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Recently, a very beautiful measure of the unsharpness (fuzziness) of the observables is discussed
in the paper [Phys. Rev. A 104, 052227 (2021)]. The measure which is defined in this paper is
constructed via uncertainty and does not depend on the values of the outcomes. There exist several
properties of a set of observables (e.g., incompatibility, non-disturbance) that do not depend on
the values of the outcomes. Therefore, the approach in the above-said paper is consistent with the
above-mentioned fact and is able to measure the intrinsic unsharpness of the observables. In this
work, we also quantify the unsharpness of observables in an outcome-independent way. But our
approach is different than the approach of the above-said paper. In this work, at first, we construct
two Luder’s instrument-based unsharpness measures and provide the tight upper bounds of those
measures. Then we prove the monotonicity of the above-said measures under a class of fuzzifying
processes (processes that make the observables more fuzzy). This is consistent with the resource-
theoretic framework. Then we relate our approach to the approach of the above-said paper. Next,
we try to construct two instrument-independent unsharpness measures. In particular, we define two
instrument-independent unsharpness measures and provide the tight upper bounds of those measures
and then we derive the condition for the monotonicity of those measures under a class of fuzzifying
processes and prove the monotonicity for dichotomic qubit observables. Then we show that for
an unknown measurement, the values of all of these measures can be determined experimentally.
Finally, we present the idea of the resource theory of the sharpness of the observables.

I. INTRODUCTION

In quantum mechanics, the observables are mainly of
two types-(i) sharp observables and (ii) unsharp observ-
ables. Quantifying the unsharpness of observables is an
interesting research direction to look at. Few works in
this direction have been already done [1–9]. Recently, in
the Ref. [9], the unsharpness of observables is quantified
using uncertainty. The measure defined in the Ref. [9],
is outcome-independent.

In this work, we also quantify the unsharpness of
the observables in an outcome-independent way. But
our approach is different than the approach of the
Ref. [9]. We first define two Luder’s instrument-
based measures. Then we discuss the different prop-
erties of these measures. Then, we try to construct
two instrument-independent unsharpness measures. We
provide a conjecture and if that can be proven, those
instrument-independent measures will be consistent with
the resource-theoretic framework for qubit observables.
Then we discuss that the values of all of these measures
can be determined experimentally. Then we make the
justification for taking sharpness as a resource and also
present the idea of the resource theory which can be com-
pleted in the future.

The rest of this paper is organized as follows. In Sec.
II, we discuss the preliminaries. From Sec. III we start
discussing our main results. In particular, in Sec. III A,
we construct two Luder’s instrument-based unsharpness
measures and provide the tight upper bounds of those
measures. In Sec. III B, we prove the monotonicity of
the above-said measures under a class of fuzzifying pro-
cesses. In Sec. III C, we relate our approach to the ap-

proach of the Ref. [9]. In the Sec. IV, we try to construct
two instrument-independent unsharpness measures. In
particular, in Sec. IV A, we define two instrument-
independent unsharpness measures and provide the tight
upper bounds of those measures. In Sec. IV B, we de-
rive the condition for the monotonicity of those measures
under a class of fuzzifying processes and prove the mono-
tonicity for dichotomic qubit observables. In Sec. V, we
show that for an unknown measurement, the values of
all of these measures can be determined experimentally.
In Sec. VI, we present the idea of the resource theory of
the sharpness of the observables. Finally, in Sec. VII, we
summarize our results and discuss the future outlook.

II. PRELIMINARIES

In this section, we discuss the preliminaries.

A. Observables

An observable (positive operator-valued measure or
POVM) A acting on the Hilbert space H is defined as
a set of positive Hermitian matrices i.e., A = {Ai}ni=1

such that
∑
iAi = Id×d where d is the dimension of the

Hilbert space H [10–12]. The set {1, ...., n} is called out-
come set of A and is denoted by ΩA. Clearly Ai ∈ L+(H)
and Id×d ≥ Ai ≥ 0 for all i ∈ ΩA where L+(H) is the set
of positive bounded linear operators acting on the Hilbert
space H. Therefore, A2

i ≤ Ai for all i ∈ ΩA. If A2
i = Ai

holds for all i ∈ ΩA, we call A as a projection-valued mea-
sure (PVM). PVMs are the sharp observable and clearly
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PVMs are the special cases of POVMs. Clearly, one out-
come trivial sharp observable is Id×d. If there exist at
least one j ∈ ΩA such that A2

j < Aj then the observable
A is not a PVM. This type of observables are unsharp
observables [9].

B. Quantum Channels

A quantum channel Γ : S(H) → S(K) is a completely
positive trace preserving (CPTP) map where S(H) is the
state space (i.e., the set of density matrices on the Hilbert
space H) [10, 11]. For a quantum channel Γ, Γ(ρ) can

always be written as Γ(ρ) =
∑
iKiρK

†
i . This form of Γ is

called as the Kraus representation of Γ andKi’s are called
the Kraus operators of Γ. The channel Γ∗ : L(K) →
L(H) is called as the dual channel (i.e., in Heisenberg
picture) of Γ : S(H) → S(K) if for all ρ ∈ S(H) and
X ∈ L(K), Tr[Γ(ρ)X] = Tr[ρΓ∗(X)] holds, where L(H)
is the set of bounded linear operators on the Hilbert space
H.

A special type of channel is the depolarising channel. A
depolarising channel Γtd is defined as Γtd(ρ) = tρ+(1−t) I

d

for all ρ ∈ S(H) and t ∈ [− 1
3 , 1]. To simplify the notation

we have written Id×d as I.

C. Quantum Instruments

A quantum instrument I is a set of completely posi-
tive (CP) maps {Φi : S(H)→ L+(K)} i.e., I = {Φi} such
that Φ =

∑
i Φi is a quantum channel where L+(H) is the

set of positive bounded linear operators on the Hilbert
space H [11]. Suppose A = {Ai} is an observable. A
quantum instrument I = {Φi} is called A-compatible in-
strument if Tr[Φi(ρ)] = Tr[ρAi] for all i ∈ ΩA. Therefore,
the observable A can be measured using the instrument
I.

There exist a special type of of instruments which are
known as Luder’s instruments. For an observable A =
{Ai}, the A-compatible Luder’s instrument is defined as
ILA = {ΦLAi}

nA
i=1 such that ΦLAi(ρ) =

√
Aiρ
√
Ai for all

i ∈ {1, ...., nA}.

D. Quantifying unsharpness of observables via
uncertainty

In this subsection, we briefly discuss the approach of
the Ref. [9]. For the complete discussion, readers can
check the Ref. [9]. Suppose we have an observable A =
{Ai}nAi=1 acting on the Hilbert spaceH. Suppose the exact
value of the ith outcome is αi. Let α be a row vector such
that α = (α1, α2, ...., αnA). Then KAα is defined as KAα =∑
i αiAi. Similarly, KAα2 is defined as KAα2 =

∑
i α

2
iAi.

