydropower reservoir volume is shown as a solid thick black line (right-hand scale).
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2.2. Observational and CM Data

[11] Throughout this study, we use the CTL and the two
SCEs, all three periods with an additional preceding 3 year
spin-up period, as temporal subsets of the data series.
[12] The two HMs HBV and PREVAH (see section 3.1)

require different kinds of input data with respect to the spa-
tial resolution and the variables (see Table 1). HBV uses
subbasin-averaged daily time series of precipitation, tem-
perature, and global radiation or sunshine duration. Subba-
sin-averaged observational data have been provided by the
International Commission for the Hydrology of the Rhine
Basin (CHR; referred to as OBSCHR in the remainder of
this article) [Görgen et al. 2010]. PREVAH uses daily sta-
tion data of the hydrometeorological variables precipitation
(80 stations), temperature (36 stations), relative humidity
(41 stations), sunshine duration (28 stations), and wind
speed (43 stations) from the measurement network of
MeteoSwiss (referred to as OBSST in the remainder of this
article). Both observational data sets cover the whole CTL.
[13] For the calibration of the HMs, we used daily runoff

data of the gauges depicted in Figure 1. The data were pro-
vided by the Swiss Federal Office for the Environment (see
www.hydrodaten.admin.ch).
[14] As climate data, we used eight transient climate

modeling chains of the ENSEMBLES project [van der Lin-
den and Mitchell, 2009], as shown in Figure 3. D�equ�e et al.
[2012] showed that, within the ENSEMBLES GCM-
RCMs, the GCM is the largest contributor to the variance
in the projections of seasonal mean temperature and precip-
itation, except for summer precipitation for which the
RCMs are the largest source of variance. Thus, it is impor-
tant to sample both the GCMs and the RCMs in an impact
modeling chain. The ensemble used in this study encom-
passes three GCMs and seven RCMs, which allows to
partly sample CM uncertainty.
[15] All modeling chains are driven by the A1B emission

scenario [Nakicenovic and Swart, 2000]. This emission sce-
nario belongs to the A1 emission scenario family that
assumes rapid economic growth, population growth until
mid-century, a homogenization of the global wealth across
the different regions, and a rapid introduction of new
efficient technologies. The B stands for a balanced (fossil
and nonfossil) use of energy sources. The corresponding

greenhouse gas emissions increase until 2060 and slightly
decrease afterward, resulting in an atmospheric CO2 con-
centration of about 700 ppm by 2100. The spatial resolution
of the RCMs is about 25 km. We used subbasin-averaged
CM time series (for HBV) and CM data interpolated to
station locations (for PREVAH).

3. Methods

[16] Figure 3 depicts the modeling chain combination
scheme employed in this study. In the following, we
describe the HMs and the PP methods and explain the
ANOVA approach in combination with a subsampling
scheme.

3.1. Hydrological Models

[17] In our study, we use HMs that have already been set
up in the catchment. Both the HBV and the PREVAH
model are semidistributed conceptual rainfall-runoff mod-
els. Both models use the hydrological response unit (HRU)
approach to cluster the spatial units according to their
hydrological characteristics. Table 1 summarizes the char-
acteristics of the two HMs in the Alpine Rhine catchment,

Table 1. List of Key Characteristics of the Two Employed HMs

HBV PREVAH

Model type Conceptual, semidistributed Conceptual, semidistributed
Meteorological input data Precipitation (P), temperature (T), and

global radiation (R) or sunshine duration (S)
Precipitation (P), temperature (T), sunshine
duration (S), cloud cover (C), relative
humidity (H), wind speed (V)

Number of subbasins 2 6
Spatial resolution of the underlying
digital elevation model

1000 m � 1000 m 500 m � 500 m

Internal time step 1 day 1 h
Land use classes 4 29
HRU definition Elevation, land use Elevation, land use, aspect, soil type
Snow/glacier melt modeling approach Degree-day factor Degree-day factor with aspect and slope correction
Evapotranspiration parameterization Penman-Wendling Penman-Monteith
Calibration period 1970–1984 1985–1990
References Eberle et al. [2005], Lindström et al.

[1997], Görgen et al. [2010]
Gurtz et al. [1999], Zappa and Gurtz [2003],
Viviroli et al. [2009]

Figure 3. Modeling chain combination scheme. The three
analyzed modeling chain elements are depicted from left to
right. The naming of the CM chains provided by the
ENSEMBLES project is based on the following pattern:
institution that did run the RCM, employed GCM and
RCM [van der Linden and Mitchell, 2009].
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and Figure 1 shows the subbasin structures of the two
HMs. For the HBV model, we use the HBV134 setup of
the German Federal Institute of Hydrology. The HBV134
requires subbasin-averaged hydrometeorological time
series as input data and applies a lapse rate correction to
disaggregate basin-averaged temperature to zones of dif-
ferent elevations. For the PREVAH model, we use the
setup by Verbunt et al. [2006], which we have recalibrated
in the period 1985–1990 to use sunshine duration instead
of global radiation as an input variable from which short-
wave radiation is derived according to Schulla [1997].
PREVAH requires hydrometeorological station data as an
input. The station data are interpolated using inverse
distance weighting. For temperature, a height-dependent
regression is applied (detrended inverse distance weighting).
[18] Both HMs correct the observed precipitation to

