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Abstract 

Large variations in removal efficiencies (REs) of chemicals have been reported for monitoring studies of 

activated sludge wastewater treatment plants (WWTPs). In this work, we conducted a meta-analysis on 

REs (1539 data points) for a set of 209 chemicals consisting of fragrances, surfactants, and pharmaceuticals 

in order to assess the drivers of the variability relating to inherent properties of the chemicals and 

operational parameters of activated sludge WWTPs. For a reduced dataset (n=542), we developed a 

mixed-effect model (meta-regression) to explore the observed variability in REs for the chemicals using 

three chemical specific factors and four WWTP-related parameters. The overall removal efficiency of the 

set of chemicals was 82.1 % (95 CI 75.2%-87.1%, N=1539). Our model accounted for 17% of the total 

variability in REs, while the process-based model Simpletreat did not perform better than the average of 

the measured REs. We identified that, after accounting for other factors potentially influencing RE, readily 

biodegradable compounds were better removed than non-readily biodegradable ones. Further, we 

showed that REs increased with increasing sludge retention times (SRTs), especially for non-readily 

biodegradable compounds. Finally, our model highlighted a decrease in RE with increasing KOC. The 

counterintuitive relationship to KOC stresses the need for a better understanding of electrochemical 

interactions influencing the RE of ionisable chemicals. In addition, we highlighted the need to improve the 

modelling of chemicals that undergo deconjugation when predicting RE. Our meta-analysis represents a 

first step in better explaining the observed variability in measured REs of chemicals. It can be of particular 

help to prioritize the improvements required in existing process-based models to predict removal 

efficiencies of chemicals in WWTPs.  

 

1. Introduction 

Activated sludge is a wide-spread technology for the treatment of wastewater and its constituent 

chemicals. The removal efficiency (RE) of specific chemicals in activated sludge wastewater treatment 

plants (WWTPs) is influenced by a wide number of factors. Luo et al. (2014) classified these factors as 

either internal or external. Internal factors are related to a chemical’s properties, like the organic carbon-

water partition coefficient (KOc) or its biodegradability. External factors encompass WWTP-related factors, 

such as the sludge retention time (SRT), the hydraulic retention time (HRT), or the water temperature1-5. 

The influence of internal factors on the RE has been well studied. For example, a high sorption potential 

to organic carbon, indicated by a high KOC value, is a proxy for a high adsorption to sludge and high removal 

efficiencies in WWTPs6-8. Furthermore, chemicals that are classified as readily biodegradable in stringent 
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laboratory tests9-10 are typically assumed to be well removed during wastewater treatment 8, 11. Such 

properties of chemicals are used in standard process-based models to estimate REs of chemicals in 

WWTPs12. One example is the SimpleTreat model13, which is widely-used in regulatory risk assessment to 

predict REs of chemicals in activated sludge WWTPs under standard operating conditions14.  

 

Attempts to describe the variability of measured removal efficiencies in process-based WWTP models like 

SimpleTreat have been achieved by using probabilistic modelling and Monte Carlo based uncertainty 

analysis15-16. These studies, however, consider a probabilistic parameterization of a generic WWTP, not a 

plant-specific parameterization. The variability of measured removal efficiencies has been also described 

by defining model parameters as function of operational conditions, for instance the biological 

degradation rate as a function of the SRT 17, although for a limited number of chemicals. Overall, the ability 

of standard process models to accurately predict the influence of specific parameters on REs across many 

chemicals and WWTPs remains to be proved. In a recent study on RE of pharmaceuticals, the predicted 

effluent concentrations from SimpleTreat were within a factor of 10 compared to actual measurements18. 

Similarly, a factor of 10 was also reported for predicted effluent environmental concentrations, estimated 

with the STPWIN model from the EPI Suite programme, compared to measured values in Singer, et al. 19. 

For fragrance ingredients, the variability in reported REs is large as well. For example, the reported RE of 

tonalide (a polycyclic musk) varied by a factor of six across a number of Dutch and American WWTPs20-22. 

Some of this variability in REs may be explained by WWTP-related or so-called external factors. For 

example, higher REs for some chemicals have been observed for WWTPs with longer SRTs23-25. 

Furthermore, parameters such as redox conditions, pH, or temperature are also presumed to influence 

the wastewater treatment process2. Previously, studies investigated the influence of WWTP design 

parameters on the variability of REs. However, to our knowledge, the relationships unravelled are either 

specific to certain chemicals 15 or WWTPs 26. Generalising these relationships to activated sludge WWTPs 

and more chemicals could be useful to provide guidance on how to include external factors in process-

based models used in risk assessment and further potentially improve their prediction performance.  