Next a noise operator NAα = KAα2 − (KAα )2 is introduced.
Then a function Fρ(A, α) is introduced such that

Fρ(A, α) = Tr[ρNAα ]. (1)

Clearly, Fρ(A, α) ≥ 0. Fρ(A, α) = 0 for all ρ ∈ S(H) iff
A is a PVM. Now, it is shown in the Ref. [9] that

Fρ(A, α) = αFρ(A)αT (2)

where Fρ(A) is a matrix such that

[Fρ(A)]ij = δijTr[ρAi]− Tr[ρ(
AiAj +AjAi

2
)]. (3)

Here δij is Kronecker delta. Since, Fρ(A, α) ≥ 0,
Fρ(A) ≥ 0 and Fρ(A) = 0 iff A is a PVM. This Fρ(A)
matrix is independent of α and very important to con-
struct the the unsharpness measure of an observable A.
Next, the matrix F(A) is defined as F(A) = F I

d
(A). Now

it has been mentioned in the Ref. [9] that any unitarily
invariant norm of F(A) can quantify of the unsharpness
ofA. For simplicity they have taken l1 norm ‖.‖1 which is
defined as ‖X‖1 =

∑
ij |[X]ij | for a matrix X. Therefore,

the unsharpness measure of an observable A is

f(A) = ‖F(A)‖1. (4)

III. LUDER’S INSTRUMENT-BASED
UNSHARPNESS MEASURES OF OBSERVABLES

From this section, we start to discuss our main results.

A. Construction and the upper bound of the
Luder’s Instrument-based unsharpness measure EL

The sharp quantum observables (PVMs) have an in-
teresting property that makes those observables differ-
ent from the unsharp observables. Next, we discuss this
property of PVMs which motivates us to quantify the
unsharpness of the observables in the following outcome
independent way. Suppose Alice is measuring an observ-
able A = {Ai} on a quantum state ρ ∈ Hd through
the Luder’s instrument LA = {ΦLAi(ρ)}. After obtain-
ing the outcome i, the post measurement state will be

ρ′i =
ΦLAi

(ρ)

Tr[ΦLAi
(ρ)]

=
√
Aiiρ

√
Ai

Tr[ρAi]
. The probability of obtain-

ing the outcome i is pi = Tr[ρAi]. Now, after obtaining
the outcome i if one more time the observable A is mea-
sured by Alice on this post measurement state ρ′i, the
probability of again obtaining the same outcome i is

pii = Tr[ρ′iAi] =
Tr[ρA2

i ]

Tr[ρAi]
. (5)
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Now if A is PVM A2
i = Ai for all i. Therefore, pii = 1

if A is a PVM. Therefore, if A is a PVM, on successive
measurements of A, the outcome will definitely repeat.
If A is not a PVM, there exist an outcome j for which
Aj < A2

j and therefore, pjj < 1. Therefore, there is
a non-zero probability that an unsharp observable will
not produce the same outcome on immediate successive
measurements of the same observable. This is a feature
of an unsharp observable or equivalently is the evidence
of the unsharpness of an observable and is of course an
essential difference between a PVM and POVM. This fact
motivates us to quantify the unsharpness of the observ-
ables in the following outcome-independent way.
In the above experiment, the average probability that
any outcome will repeat in the successive measurement
of A is

PL(ρ;A) =
∑
i

pipii =
∑
i

Tr[ρA2
i ]

= Tr[ρ
∑
i

A2
i ] = Tr[ρEA] (6)

where EA =
∑
iA

2
i . We will call EA as E-matrix of A.

Clearly, EA is a positive Hermitian matrix and EA ≤ I.
Now the average probability that a outcome will never
repeat is

EL(ρ;A) = 1− PL(ρ;A)

= Tr[ρ(I− EA)] (7)

≤ ‖ρ‖tr‖I− EA)‖
= ‖(I− EA)‖ (8)

where ‖X‖ denotes the operator norm i.e., the highest
eigen value of a Hermitian matrix X and ‖X‖tr denotes
the trace norm of a Hermitian matrix X i.e., ‖X‖tr =

Tr[
√
X†X]. In the second last inequality, we have used

the fact that if T ∈ L(H) is a trace-class (i.e., has a
finite trace norm) Hermitian operator and S ∈ L(H) is
a arbitray Hermitian operator, then Tr[ST ] ≤ ‖T‖tr‖S‖
[11]. In the last equality, we have used the fact that ρ is
Hermitian and ρ ≥ 0 and therefore, ‖ρ‖tr = Tr[ρ] = 1.
Now the bound written in equation (8), is achievable.
Suppose |e′max〉 is the eigen state (i.e., normalised eigen
vector) corresponding to the maximum eigen value of (I−
EA). Then, 〈e′max|EA |e′max〉 = ‖(I − EA)‖. Taking
maximization of the quantity EL(ρ;A) over all set density
matrices ρ, we obtain

EL(A) = max
ρ
EL(ρ;A)

= 〈e′max|EA |e′max〉
= ‖(I− EA)‖. (9)

We define EL(A) as the Luder’s instrument-based un-
sharpness measure of the observable A. Clearly, if A is

a PVM, EA = I and therefore, EL(A) = 0. If A is not a
PVM then there exists at least one i such that A2

i < Ai
and therefore, EA < I and therefore, EL(A) > 0. There-
fore, EL is a faithful measure. Clearly, EL measure is
independent of the bijective relabeling of outcomes and
of the values of outcomes.

There exist a upper bound for this unsharpness mea-
sure EL. Our following lemma states that-

Lemma 1. For an observable A = {Ai}nAi , EL(A) ≤
1− 1

nA
. This bound is achieved by the observable T nA =

{InAi = I
nA
}nAi=1.

Proof. Suppose, a′max = 1− amin is the maximum eigen
value of (I− EA) and |a′max〉 is the corresponding eigen
vector. Threfore, ‖I − EA‖ = a′max . This implies that
amin is the minimum eigen value of EA and |a′max〉 =
|amin〉 is the corresponding eigen vector. Now suppose,
{|n〉} is the eigen basis of EA. Therefore, for some n =
n′, |n′〉 = |amin〉. Then

amin = 〈amin|EA |amin〉

= 〈amin|
∑
i

A2
i |amin〉

=
∑
i

〈amin|A2
i |amin〉

=
∑
i

d∑
n=1

〈amin|Ai |n〉 〈n|Ei |amin〉

=
∑
i

d∑
n=1

| 〈amin|Ai |n〉 |2

≥
∑
i

| 〈amin|Ai |amin〉 |2

=
∑
i

x2
i (10)

where xi = | 〈amin|Ai |amin〉 |. Now we know that∑
i

xi =
∑
i

| 〈amin|Ai |amin〉 | = 1 (11)

as Ai ≥ 0 for all i ∈ {1, ...., nA} and
∑
iAi = I. Now we

know from the optimization method of Lagrange’s un-
determined multipliers that

∑n
i=1 x

2
i takes the minimum

value subject to condition
∑n
i xi = 1 for x1 = x2 = .... =

xn = 1
n . Therefore, using this fact, the inequality (10)

becomes

amin ≥
∑
i

x2
i

≥
∑
i

1

n2
A

=
1

nA
. (12)
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This implies that

EL(A) = ‖I− EA‖
= 1− amin

≤ 1− 1

nA
. (13)

Now, for the observable T nA ,

EL(T nA) = ‖I− ET
nA‖

= ‖I−
∑
i

I
n2
A
‖

= ‖I− I
nA
‖

= 1− 1

nA
. (14)

�

We can also define another measure of the unsharpness
in a different way. It is to be noted that equation (7) is
linear in ρ. Now let R = {ρ1, ...., ρk} is a set of k states.