account for undercatch and interpolation errors [Sevruk and
Nevenic, 1998]. In the HBV model, a linear precipitation
correction factor is applied to precipitation, and no distinc-
tion is made between rain and snow. In the PREVAH model,
two correction factors for rain and snow are used. The pre-
cipitation correction factors are estimated by calibration
using simulations driven by observed data (OBSCHR or
OBSST). The water-balance-corrected precipitation is then
used as a reference in the PP. This provides a consistent way
to process the CM data without artificially modifying the
precipitation change signal by a nonlinear precipitation cor-
rection (i.e., different corrections for snow and rain). Con-
sistent with the above, all figures in the remainder of this
article show water-balance-corrected precipitation.
[19] For further details about the HMs, we refer to the

references listed in Table 1.

3.2. Statistical PP

[20] We use a bias-correction (BC) and delta-change
(DC) approach for the PP step in the impact modeling
chain. The parameters of the PP methods were estimated
based on the full 30 year periods 1961–1990 (CTL), 2021–
2050 (SCE1), and 2070–2099 (SCE2), including a 3 year
spin-up period.
[21] The two PP methods differ distinctively regarding

the treatment of changes in the variability. In the BC, the
time series used to drive the HM are based on CM data,
which are corrected toward the climatological mean of the
observations in the CTL. Thus, the variability in the CM
data determines the variability in the bias-corrected forcing
data, e.g., the succession of wet and dry days. The DC
approach scales observed time series according to a climate
change signal estimated from CM data. The scaled obser-
vational time series are used to force the HMs in the SCE.
It is therefore the variability in the observed time series that
determines the variability in the HM’s forcing data. Also,
the two PP methods differ in the number of variables they
include. The BC approach corrects all required variables
from the output of the CMs, whereas the DC method is
applied to temperature and precipitation only, and unscaled
observed time series are used for the other variables.
3.2.1. Bias Correction
[22] For the BC of the CM data, we use a linear scaling as

employed by Lenderink et al. [2007] and Görgen et al. [2010].
[23] Let X be a meteorological input variable for the HM.

As the observational reference, we use subbasin-averaged

time series and call it X obsavg . For OBSST used by PREVAH,
we first spatially interpolate the station data and derive sub-
basin-averaged time series. Next, for each CM j, we calcu-
late a subbasin mean time series as area weighted grid cell
averages and denote it with X javg . We estimate the correction
parameters aX(m) between the subbasin mean time series
X obsavg and X

j
avg for each month m in the annual cycle. We use

the following linear correction models for the various mete-
orological variables (see Table 1 for an explanation of the
abbreviations):

P�javg ¼ a
PPjavg; aP mð Þ ¼

Pobsavg mð Þ

P
j
avg mð Þ

(1)

T�j
avg ¼ T javg þ a

T
; aT mð Þ ¼ Tobsavg mð Þ � T javg mð Þ (2)

S�javg ¼ min S0; a
SSjavg

h i

; aS mð Þ ¼
Sobsavg mð Þ

S
j
avg mð Þ

(3)

R�javg ¼ aRRjavg ; aR mð Þ ¼
Robsavg mð Þ

R
j
avg mð Þ

(4)

H�j
avg ¼max 0;100�a

H 100�H javg

� �h i

;aH mð Þ¼
100�Hobsavg mð Þ

100�H javg mð Þ

(5)

V �j
avg ¼ aVV javg ; aV mð Þ ¼

V obsavg mð Þ

V
j
avg mð Þ

; (6)

where the overbar denotes climatological monthly means in
the CTL, and the superscript * stands for the bias-corrected
subbasin-averaged daily time series. The equations in the
left column show the linear BC model, whereas the equa-
tions in the right column explain how the correction param-
eter is derived. Note that, although not explicitly indicated
in the left column, the correction factor aX varies according
to the month. As indicated in Table 1, each HM uses only a
selection of the meteorological variables listed above.
[24] Some CMs do not provide sunshine duration.

Thus, we use cloud fraction (C) as a proxy and derive S
according to

Sjavg ¼ S0 1� C
j
avg

� �

(7)

with S0 representing the maximum possible sunshine
duration.
[25] After the BC on the basin level, a further spatial disag-

gregation step is necessary for the PREVAH model to account
for the finer spatial input structure. In the CTL, we derive for
every month m and every meteorological subarea i a disaggre-
gation relation based on the observations according to

ri mð Þ ¼ X obsi mð Þ � X obsavg mð Þ for temperature ; and (8)

ri mð Þ ¼
X obsi mð Þ

X obsavg mð Þ
for the other variables ; (9)
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and scale the bias-corrected basin mean time series like

X
�j
i ¼ X �j

avg þ ri for temperature and (10)

X
�j
i ¼ riX

�j
avg for the other variables : (11)

3.2.2. Delta Change
[26] We use the DC method as described by Bosshard

et al. [2011] and CH2011 [2011], which includes a spec-
tral smoothing of the time series to damp the influence of
natural variability on estimates of the climate change sig-
nal. Due to the spectral smoothing in the DC approach,
the annual cycle is resolved continuously as opposed to
the BC method where monthly steps are used. The DC
scaling is applied to temperature and precipitation data
only. For HBV, we derive the climate change signal from
the subbasin-averaged time series X javg and scale OBSCHR
accordingly. For PREVAH, we first interpolate the CM
data to the station locations using inverse distance weight-
ing, derive the climate change signal at the station sites,
and scale OBSST data accordingly.