 

The aim of this research was to quantify the influence of both internal (chemical-related) and external 

(WWTP-related) factors on REs of a set of chemicals for which comprehensive and specific monitoring data 

on their removal in activated sludge WWTPs was available. The set of chemicals includes various types of 

surfactants, fragrance ingredients, and pharmaceuticals. We combined the RE data of each chemical in 

activated sludge WWTPs, with or without primary settler, with the chemical-specific and plant-specific 
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parameters via a meta-analytical regression approach. To date, the only meta-analysis on REs of chemicals 

in WWTP compared the efficiency of five different sewage treatment technologies 27 as opposed to one 

single technology such as activated sludge. We focused our assessment of variability on the various 

removal mechanisms occurring in activated sludge WWTPs using physico-chemical parameters together 

with operational WWTP parameters. In addition, we assessed the performance of the process-based 

WWTP model SimpleTreat in predicting the removal efficiencies of the chemicals. 

 

2. Materials and Methods 

2.1. Literature review 

We performed a literature review to identify studies of measured RE of surfactants, fragrances, and 

pharmaceuticals in activated sludge. For surfactants and fragrances, the search was carried out on ISI Web 

of Knowledge, PubMed, and Google Scholar without geographical and time constraints. For 

pharmaceuticals, the dataset gathered by Lautz, et al. 18 was used as a basis and updated with an additional 

search in Web of Science, PubMed and Google Scholar. The search strings used for both searches are 

provided in the supplementary information (SI, S1).  

 

2.1.1. Inclusion and exclusion criteria  

The following inclusion/exclusion criteria were applied. The implications of these choices on the analysis 

are further discussed in section 4.3. 

1. The study had to refer to an activated sludge plant; 

2. The study had to report (i) the influent (before or after primary sedimentation) and effluent 

concentrations in wastewater (after the activated sludge treatment but before any tertiary 

treatment), or a combination of the RE and either the influent concentration or the effluent 

concentration of individual chemicals, and (ii) information on the WWTP’s design;  

3. The study could report total or dissolved concentrations of influents and effluents. No 

transformation from dissolved to total concentration was applied due to lack of data.  

4. Studies reporting only the RE of a class of chemicals (e.g. anionic surfactants) were excluded.  

5. Degradation by-products were excluded from the analysis (e.g. alkylphenols and perfluorinated 

surfactants, and some pharmaceuticals like estrone, or estriol), as their generation term could not 

be properly captured in the modelling;  
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6. Chemicals that might be generated through deconjugation of their metabolites were included in 

the model development. We assessed their potential influence on the model outcome via a 

sensitivity analysis (see Section 2.5). 

7. Compounds with multiple pKa in an environmentally relevant range (amphoters, zwitterions and 

multivalent ionic substances) were discarded. The highly pH dependent environmental behaviour 

of these compounds is not captured properly in the available models for environmental properties 

predictions15, 28; and  

8. Studies reporting influent concentrations lower than detection limits were discarded, as REs could 

not be calculated. 

 

2.1.2. Data extraction and treatment 

The response variable of our analysis, meaning the parameter we want to explain the variability of, was 

the chemical’s RE which we extracted from each study. When needed, the programme GetData Graph 

Digitizer v. 2.26.0.20 29 was used to extract influent and effluent concentrations reported in graphs only. 

There were 359 effluent concentrations, which were reported as being below a certain threshold (limit of 

detection or limit of quantification). These were set to half of the threshold concentrations 30-31 (e.g. if 

Ceff<2mg/l, Ceff was set to 1mg/l).The following WWTP design information was extracted when available: 

(1) Plant location; (2) Type of treatment: biological nutrient, meaning phosphorus as well as nitrogen 

removal, (BNR), nitrogen removal (NR), or organic matter removal (OMR); (3) Secondary treatment design: 

sequencing batch reactor (SBR), completely stirred tank reactor (CSTR), plug-flow reactor, or oxidation 

ditch (OD); (4) pH values at different treatment stages; (5) Water temperature at different treatment 

stages; (6) Efficiency in the removal of biological oxygen demand (BOD); (7) Efficiency in the removal of 

total suspended solids (TSS); (8) Efficiency in the removal of nitrogen; (9) Efficiency in the removal of 

phosphorus; (10) Flow rate; (11) Hydraulic retention time (HRT); (12) Sludge retention time (SRT); (13) 

Population served; (14) Design capacity; (15) Share of domestic and industrial influent; and (16) Volume 

of the different treatment basins.  

 

When WWTP specific parameters were reported as a range, the average of the minimum and maximum 

values was used for the modelling. For some operating parameters the following default values were 

assumed to reduce the number of missing values: presence of primary settler (13% of all data points), CSTR 

with OMR as secondary treatment (13% of all data points), presence of a final sedimentation tank (38% of 
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all data points), and no tertiary treatment (6% of all data points). This standard design is also used in 

regulatory risk assessment frameworks (e.g. SimpleTreat). When information on the type of nutrient 

removal was available, it was used to refine the default secondary treatment type: a plug-flow reactor was 

assumed for BNR, and a CSTR for OMR.  