Then, the simple average (i.e., with same probability
1
k ) of EL(ρ;A) over this set R is

< EL(ρ;A) >R=

k∑
i=1

1

k
EL(ρi;A)

=

k∑
i=1

1

k
Tr[ρi(I− EA)]

=Tr[(

k∑
i=1

1

k
ρi)(I− EA)]

=Tr[< ρ >R (I− EA)]

(15)

where < ρ >R= (
∑k
i=1

1
kρi) is the simple average (i.e.,

with same probability 1
k ) of the states over the set R.

Generalising equation (15) for whole state space S(H),
we get that

< EL(ρ;A) >S(H)=Tr[< ρ >S(H) (I− EA)]

=Tr[
I
d

(I− EA)]

=EL(
I
d

;A). (16)

where < ρ >S(H) is the simple average of the states over
the whole state space S(H) and in the second last equal-
ity we have used the well-known fact that < ρ >S(H)=

I
d .

We define the unsharpness measure of A as

E ′L(A) = < EL(ρ;A) >S(H)

= EL(
I
d

;A). (17)

Now the lemma below states the upper bound of
E ′L(A).

Lemma 2. For an observable A = {Ai}nAi , E ′L(A) ≤
1− 1

nA
. This bound is achieved by the observable T nA =

{InAi = I
nA
}nAi=1.

Proof. From the equation (17), we get

E ′L(A) =EL(
I
d

;A)

≤max
ρ
EL(ρ;A)

=EL(A)

≤1− 1

nA
. (18)

Now, it is easy to check that E ′L(T nA) = 1− 1
nA

. �

Remark 1. For an observable A = {Ai}, it is very easy
to prove that EL(A) = EL(AU ) and E ′L(A) = E ′L(AU )
which AU = {U†AiU}. Therefore, EL and E ′L(A) does
not change if an unitary is acted on the observables in
the Heisenberg picture.

B. Monotonicity of EL and E ′L under a class of
fuzzifying processes

If EL is a useful measure of unsharpness (fuzziness), it
should be monotonically non-decreasing under the pro-
cesses which fuzzify the observables i.e., under the pro-
cesses which make the observables more unsharp. These
processes are called fuzzifying processes. One may intuit
that coarse-graining (a process where two or more out-
comes are treated as a single one) is a fuzzifying process.
We show through the next example that this is not true
in general.

Example 1. Consider two observables A = {Ai}3i=1

and B = {Bi}2i=1 acting on H3 where A1 = 1
2 |1〉 〈1| +

1
4 |2〉 〈2| , A2 = 1

2 |1〉 〈1| + 3
4 |2〉 〈2| , A3 = |3〉 〈3| and

B1 = |1〉 〈1|+ |2〉 〈2| , B2 = |3〉 〈3|. clearly, A1 +A2 = B1

and A3 = B2 and therefore, B is a coarse-graining of
A. But B is a PVM and A is not a PVM. Therefore,
EL(A) > 0 and EL(B) = 0. Therefore, under this kind
of classical post-processing of the outcomes EL may be
decreasing.

The above example shows that it is not possible to
prove that EL is monotonically non-decreasing under the
classical post-processing of outcomes as it is not a fuzzi-
fying process, in general. Furthermore, one may intuit
that the convex combination of observables is a fuzzify-
ing process i.e. if an arbitrary observable A is convexly
combined with any other arbitrary observable, the re-
sulting observable will be more unsharp than A. We will
show through the next example that this is also not true,
in general.
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Example 2. Consider a pair of observables A = {Ai}
and B = {Bi} acting on H3 where A1 = 1

2 |1〉 〈1| +
1
4 |2〉 〈2| , A2 = 1

2 |1〉 〈1| + 3
4 |2〉 〈2| , A3 = |3〉 〈3| and

B1 = |1〉 〈1| , B2 = |2〉 〈2| , B3 = |3〉 〈3|. We define a
observable Cλ = {Cλi } where Cλi = λAi + (1 − λ)Bi and
0 ≤ λ ≤ 1. Clearly, Cλ1 = [1− λ

2 ] |1〉 〈1|+ λ
4 |2〉 〈2| , C

λ
2 =

λ
2 |1〉 〈1|+ [1− λ

4 ] |2〉 〈2| , Cλ3 = |3〉 〈3|. It can be observed

that the sharpness of the observable Cλ increases with
with the decrement of λ and for λ = 0, C0 = B which
is a PVM. Now since, for λ = 1, C1 = A, Cλ is always
sharper than A for all values of λ. It can be easily shown
that EL(A) ≥ EL(Cλ) for all values of λ’s.

The above example shows that it is also not possible to
prove that EL is monotonically non-decreasing under the
convex combination of observables as it is not a fuzzify-
ing process, in general.
Example 1 and example 2 suggest that it is not an easy
task to specify all fuzzifying processes. But one can spec-
ify the special classes of fuzzifying processes. One can
easily understand that the addition of white noise in the
observables is a fuzzifying process. Therefore, we restrict
ourselves to this particular class of fuzzifying processes
and show that EL is monotonically non-decreasing under
this class of fuzzifying processes in the following theorem.

Theorem 1. Suppose Aλ = {Aλi }
nA
i=1 is an unsharp ver-

sion of A = {Ai}nAi=1 i.e., Aλi = λAi + (1 − λ) I
nA

for all

i ∈ {1, ....., nA} where 1 ≥ λ ≥ 0. Then EL(Aλ) ≥ EL(A)
for all 1 ≥ λ ≥ 0.

Proof. The E-matrix of Aλ, is given by

EA
λ

=
∑
i

(Aλi )2

=
∑
i

(λAi +
1− λ
nA

I)2

=
∑
i

(λ2A2
i +

2λ(1− λ)

nA
Ai +

(1− λ)2

n2
A

I)

= λ2
∑
i

A2
i +

2λ(1− λ)

nA
I +

(1− λ)2

nA
I

= λ2
∑
i

A2
i +

(1− λ2)

nA
I (19)

Therefore,

I− EA
λ

=I− (λ2
∑
i

A2
i +

(1− λ2)

nA
I)

=λ2(I− EA) + (1− λ2)(1− 1

nA
)I. (20)

Now, using the properties of the operator norm, we get

‖I− EA
λ

‖ ≤‖λ2(I− EA) + (1− λ2)(1− 1

nA
)I‖

= λ2‖I− EA‖+ (1− λ2)(1− 1

nA
)‖I‖

= λ2‖I− EA‖+ (1− λ2)(1− 1

nA
). (21)

Suppose, |e′max〉 is the eigen state (i.e., normalised
eigenvector) of (I − EA) corresponding to the highest
eigenvalue of (I − EA). Then ‖I − EA‖ = 〈e′max| (I −
EA) |e′max〉. Then, using the properties of the operator
norm and equation (20), we get

‖I− EA
λ

‖ ≥ 〈e′max| (I− EA
λ

) |e′max〉
=λ2 〈e′max| (I− EA) |e′max〉

+ (1− λ2)(1− 1

nA
) 〈e′max| I |e′max〉

= λ2‖(I− EA)‖+ (1− λ2)(1− 1

nA
).