3.3. Variance Decomposition

[27] In the variance decomposition, we aim to decom-
pose the total ensemble uncertainty into contributions from
different elements of the impact modeling chain and inter-
actions among them. In our study, the total ensemble uncer-
tainty is the variance of the climate change signal in the
mean annual cycle of runoff QAC (as estimated by a 31 day
moving average; 31d MA) and in different runoff quantile
levels (QQ). The model ensemble consists of 32 impact
modeling chain combinations (Figure 3). For each of the 32
impact modeling chain combinations, we estimate QAC and
QQ in the CTL and SCE (i.e., SCE1 or SCE2). Then, we
calculate the climate change signal Y as

YAC ¼ QSCEAC � QCTLAC (12)

YQ ¼ QSCEQ � QCTLQ : (13)

In the following, we neglect the subscripts referring to the
mean annual cycle or the runoff quantiles and describe the
methodology for the general variable Y. To relate the target
variable Y to the uncertainty sources, we use superscripts in
Yj,k,l with j, k, and l representing the different samples of
CMs, PP methods, and HMs, respectively.
3.3.1. Subsampling of the CMs
[28] The ANOVA approach (see section 3.3.2) is based

on a biased variance estimator that underestimates the var-
iance in small sample sizes (see also D�equ�e et al. [2007]
for a short discussion of the problem). To diminish the
effect of the biased variance estimator on the quantification
of the variance contribution (see section 3.3.2), we subsam-
ple the eight different CMs. In each subsampling iteration
i, we select two CMs out of the eight that results in a total
of 28 possible CM pairs. For each of the 28 subsampling
iterations, we end up with two CMs, two PP methods, and
two HMs that define our model combination matrix for the
variance decomposition. To differ between the full set of
eight CMs and the subsampled CM pair, we replace the
superscript j with g(h,i). The superscript g is a 2 � 28

matrix that contains the selected CMs for the particular
subsampling iteration i :

g ¼
1 1 � � � 1 2 2 � � � 6 6 7

2 3 � � � 8 3 4 � � � 7 8 8

� �

: (14)

3.3.2. ANOVA Approach
[29] We use the statistical theory of the ANOVA to parti-

tion the variance (see, e.g., von Storch and Zwiers [1999]
for an introduction and D�equ�e et al. [2007] and Yip et al.
[2011] for an application in climate modeling). In our ex-
perimental setup, there is one data point Y for every possi-
ble combination of the three modeling chain elements CM,
PP, and HM. In the terminology of the ANOVA, the mod-
eling chain elements are ‘‘effects.’’ An effect is a variable
that one suspects could have an influence on the variability
of the variable Y. In other words, we construct an ANOVA
model based on the hypothesis that the CM, PP, and HM
elements of the modeling chain have an influence on the
variability of the variable Y, and we want to quantify the
influence. We define the model as follows:

Y j;k;l�Y � ;�;� ¼ ajþbkþclþabj;kþacj;lþbck;lþabcj;k;l; (15)

where a, b, and c are the effects corresponding to CM, PP,
and HM, respectively; the expressions ab, ac, bc, and abc are
the interaction terms; and j, k, and l indicate samples of the
different effects. The symbol � indicates averaging over the
particular index. According to the ANOVA theory, the model
allows us to split the total sum of the squares (SST) into sums
of squares due to the individual effects (SSA, SSB, SSC) and
their interactions (SSAB, SSAC, SSBC, SSABC) as

SST ¼ SSA þ SSB þ SSC þ SSI ; (16)

SSI ¼ SSAB þ SSAC þ SSBC þ SSABC : (17)

In this model, we summarize all interaction terms into the
term SSI.
[30] We estimate the terms in equations (16) and (17)

using the subsampling procedure introduced in section
3.3.1 as follows:

SST i ¼
X

H

h¼1

X

K

k¼1

X

L

l¼1

Y g h;ið Þ;k;l � Y g
� ;ið Þ;� ;�

� �2

; (18)

SSA i ¼ K � L �
X

H

h¼1

Y g h;ið Þ;� ;� � Y g
� ;ið Þ;� ;�

� �2

; (19)

SSB i ¼ H � L �
X

K

k¼1

Y g
� ; ið Þ;k;� � Y g

� ;ið Þ;� ;�
� �2

; (20)

SSC i ¼ H � K �
X

L

l¼1

Y g
� ; ið Þ;� ; l � Y g

� ; ið Þ;� ;�
� �2

; and (21)