 

Study-specific information was also recorded, namely the sampling period (winter, spring…), the sample 

type (composite or grab sample), the concentration measured (total or dissolved), the number of samples 

taken (sample size), the standard deviations (SD) of the measured concentrations, and whether influent 

and effluent concentrations were measured at the same time or offset by the HRT. Measured 

concentrations that account for the residence time in the WWTP (offset by the HRT) are expected to be 

more representative of REs. Not all parameters could be included in the final analysis due to low data 

availability and a detailed description of the required assumptions per single study is provided in the SI, 

S2. 

 

In total, we selected 133 studies published between 1995 and 2017. Before any screening was performed, 

the raw database consisted of 2441 data points (or effect sizes, see section 2.3.1). 1308 data points 

representing REs of the same chemical measured at different times but at the same WWTP were averaged 

(and SD calculated). Further screening, explained in the flowchart in the SI, S1, led to a final database 

consisting of records of 1539 REs for 209 chemicals, namely 34 fragrances, 21 surfactants, and 154 

pharmaceuticals. The studies were distributed over 28 countries, with most studies conducted in Spain 

(24), the USA (15), and China (14). More information on the geographical coverage is provided in the SI, 

S3 together with a list of all studies included.  

 

2.2. Chemical properties  

The PubChem, HERA, ECHA, DrugBank, ChemSpider, and eChemPortal websites were searched for 

experimental physico-chemical properties of the chemicals in the database 32-37. The properties recorded 

were: CAS number, molecular weight, pKa, octanol-water partitioning coefficient (KOW), organic carbon-

water partitioning coefficient (KOC), Henry’s Law constant, biodegradability character (divided in five 

classes as explained below), and whether the component was a degradation by-product or not. The 

biodegradability of a chemical was determined from OECD test results, which classify a chemical into one 

of the following five classes, listed in decreasing order of biodegradability: (i) readily biodegradable; (ii) 
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readily, but failing 10-d window; (iii) inherently biodegradable, fulfilling specific criteria; (iv) inherently 

biodegradable, not fulfilling specific criteria; and (v) not biodegradable 38. Biodegradability rates measured 

in published biodegradation studies were also considered. In these cases, the chemical was additionally 

classified in one of the five biodegradation classes using the indications from the European Commission 

Joint Research Centre 38. With this information, we defined two indicators of a chemical’s biodegradability: 

(1) to which of the five classes the chemical belonged (biodegradability category), and (2) whether it was 

readily biodegradable (classes (i) and (ii)) or not readily biodegradable (classes (iii) to (v)).  

 

When no experimental data were available, the pKa and the KOW were estimated using the ACDLabs 

estimation programme 39. The dissociation equations provided by the estimation programme were used 

for a preliminary assessment of the chemical’s class. Bases were classified as such, when the pKa was 

above 4, and acids whenever the pKa was smaller than 10. When no measured KOC was available, the pKa 

and KOW values were used to provide an estimated KOC. Details of the equations applied are provided in 

the SI, S2. The SI, S3 lists the chemicals considered together with their estimated or empirical physico-

chemical properties. The speciation of the chemical was hereby assumed to occur at the optimal pH as 

derived by Franco and Trapp 40 to ensure the best prediction possible. The Henry’s law constant was 

calculated from the vapour pressure, molecular weight and solubility with the EPI Suite programme 41. 

 

In the recorded studies, concentrations were sometimes measured for surfactants with different carbon 

chain-length (i.e. LAS). In those cases, weighted averages of the chemical properties of the single 

components were computed either using the molecular weight, or, when available, the exact weight 

percentages of the single mixture’s components. If one component in a mixture was not readily 

biodegradable, then the entire mixture was classed accordingly. Further explanation of the assumptions 

made to set up the chemicals’ properties database are listed in the SI, S2. 

  

2.3. Meta-analysis 

Meta-analysis is a method to summarise studies using a common value, called the effect size, while 

accounting for the weights of the single studies (see sections 2.3.1 and 2.3.2 for an explanation of the 

effect size and weights used in this study). Meta-regression models are a type of mixed-effects models 

that combine fixed and random effects to explain the observed variation in the effect size. Fixed effects, 

also called moderators, describe the effect size similarly to predictor variables in linear regression models. 
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Random effects take into account additional heterogeneity, nested data, and temporal and spatial 

correlations 42. In our case, random effects were added to account for variability between chemicals, 

studies, and WWTPs, for the clustering nature of the data and to prevent that a few chemicals, studies 

and/or WWTPs, which are more often represented in the dataset, dominate the regression model results. 

A potential random effect parameter is the specific study the RE is taken from, as most likely not all 

parameters differentiating the studies are accounted for as fixed effects. Other random effect parameters 

are the WWTP and the chemical name. The chemical name is necessary to account for the fact that the 

same chemical repeated several times in the dataset is likely to have a similar response according to 

physicochemical properties that are unknown and not included in the fixed effects (pseudoreplication). 