(22)

From inequality (21) and inequality (22), we get

‖I− EA
λ

‖ = λ2‖(I− EA)‖+ (1− λ2)(1− 1

nA
). (23)

Therefore,

EL(Aλ)− EL(A) =(1− λ2)(1− 1

nA
)− (1− λ2)‖(I− EA)‖

=(1− λ2)[(1− 1

nA
)− EL(A)]

≥0. (24)

We have used Lemma 1 to obtain the last inequality.
Hence the theorem is proved. �

Next we have an immediate corollary-

Corollary 1. For any observable A = {Ai}, EL(Aλ2) ≥
EL(Aλ1) for all 1 ≥ λ1 ≥ λ2 ≥ 0.

Proof. The observable Aλ1 = {Aλ1
i = λ1Ai+(1−λ1) I

nA
}.

For notational simplicity we denote all Aλ1
i as A′i i.e.,

Aλ1
i = A′i for all i ∈ {1, ....., nA} and we also denote the

observable Aλ1 as A′ i.e., Aλ1 = A′. Now the observable
Aλ2 = {Aλ2

i = λ2Ai + (1 − λ2) I
nA
}. Suppose γ = λ2

λ1
.

Clearly, 1 ≥ γ ≥ 0 as λ2 ≤ λ1 and both are positive.
Then for all i ∈ {1, ....., nA},
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Aλ2
i =λ2Ai + (1− λ2)

I
nA

=γλ1Ai + (1− γλ1 + γ − γ)
I
nA

=γλ1Ai + [(1− γ) + γ(1− λ1)]
I
nA

=γ[λ1Ai + (1− λ1)
I
nA

] + (1− γ)
I
nA

=γA′i + (1− γ)
I
nA

=A′γi (25)

where A′γi = γA′i+(1−γ) I
nA

for all i ∈ ΩAλ2 . Therefore,

Aλ2 = A′γ = {A′γi }. Then using the fact that Aλ1
i = A′

and Theorem 1, we get that EL(Aλ2) ≥ EL(Aλ1). Hence
the corollary is proved. �

Therefore, EL(Aλ) is monotonically non-decreasing
with decreasing value of λ or equivalently EL is mono-
tonically non-increasing with increasing value of λ.

Next, we have to prove the monotonicity of E ′L un-
der the addition of white noise. We start with our next
theorem.

Theorem 2. Suppose Aλ = {Aλi }
nA
i=1 is an unsharp ver-

sion of A = {Ai}nAi=1 i.e., Aλi = λAi + (1 − λ) I
nA

for

all i ∈ {1, ....., nA} where 1 ≥ λ ≥ 0. Then E ′L(Aλ) ≥
E ′L(A) for all 1 ≥ λ ≥ 0.

Proof. From equation (17) and equation (20), we get that

E ′L(Aλ) =EL(
I
d

;Aλ)

=Tr[
I
d

(I− EA
λ

)]

=Tr[
I
d

(λ2(I− EA) + (1− λ2)(1− 1

nA
)I)]

=λ2Tr[
I
d

(I− EA)] + (1− λ2)(1− 1

nA
)

=λ2E ′L(A) + (1− λ2)(1− 1

nA
) (26)

Therefore,

E ′L(Aλ)− E ′L(A) =(λ2 − 1)E ′L(A) + (1− λ2)(1− 1

nA
)

=(1− λ2)[(1− 1

nA
)− E ′L(A)]

≥0. (27)

We have used Lemma 2 to obtain the last inequality.
Hence, the theorem is proved. �

Next, we have an immdiate corollary

Corollary 2. For any observable A = {Ai}, E ′L(Aλ2) ≥
E ′L(Aλ1) for all 1 ≥ λ1 ≥ λ2 ≥ 0.

Proof. The proof is similar to the proof of Corollary 1.
From the equation (25), we get that Aλ2 = A′γ = {A′γi }.
Then using the fact that Aλ1

i = A′ and Theorem 2, we
get that E ′L(Aλ2) ≥ E ′L(Aλ1). Hence the corollary is
proved. �

Therefore, E ′L(Aλ) is monotonically non-decreasing
with decreasing value of λ or equivalently E ′L is mono-
tonically non-increasing with increasing value of λ.

C. Relation of EL(A) and E ′L(A) with Fρ(A)

In this subsection, we relate the approach given in the
Ref. [9] (also briefly discussed in Sec. II D) with our
apporach. More specifically, we relate Fρ(A) with EL(A)
and E ′L(A). From the expression of Fρ(A) i.e., from the
equation (3), we get that

Tr[Fρ(A)] =
∑
i

[Fρ(A)]ii

=
∑
i

[Tr[ρAi]− Tr[ρ
(AiAi +AiAi)

2
]]

=
∑
i

[Tr[ρAi]− Tr[ρA2
i ]]

=Tr[ρ(I−
∑
i

A2
i )]

=Tr[ρ(I− EA)]

=EL(ρ;A) (28)

Therefore,

EL(A) = max
ρ
EL(ρ;A)

= max
ρ

Tr[Fρ(A)]. (29)

Now as it is mentioned in the Ref. [9] that Fρ(A) is
Hermitian and Fρ(A) ≥ 0 for any arbitrary observable
A, we have Tr[Fρ(A)] = ‖Fρ(A)‖tr.

EL(A) = max
ρ
‖Fρ(A)‖tr. (30)

Therefore, through our approach one of the operational
meanings of the matrix Fρ(A) can be understood.

Now taking ρ = I
d and from equation (28), we get that

Tr[F I
d
(A)] =EL(

I
d

;A)

=E ′L(A). (31)

As Tr[F I
d
(A)] = ‖F I

d
(A)‖tr, we have

E ′L(A) = ‖F I
d
(A)‖tr. (32)
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Now it has been mentioned in the Ref. [9] that any
unitarily invariant norm of F(A) = F I

d
(A) can quantify

of the unsharpness of A. Therefore, we can take trace
norm of F(A) as a quantifier of the unsharpness of A
[21]. Therefore, E ′L measure is consistent with the Ref.
[9].

IV. AN ATTEMPT TO CONSTRUCT
INSTRUMENT-INDEPENDENT UNSHARPNESS

MEASURES

A. Construction and the upper bound of the
instrument-independent unsharpness measure E

In the previous section, we discussed two Luder’s
instrument-based unsharpness measures of observables.
This discussion raises an immediate question: can one
construct an instrument-independent unsharpness mea-
sure of observables? We try to answer this question in
this section.