SSI i¼
X

H

h¼1

X

K

k¼1

X

L

l¼1

Y g h;ið Þ;k;l�Y g h;ið Þ;� ;� �Y g
� ;ið Þ;k ;� �Y g

� ;ið Þ;� ; l þ2Y g
� ;ið Þ;� ;�

� �2

:

(22)
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Then, for each effect, the variance fraction �2 is derived as
follows:

�
2
CM ¼

1

I

X

I

i¼1

SSA i

SST i
; (23)

�
2
PP ¼

1

I

X

I

i¼1

SSB i

SST i
; (24)

�
2
HM ¼

1

I

X

I

i¼1

SSC i

SST i
; and (25)

�
2
Interactions ¼

1

I

X

I

i¼1

SSI i

SST i
: (26)

Values of 0 and 1 for the variance fraction �2 correspond to
a contribution of an effect to the total ensemble variance
(uncertainty) of 0% and 100%, respectively.
3.3.3. Effect of the Subsampling on the Estimated
Biased Variance Contribution
[31] Without subsampling of the CMs, the estimated var-

iance contributions using the ANOVA method would be bi-
ased, depending on the sample sizes of the different
variance sources. For a random variable X of which N sam-
ples are drawn, the unbiased (�2UB ) and biased variance
estimators (�2B) are

�
2
UB ¼

1

N � 1

X

N

i

Xi � X
� �2

; and (27)

�
2
B ¼

1

N

X

N

i

Xi � X
� �2

; (28)

respectively. Thus, �2B underestimates the variance by a
factor of

B
�
2
B

�
2
UB

� �

¼
N � 1

N
; (29)

where B denotes the expected bias of the argument. Thus,

the bias B
�
2
B

�
2
UB

� �

depends on the sample size. The larger the

sample size, the smaller the bias. In the ANOVA approach,
we compare the variance of multiple variables using the bi-
ased variance estimator. Based on equation (29), the ratio R
of two variances from two samples having sample sizes N1
and N2 is biased by the factor

B Rð Þ ¼
N1�1
N1
N2�1
N2

: (30)

For example, for the case of N1 ¼ 8 and N2 ¼ 2 repre-
senting the eight CMs and the two HMs, respectively, the
bias in the variance ratio would be 1.75. Without subsam-
pling, we would thus overestimate the uncertainty contribu-
tion of the CMs by a factor of 1.75. Figure 4 (left) shows
B(R) for all combinations of two random variables having
samples sizes between 2 and 10.
[32] We test the effect of the subsampling procedure on

B(R) in a synthetic two-way ANOVA model without inter-
actions and errors :

Z i;j ¼ ai þ bj (31)

ai � N 0; �ð Þ

bj � N 0; �ð Þ:

By construction, the variances of the two effects a and b are
equal. This simple model allows us to estimate the variance
ratio R using unbiased and biased variance estimators. For
different combinations of sample sizes for a and b, we con-
structed Z i;j according to equation (31) and subsequently esti-
mated the variance ratio R using ANOVA and the unbiased
variance estimator. We did this once without and once with
subsampling (i.e., subsampling min Na;Nbð Þ from the larger
sample) and conducted 1000 bootstrap samples, each. Subse-
quently, we estimated B(R) as the mean of the 1000 bootstrap
samples. The closer to one B(R) is, the smaller the bias.

Figure 4. Multiplicative bias of the variance ratio B(R) in the synthetic ANOVA experiment with two
effects A and B represented by different sample sizes. A value of B(R) ¼ 1 corresponds to no bias. (left)
Expected B(R) based on the statistical theory (see equation (30)), (middle) estimated B(R) from 1000
bootstrap samples without using a subsampling approach, and (right) estimated B(R) from 1000 boot-
strap samples with a subsampling scheme.
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[33] Figure 4 shows the resulting B(R) from the experi-
ment without subsampling (middle) and with subsampling
(right). The results without subsampling match the
expected bias from equation (30) perfectly, with negligible
bias (i.e., B(R) ¼ 1) on the diagonal, only. In contrast, the
results with the subsampling procedure are much closer to
B(R) ¼ 1. Thus, the subsampling effectively diminishes the
bias introduced by the biased variance estimator.

4. Results

4.1. Validation of the HMs

[34] Figure 2 shows the results of the validation of the
HMs against observed runoff at the gauge Diepoldsau,
using three validation metrics. Additional evaluation is pre-
sented in sections 4.2.3 and 4.2.4, where the results of the
runoff projections for the CTL are discussed. The valida-
tion is done for the whole CTL that partly overlaps with the
two different calibration periods of the HMs. In addition to
the CTL simulations, we conducted two long simulations
covering the period 1954–2006 (HBV) and 1951–2009
(PREVAH) with the same parameter setup of the HMs.
These long simulations are meant to give some insight into
the model performance over a longer period.
[35] Within the CTL, the Nash-Sutcliffe efficiency