The WWTP would capture the WWTP’s specific characteristics and its exposition to similar environmental 

conditions, which would potentially affect the REs. Therefore, combining both fixed and random effects 

within one single mixed-effect model (meta-regression model) allows taking into account that the 

available studies are only a fraction of all studies potentially carried out, but still have common parameters 

influencing their outcome. Meta-analyses and meta-regression models were run using the metafor 

package 43 in R v. 3.3.2 44. 

 

2.3.1. Effect Size  

The focus of this study was on the removal efficiency (RE) of surfactants, fragrances and pharmaceuticals 

(Equation (1)).  

 𝑅𝐸 =  𝐶𝑖𝑛 − 𝐶𝑒𝑓𝑓𝐶𝑖𝑛  (1) 𝐶𝑖𝑛 influent concentration 𝐶𝑒𝑓𝑓 effluent concentration 

Because of the large spread in the REs reported (-249 to 1), this measure was not appropriate for the 

modelling 45. Instead, a response ratio (RR) for every WWTP-chemical combination was used as effect size 

(Equation (2)). Each RR was further weighted by the inverse of its sampling variance (Equation (3)) to assign 

more weight to studies with higher precision (i.e.: with smaller SD and larger sample sizes) 45-46. Negative 

REs (n=65) were not discarded from the analysis because our aim was to describe the broadest spectrum 

of observed REs as possible. Potential explanations for these negative values would be the deconjugation 

of compounds, as for carbamazepine 47, or poor experimental design with e.g. simultaneous sampling of 

influent and effluent concentrations.  
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 𝑅𝑅 = 𝑙𝑛 (𝑋̅𝐶𝑒𝑓𝑓𝑋̅𝐶𝑖𝑛 ) (2) 

 𝜎̂2(𝑅𝑅) = (𝑆𝐷𝐶𝑒𝑓𝑓)2𝑁𝑐𝑒𝑓𝑓𝑋̅𝐶𝑒𝑓𝑓2 + (𝑆𝐷𝐶𝑖𝑛)2𝑁𝐶𝑖𝑛𝑋̅𝐶𝑖𝑛2  (3) 

 

RR  Response Ratio (effect size), measured per WWTP and compound. 𝑋̅𝐶𝑒𝑓𝑓  Mean of the effluent concentration 𝑋̅𝐶𝑖𝑛  Mean of the influent concentration 𝜎̂2  Sampling variance 𝑆𝐷𝐶𝑒𝑓𝑓  Standard deviation of the effluent concentration 𝑆𝐷𝐶𝑖𝑛  Standard deviation of the influent concentration 𝑁𝑐𝑒𝑓𝑓  Number of samples for the effluent concentration 𝑁𝑐𝑖𝑛  Number of samples for the influent concentration 

 

We report our results as RE after back-transforming the RR using Equation (4).  

 

 𝑅𝐸 = 1 − exp (𝑅𝑅) (4) 

 

Not all studies reported the sample size, nor did all report the standard deviations of the measured 

concentrations. We therefore used different imputation techniques to impute missing sample sizes and 

SDs using the package metagear 48. The random_N function was used to impute random sample sizes, 

whereas missing standard deviations were imputed using Bracken’s method (impute_SD function), which 

uses the coefficient of variation of the entire dataset to impute standard deviations. Additionally, we 

imputed standard deviations using two other imputation techniques: the HotDeck and HotDeck Nearest 

Neighbour, and compared the results to our default approach (Bracken’s method) (SI, S8). While the 

HotDeck method imputes SDs using all observed SDs, HotDeck Nearest Neighbour imputes only SDs from 

data with means of similar scale 49. In our case, we used the standard deviations from the three most 

similar RE values to the one with missing SD to impute the missing value.  

 

2.3.2. Moderators 
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In this step, we selected significant moderators (chemical-specific and WWTP-specific factors) that may 

influence RE based on the information from the scientific literature (e.g. Pomies, et al. 12, Petrie, et al. 50, 

Simonich, et al. 51, Clara, et al. 24) and the parameters implemented in SimpleTreat 4.0 (see full list in SI, 

S4). 

The KOC, KOW, Henry’s Law constant, flow rate, HRT, and SRT were log-transformed to prevent the outliers 

from influencing the analysis too much 52. We also assessed multicollinearity between the moderators 

visually for the categorical variables and using Spearman correlation coefficients for the continuous ones. 

Moderators were assumed to be correlated for coefficients above 70%, and whenever clear differences in 

the box- and bar plots were visible. Given the large number of potential moderators, not all box- and 

barplots generated are shown. Instead, the reader can refer to the SI, S4 for examples of those visual 

assessments. From each pair of correlated moderators, we kept the moderator that could influence the 

REs more directly and explained more heterogeneity in the REs (e.g.: the SRT was preferred over the 

secondary treatment type). This was assessed by exploring the strength and direction (positive or negative) 

of the relationship between RE and each single moderator using meta-regression models, with a special 

attention to Omnibus test results (Hedges and Pigott 2004). These models were fitted to a reduced 

database (542 data points), for which data for all the potential moderators were available to ensure 

comparability between the different models. In the end, seven moderators were retained for the model 

fitting (Table 1). More information on the screening process is provided in the SI, S4. 