Suppose Alice is using a general A-compatible quan-
tum instrument IA = {ΦAi } on the state ρ to measure
an observable A = {Ai}. Then, qi = Tr[ΦAi (ρ)] =
Tr[ρAi] is the probability of getting the outcome i and

ρ′i =
ΦAi (ρ)

Tr[ΦAi (ρ)]
is the post-measurement after obtaining

the outcome i. Now, after obtaining the outcome i if
one more time the observable A is measured by Alice on
this post measurement state ρ′i, the probability of again
obtaining the same outcome i is

qii = Tr[ρ′iAi]. (33)

The average probability that the outcome will repeat on
successive measurements of the observable A using the
instrument IA on the state ρ is

Q(ρ;A; IA) =
∑
i

qiqii

=
∑
i

Tr[ρAi]Tr[ρ′iAi]

≤
∑
i

Tr[ρAi]‖Ai‖

= Tr[ρXA] (34)

where XA =
∑
i ‖Ai‖Ai. We will call XA as the X-

matrix of the observable A.
Therefore,

Q(ρ;A) = max
IA
Q(ρ;A; IA) ≤ Tr[ρXA]. (35)

Now the average probability that a outcome will never
repeat is

E(ρ;A; IA) = 1−Q(ρ;A; IA). (36)

Now suppose, amax is the highest eigenvalue of the
matrix Ai and |amax〉 is the corresponding eigen vector.
Therefore, 〈amax|Ai |amax〉 = Tr[|amax〉 〈amax|Ai] =
‖Ai‖. Now consider an instrument JA = {ΘAi } where
ΘAi (ρ) = Tr[ρAi] |amax〉 〈amax|. Therefore, the post-
measurement states after obtaining the outcome i is
σi = |amax〉 〈amax|. Now,

Q(ρ;A;JA) =
∑
i

Tr[ρAi]Tr[|amax〉 〈amax| (Ai)]

=
∑
i

Tr[ρAi]‖Ai‖

= Tr[ρXA]. (37)

Now,

Q(ρ;A) = max
IA
Q(ρ;A; IA)

≥ Q(ρ;A;JA)

= Tr[ρXA]. (38)

From inequality (35), equation (37) and inequality (38)
we get

Q(ρ;A) = Tr[ρXA] = Q(ρ;A;JA). (39)

Therefore, choosing the best instrument JA, one can
maximize the average probability that the outcome will
repeat on successive measurements of the observable A
on the state ρ.

Now,

E(ρ;A) = min
IA
E(ρ;A; IA)

= 1−max
IA
Q(ρ;A; IA)

= 1− Tr[ρXA]

= Tr[ρ(I−XA)] (40)

≤ ‖I−XA‖. (41)

Therefore,

E(A) = max
ρ
E(ρ;A)

≤ ‖I−XA‖. (42)

Now suppose x′max is the highest eigen value of I−XA
and |x′max〉 is the corresponding eigen vector. Therefore,
〈x′max| I−XA |x′max〉 = Tr[|x′max〉 〈x′max| (I−XA)] = ‖I−
XA‖. Then,

E(A) = max
ρ
E(ρ;A)

≥ E(|x′max〉 〈x′max| ;A)

= ‖I−XA‖. (43)
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From inequality (42) and inequality (43) we get

E(A) = ‖I−XA‖. (44)

We define EA as the instrument-independent unsharp-
ness measure of observables. Clearly, E measure is in-
dependent of the bijective relabeling of outcomes and of
the values of outcomes. If A is a PVM, ‖Ai‖ = 1 for all
i ∈ {1, ...., nA} and EA = 0. Next, we provide a remark
on the faithfulness of E .

Remark 2. For an observable A = {Ai}nAi=1 acting on
the d-dimensional Hilbert space H, we know that E(A) =
0 only if ‖Ai‖ = 1 for all i ∈ ΩA. Let A be an observ-
able such that ‖Ai‖ = 1 for all i ∈ ΩA and |amaxi 〉 be
the eigenstate (one of the eigen states if the maximum
eigen value 1 is degenerate) corresponding to the maxi-
mum eigen value 1 for all i ∈ ΩA. Then for any two
i, j ∈ ΩA and i 6= j, suppose that 〈amaxj |amaxi 〉 6= 0.

Then 〈amaxi |Ai + Aj |amaxi 〉 ≥ 1+ | 〈amaxj |amaxi 〉 |2> 1.
But Since, Ai + Aj − I, 〈ψ|Ai + Aj |ψ〉 ≤ 1 for all
|ψ〉 〈ψ| ∈ S(H). Hence, 〈amaxj |amaxi 〉 = 0 for all i ∈ ΩA.
Now as

∑
k Ak = I and 〈amaxi |Ai |amaxi 〉 = 1, we have

〈amaxi |Aj |amaxi 〉 = 0 for for any two i, j ∈ ΩA and
i 6= j. Therefore, for all j ∈ ΩA, there exist a nA − 1-
dimensional subspace Kj of H such that for all |ψ〉 〈ψ| ∈
Kj, 〈ψ|Aj |ψ〉 = 0 and for 1-dimensional subspace (i.e.,
for |amaxj 〉), 〈amaxj |Aj |amaxj 〉 = 1. Clearly, such con-
struction is not possible for nA > d and for nA = d,
such construction implies A = {Ai = |amaxj 〉 〈amaxj |}
is a rank-1 PVM. Therefore, for nA ≥ d, E(A) = 0
implies A is a PVM (sharp observable). Hence, the
measure is faithful. Above statement implies that E
is a faithful measure for all qubit observables (i.e., for
d = 2). For n ≤ d, E(A) > 0 implise A is an un-
sharp observable. But in this case E(A) = 0 does not
implies A is a PVM. For example- The qutrit observ-
able A′ = {(|1〉 〈1| + 1

2 |2〉 〈2|), (
1
2 |2〉 〈2| + |3〉 〈3|)} is an

unsharp observable. But E(A′) = 0.

Next we calculate the upper bound of E .

Lemma 3. For an observable A = {Ai}nAi , E(A) ≤ 1−
1
nA

. This bound is achieved by the observable T nA =

{InAi = I
nA
}nAi=1.

Proof. From the definition of Eρ,A, we have

E(ρ;A) = min
IA
Eρ;A;IA

≤ E(ρ;A;LA) (45)

Taking maximization over ρ in both side of inequality 45
and from Lemma 1, we get

EA ≤ EL(A) ≤ 1− 1

nA
. (46)

Now for the observable T nA ,

E(T nA) = ‖I−X T
nA‖

= ‖I−
∑
i

I
n2
A
‖

= 1− 1

nA
(47)

Hence, the lemma is proved. �

Similar to E ′L, we can define another instrument-
independent unsharpness measure E ′ by taking average
of E(ρ;A) over full state space S(H). Then

E ′(A) = < E(ρ;A) >S(H)

= < Tr[ρ(I−XA)] >S(H)

=Tr[< ρ >S(H) (I−XA)]

=Tr[
I
d

(I−XA)]

=E(
I
d

;A). (48)

The statement similar to Remark 2 also holds E ′.
Now the lemma below states the upper bound of E ′(A).

Lemma 4. For an observable A = {Ai}nAi , E ′(A) ≤
1− 1

nA
. This bound is achieved by the observable T nA =

{InAi = I
nA
}nAi=1.

Proof. From the equation (48), we get

E ′(A) =E(
I
d

;A)

≤max
ρ
E(ρ;A)

=E(A)

≤1− 1

nA
. (49)

Now, it is easy to check that E ′(T nA) = 1− 1
nA

. �

The statement similar to Remark 1 also holds for E
and E ′.