(NSE) [Nash and Sutcliffe, 1970] values of 3 year periods
shifted in yearly intervals vary in the range of 0.81–0.91.
With regard to the 99% runoff quantile values, the model
HBV follows closely the observations. PREVAH tends to
overestimate the high runoff values. The 5% runoff quan-
tile values are simulated quite well by HBV, whereas
PREVAH has a systematic underestimation. It should be
noted though that, in the Alpine Rhine catchment, the low
flows are influenced by hydropower operation [Margot
et al., 1992] that leads to an increase of the low flows
during winter. This effect is also shown in Figure 2 in the
time series of the observed 5% runoff quantiles. They are
lower in the early period, before the major part of the
storage volume has been installed. Thus, the performance
of the HMs in the low-flow range has to be interpreted
with caution, as they both do not include a hydropower
module.
[36] The long simulation runs in Figure 2 further show

that there is a high degree of variation in the model per-
formance. Generally speaking, variations in the model per-
formance are due to model simplifications, which lead to
an imperfect representation of reality. It is not clear to what
extent calibrated parameters for the CTL are transferable to
a different climate in the SCE. Indeed, the NSE series show
lower values outside the CTL. Recent research has shown
that stationary model parameters may lead to drifts in
model performance over a longer period of time [Merz
et al., 2011] and for changes in climatic conditions [Coron
et al., 2012].
[37] Overall, the validation results indicate that the HMs

perform reasonably well in the CTL. In our ensemble of
opportunity, we use both models equivalently. Noting that
a good performance during the past does not imply a good
performance in a future climate [e.g., Blöschl and Monta-
nari, 2010], we try to answer the question how much of the
uncertainty is due to the choice of the HM system. The
effect of the model imperfections on the climate change

signal clearly needs further systematic investigations. In
particular, a potential relationship between model biases
and the uncertainty in the climate projections needs to be
addressed.

4.2. Hydrological Climate-Impact Projections

[38] We first discuss the two main input variables tem-
perature and precipitation, followed by the two target varia-
bles that are the mean annual cycles of runoff and the
runoff quantiles.
4.2.1. Temperature
[39] Figure 5 shows the results for the temperature pro-

jections, spatially averaged over the whole basin down to
Diepoldsau. In the CTL, there is a clear annual cycle with a
maximum in summer of about 11�C and a minimum in
winter of about �6�C. The differences between the two
input data sets OBSCHR and OBSST are smaller than 1

�C
(see CTL DC in Figure 5). The spread of the BC runs in the
CTL is smaller than 1�C throughout the whole annual
cycle. In the two SCEs, the pattern of the annual cycle
remains the same but is shifted to higher temperatures. The
HadCM3Q0-driven CMs are at the higher end of the en-
semble range in both SCEs, whereas SMHI-BCM-RCA is
at the lower end. The temperature increase is in the range
of 0.3�C–3.4�C for SCE1 and in the range of 1.7�C–5.9�C
for SCE2. In the SCE1, there is no clear pattern in the
annual cycle of the temperature change signal except for
the HadCM3Q0-driven CMs that show a peak increase in
winter and summer. In the SCE2, all CMs except DMI-
ECHAM-HIRHAM and SMHI-BCM-RCA show a summer
peak of the temperature increase.
4.2.2. Precipitation
[40] Figure 6 shows the annual cycle of the precipitation

projections, averaged over the whole basin area down to
Diepoldsau. The annual cycles for the DC runs in the CTL
do not fully agree. This is because the two HMs use slightly
different precipitation data sets as input (see section 2.2)
and correct the observed precipitation using model-depend-
ent calibrated precipitation correction factors (see section
3.1). Also, the precipitation of HBV-BC and PREVAH-BC
simulations in the CTL does not fully agree, since the BC is
done using the different precipitation reference data shown
in Figure 6 (top left). The BC is able to correct the CM pre-
cipitation to match the observed mean annual cycle (see BC
for the CTL in Figure 6). Note that the BC is carried out on
a monthly basis. Thus, natural variability causes the 31d
MA precipitation of the individual CMs to diverge between
the monthly correction steps. Also, the BC was made for the
full period 1961–1990, whereas we here only analyze
1964–1990 that causes some further deviations between the
CMs as can be seen in June.
[41] In the SCEs, the ensembles of the BC runs show a

larger spread than the DC ensembles. The bias-corrected
DMI-ECHAM-HIRHAM runs project considerably higher
precipitation peaks in summer than the rest of the ensemble.
Also, the BC runs driven by HadCM3Q0 show a clear peak
around May and a minimum around July. In the climate
change signal as well, the mentioned CMs show some devia-
tions from the rest of the ensemble. DMI-ECHAM-HIRHAM
projects the strongest increase in summer precipitation,
whereas the HadCM3Q0-driven CMs show the strongest
increase in late spring of the SCE2. The DC runs generally
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show smaller variations in the annual cycle that is partly
due to the spectral smoothing employed in the DC as
opposed to the monthly based correction used in the BC.
The pattern of the precipitation change signal is clearer in
SCE2 than in SCE1 and shows decreasing precipitation in
summer and slightly increasing precipitation in the rest of
the year.
4.2.3. Annual Cycle of Runoff
[42] Figure 7 shows the annual cycles of simulated run-

off at the gauge Diepoldsau in the CTL and the SCEs as
well as the climate change signal. Annual and seasonal
values are listed in Table 2.