 

Table 1 – Set of moderators tested with a short justification for their choice. T stands for technological and C for chemical-specific 

moderators.  

 Names Justification 

T Log Sludge retention time Increased SRTs were found to increase the removal of 

chemicals 25-26. 

 Type of biological nutrient 

removal 

Proxy for the microbial communities in the secondary 

treatment tank: smaller REs were observed in OMR designs 

where neither nitrifying nor denitrifying bacteria are present 25, 

53. 

 Log Flow rate Gives information about the size of the plant, the number of 

persons served, and the hydraulic retention time 54. 
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 Share of domestic influent 

wastewater 

Could influence the influent chemicals concentrations and the 

community of degrading organisms.  

C Log Henry constant Describes the volatility of a substance: chemicals with high 

Henry constants will volatilise more and therefore be less in the 

water phase, thus leading to larger REs.  

 Log KOC Determines the partition of a chemical between sludge and 

water: chemicals with higher KOC are likely to be less in the 

water than the sludge phase, thus leading to larger REs.    

 Readily biodegradable Readily biodegradable substances are expected to be better 

removed during the wastewater treatment process 25, 55. 

 

Readily biodegradable compounds are expected to degrade quickly in most environments including 

WWTPs 10 and removal by sorption would be less relevant. In addition, the RE of readily biodegradable 

compounds is expected to be less sensitive to longer retention times in the WWTPs. In order to test these 

hypotheses, we included two interaction terms to the list of potential moderators, namely interaction 

between readily biodegradability and SRT and between readily biodegradability and KOC.  

2.4. Model fitting 

First, the optimal structure of the random effects was derived through comparison of models with the 

same full fixed-effects structure, meaning all seven moderators, and different random-effects 42. This was 

done with the reduced database of 542 data points to ensure comparability between the different models. 

Model selection was based on the Bayesian Information Criteria (BIC) value derived for models fitted with 

the restricted maximum likelihood method (REML) using the metafor package 43. The following parameters 

were considered to define the random effect structure of our models: the specific study in which the RE 

was reported, referred to as reference; the WWTP, using a unique plant code for each WWTP; the country 

the WWTP was located in; and the chemical name itself. This means that all these variables were assumed 

to potentially affect the RE by some aspects not captured in the fixed effect structures, e.g. country-specific 

climatic conditions, or additional physico-chemical properties. WWTP number was modelled as nested 

within a study, since each WWTP only occurred in one study 56. As a result, the WWTP code nested in the 

reference and the chemical name were kept as random effects (SI, S5). Further, the approach explained 

by Assink and Wibbelink 57 was followed to quantify the contribution of each random effect to the total 

variance. This should allow inference about potentially missing explanatory variables. With this approach, 
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we also quantified the contribution of the sampling variance, meaning within-study variance, to the total 

variance. 

 

In a second step, models with all possible fixed effects combinations and the optimal random effects 

structure were fitted to the reduced data set using the glmulti package and the maximum likelihood 

method 58. All candidate models were ranked using the BIC and the weight of each model was calculated. 

For the final model, fitted using REML method, we calculated the explained variance of the final model 

using Nakagawa’s marginal R2 59 (Equation(5)).  

𝜎𝑓2        variance of the fixed effect components 𝜎𝑟2        variance of the random effect components 𝜎𝜀2        residual variance of the random effect components, computed as the mean sampling variance 

 𝑅𝐿𝑀𝑀(𝑚)2 , also called marginal R2, describes how much of the heterogeneity can be explained by the fixed 

effects compared to a total heterogeneity described by the variance in the fixed effects, random effects, 

and a mean sampling variance. The conditional R2, 𝑅𝐿𝑀𝑀(𝑐)2 , describes the total heterogeneity explained 

by the model by summing up the variance of the fixed and random effects (𝜎𝑓2+𝜎𝑟2) in the numerator of 

Equation (5). The compliance of the final model with the homogeneity, normality, and independence 

assumptions was assessed visually 42. Publication bias was also tested using Funnel plots and Egger tests 

comparing the sampling variance and the meta-analytic residuals 60-61.  

 

Finally, in addition to the meta-regression analysis, we estimated the mean weighted effect size across all 

studies. This value was back-transformed into an overall RE of the chemicals present in our database. The 

mean weighted RE was computed once for the total number of effect sizes available (1539 data points), 

and once for the reduced data set (542 data points).  