B. Monotonicity of E and E ′ under a class of
fuzzifying processes

Since from Example 1 and Example 2, we get that the
coarse-graining and the convex combination of the ob-
servables are not the fuzzifying processes, monotonicity
of E can not be shown. Therefore, here we try to show
that under the addition of white noise E is monotoni-
cally non-decreasing. But unfortunately, it appears that
the proof is not so straightforward. Therefore, at first,
we derive the condition for the monotonicity of E under
the addition of white noise (i.e., Theorem 3).
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Theorem 3. Suppose Aλ = {Aλi }
nA
i=1 is an unsharp ver-

sion of A = {Ai}nAi=1 i.e., Aλi = λAi + (1 − λ) I
nA

for all

i ∈ {1, ....., nA} where 1 ≥ λ ≥ 0. Then E(Aλ) ≥ E(A)
for all 1 ≥ λ ≥ 0 iff

ΣA1 ≥ ΣA2 (50)

holds where ΣA1 = (〈xAmin| XA |xAmin〉 − 1
nA

) and ΣA2 =

(
∑
i ‖Ai‖
nA

− 〈xAmin| XA |xAmin〉) where xAmin is the lowest

eigen value of XA and |xAmin〉 is the eigen state of XA
corresponding to the eigen value xAmin.

Proof. The X-matrix of Aλ is

XA
λ

=
∑
i

‖λAi + (1− λ)
I
nA
‖[λAi + (1− λ)

I
nA

]

=
∑
i

[λ‖Ai‖+ (1− λ)
1

nA
][λAi + (1− λ)

I
nA

]

=λ2
∑
i

‖Ai‖Ai +
λ(1− λ)

nA
[(
∑
i

‖Ai‖)I +
∑
i

Ai]

+
(1− λ)2

nA
I

=λ2XA +
(1− λ)

nA
[λ(
∑
i

‖Ai‖) + 1]I (51)

Therefore,

I−XA
λ

=λ2[I−XA] + (1− λ2)I

− (1− λ)

nA
[λ(
∑
i

‖Ai‖) + 1]I

=
(1− λ)

nA
[(nA − 1) + λ(nA −

∑
i

‖Ai‖)]I

+ λ2[I−XA]

=λ2[I−XA] + γI (52)

where γ = γ(A, λ) = (1−λ)
nA

[(nA− 1) +λ(nA−
∑
i ‖Ai‖)].

As Ai ≤ I and therefore,
∑
i ‖Ai‖ ≤ nA, we have γ ≥ 0.

Therefore,

E(Aλ) =‖I−XA
λ

‖
=λ2E(A) + γ. (53)

Now,

E(Aλ)− E(A) =γ − (1− λ2)E(A)

=
(1− λ)

nA
[(nA − 1) + λ(nA −

∑
i

‖Ai‖)]

− (1− λ2)E(A)

=(1− λ)[(1− 1

nA
− E(A))

+ λ(1−
∑
i ‖Ai‖
nA

− E(A))] (54)

Now, E(A) = ‖I − XA‖ = 1 − xAmin = 1 −
〈xAmin| XA |xAmin〉 where xAmin is the lowest eigen value
of XA and |xAmin〉 is the eigen state of XA corresponding
to the eigen value xAmin. Then

Therefore,

E(Aλ)− E(A) =(1− λ)[(〈xAmin| XA |xAmin〉 −
1

nA
)

+ λ(〈xAmin| XA |xAmin〉 −
∑
i ‖Ai‖
nA

)]

= (1− λ)[ΣA1 − λΣA2 ]

= (1− λ)ΣA(λ) (55)

where ΣA1 = (〈xAmin| XA |xAmin〉 − 1
nA

) = xAmin − 1
nA

,

ΣA2 = (
∑
i ‖Ai‖
nA

− 〈xAmin| XA |xAmin〉) =
∑
i ‖Ai‖
nA

− xAmin
and ΣA(λ) = [ΣA1 − λΣA2 ]. Now, since E(A) ≤ (1− 1

nA
),

ΣA1 ≥ 0. Now, There are two following cases-
(I) For ΣA2 < 0 -
In this case, E(Aλ) − E(A) ≥ 0 always. In this case
ΣA1 ≥ ΣA2 trivially holds.
(II) For ΣA2 ≥ 0 -
In this case, the minimum value of ΣA(λ) (for λ = 1) is

ΣAmin = [ΣA1 −ΣA2 ] = 2xAmin−
∑
i ‖Ai‖
nA

− 1
nA

. Clearly, the

condition for E(Aλ)− E(A) ≥ 0 for all λ is ΣAmin ≥ 0 or
equivalently ΣA1 ≥ ΣA2 .

�

It appears that the proof of the inequality (50) for arbi-
tray observable acting on an arbitrary dimensional Hib-
ert space, is difficult and therefore proof of the statement
that under the addition of white noise E is monotonically
non-decreasing is difficult. Therefore, next we prove the
inequality (50) for the qubit dichotomic observables.

Proposition 1. For any dichotomic observable W,
ΣW1 ≥ ΣW2 and therefore, E(Wλ) ≥ E(W) for all 1 ≥
λ ≥ 0.

Proof. SupposeW = {W1,W2} are two qubit dichotomic
observables. Clearly W2 = I − W1. Let W1 =
ω1 |ω1〉 〈ω1| + ω2 |ω2〉 〈ω2|. Without the loss of general-
ity, we can choose ω1 ≥ ω2. Then ‖W1‖ = ω1. Now
W2 = (1 − ω1) |ω1〉 〈ω1| + (1 − ω2) |ω2〉 〈ω2|. Clearly,
‖W2‖ = (1− ω2). Therefore,

XW =‖W1‖W1 + ‖W2‖W2

=ω1[ω1 |ω1〉 〈ω1|+ ω2 |ω2〉 〈ω2|)]
+ (1− ω2)[(1− ω1) |ω1〉 〈ω1|+ (1− ω2) |ω2〉 〈ω2|]

=[ω2
1 + (1− ω1)(1− ω2)] |ω1〉 〈ω1|

+ [ω1ω2 + (1− ω2)2] |ω2〉 〈ω2|
=ω′1 |ω1〉 〈ω1|+ ω′2 |ω2〉 〈ω2| (56)

where ω′1 = [ω2
1 +(1−ω1)(1−ω2)] and ω′2 = [ω1ω2 +(1−

ω2)2]. Now
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ω′1 − ω′2 =[ω2
1 + (1− ω1)(1− ω2)]− [ω1ω2 + (1− ω2)2]

=ω2
1 + 1 + ω1ω2 − ω1 − ω2 − ω1ω2 − 1 + 2ω2 − ω2

2

=(ω1 − ω2)[(ω1 + ω2)− 1]. (57)

Therefore, as ω1 ≥ ω2, we have ω′1 ≥ ω′2 for (ω1 +ω2) ≥ 1
and we have ω′1 ≤ ω′2 for (ω1 + ω2) ≤ 1.

Therefore, following two cases-
(I) For (ω1 + ω2) ≥ 1 -
In this case the minimum eigen value of XW is xWmin = ω′2.
Therefore,

ΣWmin =ΣW1 − ΣW2

=2xWmin −
1

2
− ‖W1‖+ ‖W2‖

2

=2[ω1ω2 + (1− ω2)2]− 1

2
− ω1 + (1− ω2)

2

=1− 4ω2 + 2ω2
2 + 2ω1ω2 −

(ω1 − ω2)

2
. (58)

Now from Fig. 1a, we get that that ΣWmin ≥ 0 for all ω1

and ω2 satisfying the conditions ω1 ≥ ω2 and ω1+ω2 ≥ 1.
(II) For (ω1 + ω2) ≤ 1 -

In this case the minimum eigen value of XW is xWmin = ω′1.
Therefore,

ΣWmin =ΣW1 − ΣW2

=2xWmin −
1

2
− ‖W1‖+ ‖W2‖

2

=2[ω2
1 + (1− ω1)(1− ω2)]− 1

2
− ω1 + (1− ω2)

2

=1 + 2ω2
1 + 2ω1ω2 − 2(ω1 + ω2)− (ω1 − ω2)

2
.