[43] The analysis of the mean annual cycle (see CTL DC
in Figure 7) shows that HBV underestimates the mean run-
off during the summer months as well as in February,
March, and April. This is partly related to a lower water-
balance-corrected precipitation in OBSCHR compared with
OBSST (see CTL DC in Figure 6). The results for the BC
runs in the CTL show similar characteristics as the CTL
DC results. For example, HBV-BC runs tend to simulate a
delayed onset of the snowmelt period in May instead of in
April and an underestimation of the mean runoff during
summer, whereas all the PREVAH-BC runs simulate a too
low mean runoff in winter.

Figure 6. Same as Figure 5 but for water-balance-corrected precipitation.

Figure 5. Mean annual cycle of basin-averaged temperature in (top) the CTL period, (middle) the two
SCE periods, and (bottom) climate change signal as the differences SCE-CTL. The coloring of the CMs
is the same for all PP-HM combination panels. The PP-HM combination is indicated in the title of each
panel. For the DC runs, there is only one CTL run per HM, and, thus, the HBV and PREVAH runs are
combined in the top left. The annual cycle has been low-pass filtered using a 31d MA.

BOSSHARD ET AL.: UNCERTAINTY SOURCES IN CLIMATE-IMPACT PROJECTIONS

9



[44] In the SCE1, the peak in the annual cycle occurs
about half a month earlier compared to the CTL for all mod-
eling chains except for the runs using the CM DMI-
ECHAM-HIRHAM, which projects a later peak and higher
runoff. In the SCE2, the runoff peak occurs about 1 month
earlier and has a smaller amplitude in comparison to the
CTL. In the climate change signal, all modeling chains agree
on an increase of winter runoff. All impact modeling chain
combinations (except those driven by DMI-ECHAM-HIR-
HAM for SCE1) show a decrease of summer runoff. These
signals are stronger for SCE2 than for SCE1. Most BC runs
project a peak in the increase of runoff in the snowmelt season
around May. The climate change signals of the DC runs are
smoother than the ones of the BC runs, which is due to spec-
tral smoothing in the DC as opposed to monthly correction
intervals in the BC. The model spread is highest in summer.
[45] The general pattern of seasonal runoff changes (a

decrease and increase of summer and winter runoff, respec-

tively, and an earlier runoff peak in the annual cycle) is

consistent with the results of numerous previous studies in

snow-dominated Alpine catchments [e.g., Horton et al.,

2006; Graham et al., 2007; Köplin et al., 2012].
4.2.4. Runoff Quantiles
[46] The runoff quantiles (see Figure 8) in the CTL DC

simulations show the performance of the HMs. PREVAH

underestimates low runoff quantiles but overestimates high
runoff quantiles. HBV matches the observed low and high
runoff quantiles better but slightly underestimates the inter-
mediate quantiles. In the BC results, larger deviations from
the observations are apparent in the high quantile range.
This is due to the BC that corrects for biases in the mean but
not for biases in the whole quantile distribution. In the cli-
mate change signal for SCE1, all the DC runs project slight
decreases of runoff in the medium and moderate high quan-
tile range, and most DC model combinations agree on an
increase of the 99.9% runoff quantile level. For SCE2, the
decrease in the moderate to high quantile ranges is larger,
and some modeling chains simulate a decrease of the 99.9%
runoff quantile level. The BC runs also show slight
decreases of runoff in the medium-to-moderate high quantile
range, but, for quantiles above 90%, the BC runs disagree on
the sign of the change. Furthermore, the spread of projected
changes in the high quantile range is similar in both SCEs.

4.3. Variance Decomposition

[47] As described in section 3.3, we analyze the contri-
bution of the three sources CM, PP, and HM to the total en-
semble uncertainty of the runoff projections. In principle,
such a variance decomposition is feasible for any variable
of interest. We conducted the analysis for differences in the

Figure 7. Same as Figure 5 but for mean runoff at the gauge Diepoldsau. The observed mean runoff is
added to the CTL period panels.

Table 2. Annual and Seasonal Changes in Mean Runoff Expressed in Differences and Percentagesa

SCE1 2024–2050 SCE2 2073–2099

SCE-CTL (mm/d) (%) SCE-CTL (mm/d) (%)

Annual �0.1 [�0.2�0.2] �2.0 [�6.0–6.1] �0.2 [�0.4–0.2] �4.8 [�12.7–7.1]
DJF 0.2 [0.1–0.5] 15.7 [5.5–40.7] 0.6 [0.1–1.0] 41.8 [4.8–81.7]
MAM 0.2 [0.0–0.6] 8.6 [�0.4–23.9] 0.6 [0.3–0.9] 21.0 [10.1–37.7]
JJA �0.8 [�1.5–0.2] �14.6 [�26.0–3.9] �1.7 [�2.4–0.4] �32.2 [�45.5–8.1]
SON 0.1 [�0.2–0.3] 1.7 [�7.2–11.2] �0.1 [�0.6–0.3] �3.0 [�20.0–11.4]