2.5. Sensitivity to data quality 

We scored each study according to quality and ran sensitivity analyses to assess the robustness of our 

results when low quality studies were removed. The quality index was based on four criteria as described 

in Table 2. Per criterion, the study was either ranked as “good”, “moderate”, or “poor”. It appeared that 

only six out of the 133 studies ranked good for all quality criteria tested. As a result, conducting a separate 

 𝑅𝐿𝑀𝑀(𝑚)2 =  𝜎𝑓2𝜎𝑓2 + 𝜎𝑟2 + 𝜎𝜀2 (5) 
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meta-analysis on them was not possible. The influence of data quality on our analysis was therefore tested 

for two different scenarios: 

(1) including all studies, which is  the default scenario, and 

(2) including studies scoring either “good” or “moderate” in all criteria 

 

Table 2 – Criteria used for the study-quality index together with the scores assigned for each criterion (in bold).   

 Good Moderate Poor 

Criterion 1 – Measurement 

relevant to total 

concentration 

Total 

concentrations 

reported 

Dissolved concentrations 

for chemicals with  

log KOC <3 

Dissolved concentrations 

for chemicals with  

log KOC >3 

Criterion 2 – Type of 

sample 

Flow 

proportional 

composite 

sample 

Combined grab samples, 

volume-proportional or 

time-proportional 

composite sample 

Single grab samples 

Criterion 3 – experimental 

values available for KOC, 

readily biodegradability  

Both values are 

experimental 

One property only was 

experimental 

No property experimental 

Criterion 4 – potentially 

formed by deconjugation 

of metabolites* 

No No Yes 

* The following chemicals were potentially formed by deconjugation of their metabolites: Estradiol, Fluoxetine, Naproxen, 

Diclofenac, Ketoprofen, Diazepam, Prazepam, Temazepam, Carbamazepine, Sulfamethoxazole, Erythromycin, Codeine and 

Amitriptyline. 

 

2.6. SimpleTreat 

We applied SimpleTreat 4.0 to the data points in our database and assessed its performance. We used the 

Henry constant, KOC, and biodegradation rate as physico-chemical properties’ input. Where available, 

experimental biodegradation rates were used directly. Whenever only a classification according to the 

OECD test results was available, rates were assigned according to SimpleTreat’s classification scheme 62. 

The sludge loading rate was derived from the study’s specific SRT according to the indications in Struijs 62. 

Further, the presence of primary settler was adapted per study given the information provided, and where 
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available the per capita flow rate was also used as input parameter. The performance of SimpleTreat was 

then assessed using Equation (6), thus basing on the comparison of the response ratios (RRs).  

 E = 1 − ∑ (yi −  yî)2i∑ (yi −  y̅)2i  (6) 

E  coefficient of efficiency yi measured RR yî estimated RR y̅ average of the measured RRs 

 

3. Results 

3.1. Univariate moderator influence 

The mean weighted RE across studies of the entire database was 82.1% (95% CI = 75.2 – 87.1%, N = 1539). 

For the reduced dataset (N=542), that was used in the meta-regression, the mean weighted RE was 64.9% 

(95% CI: 49.4 – 75.7%). The implications of varying data quality on this mean weighted RE are presented 

in section 3.3 and discussed in section 4.2.  

When looking at  single mixed-effect models we found that the readily biodegradability of a substance and 

the SRT of the plant had a significant influence on the RE (Qm = 24.6, P = 7.2E-7 and Qm = 4.5 and P =0.03, 

respectively) (SI, S4). The RE increased with increased SRTs. Further, as expected, readily biodegradable 

chemicals were on average better removed than non-readily biodegradable ones (91% with 95%CI = 38.5-

70.2% vs. 57% with 95%CI = 83.5-95.6%). 

 

3.2. Meta-regression model 

The final averaged model according to BIC included the chemical’s readily biodegradability, the SRT, their 

interaction, as well as the log KOC and its interaction to the chemical’s readily biodegradability as 

moderators. The readily biodegradability, the log KOC and its interaction to the chemical’s readily 

biodegradability were hereby influencing the RE most according to the Omnibus test result (SI, S6).  

Overall, RE were higher for readily biodegradable compounds (Figure 1). Furthermore, we found that RE 

increased with increasing SRT, particularly for non-readily biodegradable compounds (Figure 2).  
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Figure 1 – Removal efficiency [%] as a function of the log of the sludge retention time [d] for the readily biodegradable (readily BD) 

and not readily biodegradable (not readily BD) chemicals. The shaded areas represent the 95th confidence interval. The dots 

represent the different effect sizes included in our analysis (N = 542). The size and colour intensity of the dots indicate their weight 

in the meta-analysis. Blue dots refer to not readily biodegradable compounds, while green dots are readily biodegradable 

compounds. 

Further, it appears from Figure 2 that the confidence interval of the relationship between the KOC and 

readily biodegradable compounds is widening a lot for log KOC values above 2.5.  
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Figure 2 – Removal efficiency [%] as a function of the log of KOC [L/kg] for the readily biodegradable (readily BD) and not readily 

biodegradable (not readily BD) chemicals. The shaded areas represent the 95th confidence interval. The dots represent the different 

effect sizes included in our analysis (N = 542). The size and colour intensity of the dots indicate their weight in the meta-analysis. 