(59)

Now from Fig. 1b, we get that that ΣWmin ≥ 0 for all ω1

and ω2 satisfying the conditions ω1 ≥ ω2 and ω1+ω2 < 1.
�

Now, we have to prove monotonicity of E ′ under the
addition of white noise. We start with our next theorem.

Theorem 4. Suppose Aλ = {Aλi }
nA
i=1 is an unsharp ver-

sion of A = {Ai}nAi=1 i.e., Aλi = λAi + (1 − λ) I
nA

for all

i ∈ {1, ....., nA} where 1 ≥ λ ≥ 0. Then E ′(Aλ) ≥ E ′(A)
for all 1 ≥ λ ≥ 0 iff

Σ′A1 ≥ Σ′A2 (60)

holds where Σ′A1 = 1
dTr[XA]− 1

n and Σ′A2 =
∑
i ‖Ai‖)
nA

−
1
dTr[XA].

(a) Plot of ΣW
min w.r.t. ω1 and ω2 satisfying the conditions

ω1 ≥ ω2 and ω1 + ω2 ≥ 1

(b) Plot of ΣW
min w.r.t. ω1 and ω2 satisfying the conditions

ω1 ≥ ω2 and ω1 + ω2 < 1

FIG. 1: Plots of ΣWmin w.r.t. ω1 and ω2 for ω1 ≥ ω2.
These plots show that ΣWmin ≥ 0 always.

Proof. From equation (52), we get that (I−XAλ) = λ2[I−
XA] + γI where γ = γ(A, λ) = (1−λ)

nA
[(nA − 1) + λ(nA −∑

i ‖Ai‖)]. As Ai ≤ I and therefore,
∑
i ‖Ai‖ ≤ nA, we

have γ ≥ 0. Therefore, from the equation (48), we get
that

E ′(Aλ) = λ2E ′(A) + γ. (61)
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Therefore,

E ′(Aλ)− E ′(A) =γ − (1− λ2)E(A)

=(1− λ)[(1− 1

nA
− E ′(A))

+ λ(1−
∑
i ‖Ai‖
nA

− E ′(A))]

=(1− λ)[Σ′A1 − λΣ′A2 ]

=Σ′A(λ) (62)

where Σ′A1 = (1 − 1
nA
− E ′(A)) = ( 1

dTr[XA] − 1
n ),

Σ′A2 = (
∑
i ‖Ai‖
nA

− 1
dTr[XA]) and Σ′A(λ) = [Σ′A1 − λΣ′A2 ].

Now, since E ′(A) ≤ (1 − 1
nA

), Σ′A1 ≥ 0. Now, There are
two following cases-
(I) For Σ′A2 < 0 -
In this case, E ′(Aλ) − E ′(A) ≥ 0 always. In this case
ΣA1 ≥ ΣA2 trivially holds.
(II) For Σ′A2 ≥ 0 -
In this case, the minimum value of Σ′A(λ) (for λ = 1)

is Σ′Amin = [Σ′A1 − Σ′A2 ] = 2 1
dTr[XA] −

∑
i ‖Ai‖
nA

− 1
nA

.

Clearly, the condition for E ′(Aλ)− E ′(A) ≥ 0 for all λ is
Σ′Amin ≥ 0 or equivalently Σ′A1 ≥ Σ′A2 .

�

Since, it is difficult to prove inequality (60), we prove
it for dichotomic qubit observables. Therefore, our next
proposition is

Proposition 2. For any dichotomic observable W,
ΣW1 ≥ ΣW2 and therefore, E ′(Wλ) ≥ E ′(W) for all
1 ≥ λ ≥ 0.

Proof. SupposeW = {W1,W2} are two qubit dichotomic
observables. Clearly W2 = I − W1. Let W1 =
ω1 |ω1〉 〈ω1| + ω2 |ω2〉 〈ω2|. Without the loss of general-
ity, we can choose ω1 ≥ ω2. Then ‖W1‖ = ω1. Now
W2 = (1 − ω1) |ω1〉 〈ω1| + (1 − ω2) |ω2〉 〈ω2|. Clearly,
‖W2‖ = (1 − ω2). Therefore, from equation (56), we
get that

XW =ω′1 |ω1〉 〈ω1|+ ω′2 |ω2〉 〈ω2| (63)

where ω′1 = [ω2
1 +(1−ω1)(1−ω2)] and ω′2 = [ω1ω2 +(1−

ω2)2]. Therefore,

Σ′Wmin = 2(
1

2
Tr[XW ])− 1

2
− ‖W1‖+ ‖W2‖

2

= ω′1 + ω′2 −
1

2
− ω1 + (1− ω2)

2

= ω2
1 + ω1ω2 + (1− ω2)(2− ω1 − ω2)− 1− ω1 − ω2

2
(64)

Figure 2, says that Σ′Wmin ≥ 0 for ω1 ≥ ω2. Hence,
E ′(Wλ) ≥ E ′(W) for all 1 ≥ λ ≥ 0. �

FIG. 2: Plot of Σ′Wmin w.r.t. ω1 and ω2 for ω1 ≥ ω2. This
plot show that Σ′Wmin ≥ 0 always.

Therefore, inequality (50) and inequality (60) hold for
qubit dichotomic observables. We have searched for ex-
amples for which inequality (50) inequality (60) do not
hold. But we could not find any such example. Noting
these facts, we provide the following conjecture-

Conjecture 1. For any qubit observable A, inequality
ΣA1 ≥ ΣA2 and inequality Σ′A1 ≥ Σ′A2 hold and therefore,
E(Aλ) ≥ E(A) and E ′(Aλ) ≥ E ′(A) for all 1 ≥ λ ≥ 0.

If Conjecture 1 can be proven then two corollaries sim-
ilar to Corollary 1 and Corollary 2 can also be proven
which establishes the monotonicity of E and E ′ under the
addition of white noise.

V. EXPERIMENTAL DETERMINATION OF
THE VALUE OF THE UNSHARPNESS

MEASURES

Here we show that experimentally, one can determine
the value of EL(A) and E ′L(A) for an unknown qubit
observable A = {Ai}. We show this for the qubit case.
Generalization for the higher dimensions is straightfor-
ward.
Let E-matrix of an unknown qubit observable A = {Ai}

be EA =

[
a c∗

c d

]
where this matrix is written in σz basis.