aThe ensemble mean is shown, followed in brackets by the range of the 32 hydrological climate runoff scenarios. The first 3 years of each SCE were
cut off to exclude spin-up effects from the analysis.
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annual cycle of mean runoff (see bottom row in Figure 7)
and for runoff quantiles (see bottom row in Figure 8).
4.3.1. Changes in the Mean Annual Cycle of Runoff
[48] Figure 9 shows the variance decomposition of the

climate change signal in the mean annual cycle of runoff.
The CM is the dominant source during summer and
autumn. In May, the variance explained by the PP shows a
peak that is clearer in SCE2 than in SCE1. The high con-
tribution of PP is apparent neither in the variance decom-
position of precipitation nor of temperature (analysis not
shown). Thus, we suspect that the differences between the
PP methods build up during the snow-accumulation period
(e.g., through differences in the covariance between tem-
perature and precipitation) and take effect only during the
snowmelt period. The HM is the least important individual
source of uncertainty in SCE1, but it becomes the domi-
nant source of uncertainty in winter and early spring of
SCE2. This indicates that the HMs are indifferent to the
projected temperature and precipitation changes for SCE1
but react differently to the projected climate for SCE2 that
strongly deviates from the CTL climate. PREVAH
responds more sensitively to the large temperature
changes, as projected precipitation changes are mostly
below þ0.5mm/d during winter for SCE2, but PREVAH
simulates a runoff increase of nearly þ1mm/d, whereas
HBV projects runoff changes just slightly above þ0.5mm/d.
This pronounced difference between the HMs could be
related to the difference in the validation performance during
winter (see section 4.1), but a systematic study of the rela-
tionship between model performance in the CTL and the
uncertainty in the projections requires further research. Note
that although the relative contribution of the HMs to the total
ensemble uncertainty is high during winter and spring, the
absolute level of the total ensemble uncertainty is lower than
in summer.
[49] The contribution of the interaction term to the total

ensemble uncertainty varies throughout the annual cycle
between 0.1 and 0.4. The high contribution around April,

particularly in SCE2, might be due to strong nonlinearities
in the snowmelt process.
4.3.2. Changes in Runoff Quantiles
[50] Figure 10 depicts the variance decomposition of

the changes in different runoff quantiles. For the discus-
sion, we divide the quantile bins in a low (5%–35%), an
intermediate (35%–80%), and a high range (80%–
99.9%). The low range is closely connected to the run-
off in the winter months. The high runoff quantile range
is related to the runoff in the summer months. Runoff
values in the intermediate quantile range occur most of-
ten in the snowmelt season as well as in late summer
and autumn. This quantile range is though not as clearly
linked to a particular season in the year as the other two
quantile ranges.

Figure 8. Same as Figure 7 but for different runoff quantiles.

Figure 9. Variance decomposition of the uncertainty in
mean runoff changes at the gauge Diepoldsau in the course
of the annual cycle. The uncertainty sources are CM, PP,
and HM.
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[51] In the low quantile range, the contributions of the
different uncertainty sources to the total ensemble uncer-
tainty change considerably from SCE1 to SCE2. While, in
SCE1, the CMs and the interactions are the dominant sour-
ces of uncertainty, it is the HMs that explain about 50% of
the total ensemble uncertainty in SCE2. Please see the dis-
cussion of the winter period in section 4.3.1 for an explana-
tion. In the high quantile range, the CMs and PP methods
are the most important uncertainty sources in both SCEs.
Weather events leading to such high runoff values are
linked to the precipitation frequency and intensity, both of
which are determined by the CM and PP. The interpretation
of the results for the intermediate quantile range is not
straightforward. As this quantile range is not clearly deter-
mined by a particular process or season in the year, the
results reflect the time-varying contribution of the different
uncertainty sources that we see in Figure 9 as well.
[52] The contribution of the interaction term varies

between 0.1 and 0.4 in SCE1 and 0.1 and 0.3 in SCE2, but
interactions are more important for low and high quantile
in SCE1, whereas, in SCE2, they contribute more to the
uncertainty in the intermediate and high quantile range.
4.3.3. Discussion of the Variance Decomposition
[53] The ANOVA results identified nonnegligible contri-

butions of interactions between the different uncertainty
sources. This indicates that, without considering interac-
tions, the importance of individual uncertainty sources is
overestimated, and it demonstrates the importance of test-
ing all possible combinations of impact modeling chain
elements. Note, though, that our setup does not allow for a
precise quantification of the interactions, as we cannot dis-
entangle them from errors in the ANOVA model. A more
thorough quantification of interactions would require multi-
ple realizations of each impact modeling chain combination
by using different realizations of GCMs [von Storch and
Zwiers, 1999; Yip et al., 2011].
[54] The ANOVA approach assumes independence

between the different samples (e.g., between the different
CMs). This assumption is not fulfilled, as several RCMs
use the same driving GCM, CMs in general also share
model structures [Masson and Knutti, 2011], the PP

methods both are based on the statistics for the mean vari-
able, and the HMs are conceptually similar.
[55] We have evaluated the influence of the unbalanced