Blue dots refer to not readily biodegradable compounds, while green dots are readily biodegradable compounds. 

The fixed effects explained 17% of the observed heterogeneity (marginal R2), while fixed and random 

effects together account for 96% of the observed heterogeneity (conditional R2). From all random effects 

included, the chemical name explained most of the variance accounted for by the random effects (52.4%), 

while the reference accounted for 40.9%, and the plant code for only 6.5%. (SI, S5). The final model met 

homogeneity, normality and independence assumptions, and was not influenced by publication bias (SI, 

S7).  

 

3.3. Sensitivity to data quality 

Firstly, we saw that the different imputation strategies applied to estimate missing standard deviation of 

the single measured concentrations did not substantially influence the mean weighted RE (SI, S8).  

Secondly, for the entire and reduced databases (N=1539 and 542 respectively), about 35% of the data had 

moderate or good scores for all categories. The mean weighted removal efficiencies of these data subsets 

were higher than for the raw datasets. Excluding the data scoring poor in any criteria, increased the mean 

weighted RE of the reduced dataset from 64.9% (95%CI = 49.4-75.7%, N=542) to 71.6% (95%CI = 44.9-
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85.3%, N=193) and the one of the entire database from 82.1% (95%CI = 75.2-87.1%, N=1539) to 87.2% 

(95% CI = 78.5-92.4%, N= 522).  

Finally, the mixed effect model fitted to the reduced dataset with data points of moderate or good scores 

in all categories (N=193) retained the same moderators as the final model plus the flow rate to explain the 

observed heterogeneities. The latter significantly influenced the RE according to the Omnibus test (QM = 

65.2 P = 6.8E-16, S7). Figure 3 shows the increase in RE observed with increasing flow rate. The 

relationships between the RE and the SRT and KOC are very similar to the ones presented in Figure 1 and 

Figure 2 (SI, S7).  

 

Figure 3 - Removal efficiency [%] as a function of the log of the flow rate [m3/d] for the readily biodegradable (readily BD) and not 

readily biodegradable (not readily BD) chemicals. The shaded areas represent the 95th confidence interval. The dots represent the 

different effect sizes included in the analysis (N = 193). The size and colour intensity of the dots indicate their weight in the meta-

analysis. Blue dots refer to not readily biodegradable compounds, while green dots are readily biodegradable compounds. 

The fixed effects explained 32% of the observed heterogeneity (marginal R2), while fixed and random 

effects together account for 98% of the observed heterogeneity (conditional R2). The chemical name 

explained 19.1% of the variance accounted for by the random effects, while the reference accounted for 

68.4%, and the plant code for 12.4%. 

 

3.4.  Simpletreat  
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SimpleTreat showed a coefficient of efficiency of -0.04 for the reduced dataset (N=542), thus meaning that 

the estimates are not better predictors than the average value of the measured data. This value rose to 

0.14 when studies of only good and moderate quality criteria were included. Overall the fit was however 

rather poor as reflected in Figure 4. 

 

4. Discussion 

4.1. Heterogeneity in removal efficiencies  

The RE computed for the entire dataset was relatively high (82.1%) compared to previous, more chemical 

class specific studies, reporting the poor performances of activated sludge WWTPs in removing 

pharmaceuticals 63-65. Although this high RE may be due to the inclusion in our database of repeated 

measurements of rather well removed chemicals like fragrances, or ibuprofen, or diclofenac, we 

accounted for pseudoreplication by including chemical name as random effect in our models. Thus, this 

should not be affecting our estimate. Further data quality should also not affect the mean weighted 

removal efficiency derived, which is demonstrated by the similar mean weighted RE derived for the dataset 

excluding data scoring poor in any of the quality criterion (87.2%). The main driving factor for the 

difference observed is the number of different chemicals for which high and low REs are reported. In fact, 

for the entire database, 111 different chemicals are reported to have REs above 90% while only 32 are 

Figure 4 - Comparison of estimated and measured removal efficiencies (RE) for the database excluding poor quality data (A) 

and the entire database (B). The colour of the dots correspond to single chemicals. Only the positive removal efficiencies are 

represented here, 17 values are not shown in plot A and 65 values in plot B.   

A B 
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found in the reduced dataset. The 82.1% weighted removal efficiency is therefore a representative RE 

estimate of all chemicals included in the total database.  

 

Overall, our findings highlight the importance of SRT in determining removal efficiency especially for the 

non-readily biodegradable chemicals in the dataset. Further, we identified biotransformation/degradation 

as the main removal mechanism for many chemicals, similarly to the outcomes of other studies 25, 55. An 

increase in RE of non-readily biodegradable chemicals observed for higher SRTs has also been reported 2 

such as in the case of certain pharmaceuticals which have been shown to degrade under aerobic nitrifying 

conditions25. Clara, et al. 26 also support the use of longer SRTs to increase the removal of pharmaceuticals. 