Suppose |±, i〉 are the eigen states of σi corresponding to
the eigen values ±1 for all i ∈ {x, y, z}. Suppose we have
ni,± copies of such states are available to us. On each
of these copies, A has been measured twice successively
using Luder’s instrument. Suppose that for fi,± copies
outcomes have repeated (i.e., the outcome of the first A
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meaurement and the outcome of the second A meaure-
ment are same) Then from equation (6), we get that the
average probability that any outcome will repeat, is

PL(|±, i〉 〈±, i| ,A) = Tr[|±, i〉 〈±, i|EA]. (65)

Now we know that for large ni,±, PL(|±, i〉 〈±, i| ,A) ≈
fi,±
ni,±

. Now PL(|+, z〉 〈+, z| ,A) = a ≈ fz,+
nz,+

,

PL(|−, z〉 〈−, z| ,A) = b ≈ fz,−
nz,−

, PL(|±, x〉 〈±, x| ,A) =
a+b±2Re(c)

2 ≈ fx,±
nx,±

, PL(|±, y〉 〈±, y| ,A) = a+b±2Im(c)
2 ≈

fy,±
ny,±

where Re(c) is the real part of c and Im(c) is the

imaginary part of c. From these approximate equalities,
we get the following set of approximate equalities-

a ≈ fz,+
nz,+

; b ≈ fz,−
nz,−

(66)

c ≈(
fx,+

2nx,+
− fz,+

4nz,+
− fz,−

4nz,−
)

+ i(
fy,+

2ny,+
− fz,+

4nz,+
− fz,−

4nz,−
). (67)

Clearly for ni± → ∞, for all i ∈ {x, y, z}, above ap-
proximate equalities become exact equalities. In this
way, if a, b and c are known approximately then EA

is known approximately. The lowest eigenvalue of EA is
a+b−

√
(a+b)2−4(ab−|c|2)

2 . Therefore, EL(A) = ‖I−EA‖ =

1 − a+b−
√

(a+b)2−4(ab−|c|2)

2 . Similarly, E ′L(A) = 1 −
1
2Tr[EA] = 1− a+b

2 . Therefore, in this way, it is possible

to determine the values of EL(A) and E ′L(A) experimen-
tally.

The experimental determination of the values of E(A)
and E ′(A) is similar as above.

VI. AN ATTEMPT TO CONSTRUCT THE
RESOURCE THEORY OF THE SHARPNESS OF

THE OBSERVABLES

Quantification of quantum resources and the construc-
tion of the resource theory is very important and interest-
ing direction of research [13]. Few examples of different
resource theories are (i) the resource theory of entan-
glement [13, 14], (ii) the resource theory of coherence
[15, 16], (iii) the resource theory of incompatibility [17],
(iv) the resource theory of quantum channels [18], (v)
the resource theory of quantum thermodynamics [19, 20]
etc. We do not claim we construct the complete resource
theory here. But we present the idea of the resource the-
ory of the sharpness of the observables here. We take the
sharpness of the observables as a resource here. We first
provide the following reasons behind taking sharpness of
the observables as a resource-

1. The Ref. [22] suggests that an ideal PVM have in-
finite resource costs. Therefore, with finite amount

of resource, a PVM can not be performed with ar-
bitrary accuracy. Therefore, this fact suggests that
the ability to perform PVMs (i.e., sharp measure-
ments) or equivalently sharpness of the observables
itself can be considered as a resource.

2. In practice, it is very difficult to get rid of the in-
teraction between the system and the environment.
The interaction between the system and the envi-
ronment disturbs the quantum state of a system or
equivalently one can say that due to the interaction
between the system and the environment, an effec-
tive channel Λ acts on the system state. In Heisen-
berg picture, this channel acts on the observable A,
which we want to measure, as Λ∗(A) = {Λ∗(Ai)}.
Depending on the type of the interaction Λ∗ can
convert a sharp observable into an unsharp ob-
servable. For an example- if Λ = Γtd is depolar-

ising channel i.e., Λ(ρ) = Γtd(ρ) = tρ + (1 − t) I
d

and A = {|ai〉 〈ai|} is a rank one PVM, then
Λ∗(A) = Γt∗d (A) = {Γt∗d (Ai) = tAi + (1 − t) I

d}.
Therefore, for a given value of t < 1, it is im-
possible to perform a PVM accurately. Therefore,
given the type of interaction, it may not be pos-
sible to perform a PVM with arbitrary accuracy.
Therefore, to perform a PVM in a lab, one needs
to make proper arrangements in the lab to get rid
of such interactions between the system and the
environment which prevents one to perform the de-
sired PVM with arbitrary accuracy. Therefore, this
fact also suggests that the ability to perform PVMs
(i.e., sharp measurements) or equivalently sharp-
ness of the observables itself can be considered as
a resource.

3. There exist several information-theoretic tasks
which can not be performed perfectly without the
sharp observables. For example- a set of orthogonal
states can be distinguished perfectly only with cer-
tain PVMs. Therefore, this fact also suggests that
the ability to perform PVMs (i.e., sharp measure-
ments) or equivalently sharpness of the observables
itself can be considered as a resource.

Now we state the different elements of the resource theory
of the sharpness of the observables below-

1. The resource- The sharpness of the observables.

2. The free operation- The fuzzifying processes. For
example- a class of fuzzifying processes is the addi-
tion of white noise.

3. The resource measure- We know that the unsharp-
ness is opposite to the sharpness. Therefore, as
sharpness is monotonically non-increasing under
fuzzifying processes, the unsharpness is monoton-
ically non-decreasing under fuzzifying processes.
Since, from Theorem 1 and Corollary 1, we get that
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EL is monotonically non-decreasing under the addi-
tion of white noise, EL can be a possible measure of
unsharpness. The higher value of EL corresponds to
less sharpness (i.e., less resource). Similarly, from
Theorem 2 and Corollary 2, we get that E ′L can be
a possible measure of unsharpness. It is to be noted
that if the Conjecture 1 can be proven then E and
E ′ also can be an unsharpness measure for qubit
observables consistent with the resource-theoretic
framework.

4. Most resourceful measurements- The sharp mea-
surements (PVMs).

5. Free measurements- Given the number of outcomes
n, the observable T n = {Ini = I

n}
n
i=1 is a free mea-

surement (most unsharp).

6. Example of an information-theoretic task which re-
quires the resource- Sharp measurements are re-
quired in the perfect discrimination of the orthog-
onal states.

Now a complete resource theory can be constructed only
if all the fuzzifying processes are specified which is out of
the scope of the present work. One point should be men-
tioned that the above-said resource theory is completely
different the resource theory of quantum uncomplexity
which is presented in the Ref. [23] and the fuzzy opera-
tions which are discussed in the Ref. [23] is quite different
than our idea of fuzzifying processes.

VII. CONCLUSION

In this work, at first, we have constructed two Luder’s
instrument-based unsharpness measures and provided
the tight upper bounds of those measures. Then we
have proved the monotonicity of the above-said measures
under a class of fuzzifying processes (i.e., the addition
of white noise). This is consistent with the resource-
theoretic framework. We have also discussed the fact
that these measures does not change if a unitary is acted
on the observables in the Heisenberg picture. Then we
have related our approach to the approach of the Ref.
[9]. Next, we have tried to construct tried instrument-
independent unsharpness measures. In particular, we
have defined two instrument-independent unsharpness
measures and provided the tight upper bounds of those
measures and then we have derived the condition for the
monotonicity of those measures under a class of fuzzify-
ing processes and proved the monotonicity for dichotomic
qubit observables. Then we have shown that for an un-
known measurement, the values of all of these measures
can be determined experimentally. Finally, we have pre-
sented the idea of the resource theory of the sharpness of
the observables.

It would be interesting to prove Conjecture 1 in the
future. It would be also interesting to construct a com-
plete resource theory of the sharpness of the observables
in the future.
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