representation of CMs sharing the same driving GCM. In
our ensemble of opportunity, there are five CMs using
ECHAM5, two CMs using HadCM3Q0, and one CM using
BCM as the driving GCM. The climate change signals for
temperature and precipitation (Figures 5 and 6) show a
grouping of the CMs that share the same driving GCM. We
tested the influence of the unbalanced representation of the
driving GCMs by analyzing subsets of CMs with only one
CM per driving GCM. There are 10 such subsets, and aver-
aging over the 10 ANOVA results leads to qualitatively
similar results (i.e., in terms of uncertainty source rank) as
presented in Figures 9 and 10 (not shown). This is most
probably related to the fact that although there are GCM-
grouping effects visible in the temperature and precipita-
tion change signals, these grouping effects are diminished
in the runoff change signal (Figure 7). As this might be dif-
ferent in other basins (e.g., more pluvial basins), we sug-
gest to conduct similar tests in every impact study. Further
research is required to quantify the correlations between
the different members of the same impact modeling chain
element and to develop methods to account for them in the
quantification of the uncertainty sources.
[56] We have also analyzed the robustness of the results

with respect to the outlier DMI-ECHAM5-HIRHAM,
which is the only GCM-RCM that does not project a large
decrease of runoff in summer. Excluding this CM from the
analysis does not change the results substantially (not
shown), and, thus, the results are robust with respect to this
outlier.

5. Summary and Conclusions

[57] We investigated the hydrological climate-impact
projections based on the eight different CMs, two statistical
PP methods, and two HMs. An Alpine study region was
chosen as a challenging test area. For the two scenario peri-
ods 2024–2050 and 2073–2099 with respect to 1964–1990,
we estimated the total ensemble uncertainty of the hydro-
logical projections and presented a methodological frame-
work to quantify the contributions of different uncertainty
sources.
[58] For both scenario periods, all modeling chain com-

binations show an increase in winter runoff, and most
model combinations project a decrease in summer runoff.
The resulting spread is highest in summer and for high
(99% and 99.9%) runoff quantiles. For such high quantiles,
the hydrological projections disagree on the sign of the
changes.
[59] We used a method based on the theory of the

ANOVA to decompose the total ensemble uncertainty into
contributions from individual modeling chain elements.
We complemented it with a subsampling scheme to mini-
mize the biases related to the different sample sizes of the
different uncertainty sources.
[60] The variance decomposition has identified the CMs

to be the dominant source of uncertainty during summer
and autumn for both scenario periods. This fully agrees
with the results of previous studies [Wilby and Harris,
2006; Jasper et al., 2004; Graham et al., 2007; Schaefli

Figure 10. Same as Figure 9 but for variance decomposi-
tion of changes in different runoff quantiles.
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et al., 2007; Kay et al., 2009; Prudhomme and Davies,
2009; Jung et al., 2011]. For the far-term SCE period in
winter and spring, however, the dominance of the CMs
diminishes, and the PP methods and HMs become more im-
portant. The analysis of changes in different runoff quan-
tiles reveals that the HMs become the dominant uncertainty
source for changes in the low runoff quantiles for the far-
term scenario period. For high runoff quantiles, both the PP
methods and the CMs contribute between 30% and 60% to
the total ensemble uncertainty. Interactions between the
uncertainty sources are important as well, with contribu-
tions between 10% and 40%.
[61] The results shown are subject to a few limitations.

First, they are based on an ensemble of opportunity with a
fairly small number of ensemble members. The ensemble
allowed us to assess the importance of three different
uncertainty sources. Other potentially important sources
such as natural climate variability [Jung et al., 2011], the
emission scenario [Prein et al., 2011], and the HM parame-
ters [Beven and Binley, 1992] have been neglected. Thus,
the estimated uncertainty ranges are likely smaller than the
overall uncertainty associated with hydrological climate
impacts. Second, the variance decomposition assumes inde-
pendence between the different samples of each impact
modeling chain element. However, none of the modeling
chain elements fulfill this assumption completely. Some
CMs share the driving GCM, the PPs share the same
approach in correcting for the mean, and the HMs share
similar conceptual structures. Third, our setup does not
allow to discriminate between interactions and potential
model errors in the ANOVA model, as multiple realizations
of every modeling chain combination would be necessary
for that purpose.
[62] The present study was embedded in the AdaptAlp

project (Adaptation to Climate Change in the Alpine Space
[Korck et al., 2011], see www.adaptalp.org), which aimed
to develop adaptation strategies based on scientific knowl-
edge and risk management assessment. Knowledge about
the contribution of different uncertainty sources may help
to design future impact modeling studies. Our results indi-
cate that none of the investigated sources are negligible and
that some fraction of the uncertainty cannot be attributed to
individual elements of the modeling chain but rather
depends on interactions between these components. The
potential for interactions furthermore requires future impact
modeling studies to conduct multipropagation simulations
[Kay et al., 2009], i.e., simulations in which the modeling
chain elements are varied in all possible ways.
[63] Although our results as such are not transferable to

catchments with different hydrological properties, the pre-
sented methods for quantifying different uncertainty sour-
ces are versatile and adjustable to other experiment designs
and regions. The ANOVA approach in combination with
the subsampling scheme presents a consistent framework
for the quantification of different uncertainty sources in
hydrological climate-impact modeling.
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