We should stress that the importance of the SRT on the RE might not only be related to changes in the 

microbial community. In fact, we found that the SRT and the HRT were correlated (Spearman correlation 

around 50%), and thus, a higher SRT could be interpreted as a surrogate of a high HRT, and therefore 

indicate longer residence time of a chemical in the WWTP and, as a result, higher degradation. The 

influence of the flow rate on REs of the reduced dataset could be interpreted as an indicator of the 

treatment capacity of the WWTPs. 

Our model also identified a decrease in RE with increasing KOC value. Interestingly, in process-based models 

predicting the removal of chemicals in activated sludge WWTPs, higher KOC are expected to increase a 

chemical’s removal. The counterintuitive relationship we identified is likely driven by the low REs identified 

for compounds with  high KOC values. Compounds with log KOC values above 3.5 are known to have strong 

adsorption to organic material and this especially for WWTP with high fraction of organic carbon and 

suspended solid concentrations 66. This is the case  for the readily biodegradable compounds fluoxetine 

and roxithromycin (log Koc = 4.2 and 2.9, respectively) and the non-readily biodegradable compounds 

paroxetine and sertraline ( log KOC > 4). Possible non-mutually exclusive explanations for this relationship 

are: (1) the existence of electrical interactions of pharmaceuticals to sludge 67-69; (2) the existence of other 

processes affecting removal and not captured by our moderators (e.g. deconjugation) 15; (3) the large 

spread sometimes observed in the experimentally derived KOC values 70; and (4) the lack of experimental 

data as a whole, especially for measured REs of readily biodegradable compounds with log KOC values 

above 2.5 and reflected in the wider confidence interval computed for this relationship. In fact, Tolls 71 

suggests to consider not only sorption to organic matter, but also surfactant adsorption to mineral 

constituents, ion exchange, and reactions to account for all potential mechanisms influencing the sorption 

of cations to sludge. Similarly, Berthod, et al. 72 observed that charge-charge Coulomb interactions could 

be as effective as hydrophobic interactions to explain the sorption of cations to sludge.  
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The relation of other parameters to the RE of chemicals in activated sludge WWTPs was explored as well. 

The Henry constant was weakly negatively related to RE, probably because pharmaceuticals, which 

represented most of the chemicals in our database (N = 88%), have low volatility.  

The importance of the random factors in explaining the heterogeneity further indicates that removal is 

influenced by other parameters, unspecified in the model. For the dataset where no data quality screening 

was performed, the importance of the chemical name as random factor highlights missing moderators 

specific to the chemical to explain the heterogeneity in removal. In fact, further parameters such as the 

surface area, the polarity, or the charge of the molecule could affect its interactions with other molecules 

and hence also its removal from wastewater 67, 69, 73-74. Fitting our model to a subset of our data following 

stricter quality criteria, showed, however, that the random effects of WWTP-specific properties played a 

more important role than physico-chemical properties compared to the model with all data points 

included. Note that nearly half of the data points excluded in the restricted model refer to chemicals that 

may be partly formed during deconjugation of their metabolites. The change in importance of the random 

effect factors in the reduced compared to the full model points towards the potential importance of a 

thorough modelling of chemical-specific deconjugation processes in activated sludge WWTPs.  

 

4.2. Model performance 

Considering subsets of higher quality data only slightly improved the mean weighted RE of the dataset 

compared to the raw one. Further, the use of different imputation strategies did also not greatly affect the 

mean weighted RE derived. These observations support the choices made and the wider applicability of 

our approach.  

Still, the large difference between the marginal R2 of both models (17% and 32%) and the conditional R2 

(96% and 98%) shows that the major part of the heterogeneity is not explained by our choice of fixed 

moderators, although these have been identified in many previous studies as important factors affecting 

RE 25-26, 53. Here, the variation in the moderator’s identified for a different subset of chemicals helped us 

draw conclusions on potential processes missing in our model (e.g. deconjugation). We therefore argue 

that future research should be aimed at better incorporating complex removal processes, like 

deconjugation, into simple process-based models, like SimpleTreat. In fact, chemical-specific 

deconjugation has also already been identified in other studies as influencing the removal of chemicals in 

activated sludge WWTPs 15. Further, the counterintuitive relationship of the RE to the KOC stresses the need 

for a better understanding of the electrochemical interactions of pharmaceuticals to activated sludge (see 

also Kummerer 68, Zhao, et al. 67, Tolls 71).  
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The random effect part of WWTP specific parameters was also shown to be important. Several studies 

have reported the influence of nitrifying conditions, pH, and temperature on the REs 2, 25, 54, but the 

availability of these parameters was limited across the studies included in the meta-analysis. For other 

parameters, e.g. the presence of primary settler, the predominance of one design type in the investigated 

WWTP prevented an analysis of their influence on the results. Another aspect our model did not account 

for is temporal variability. Influent loads of chemicals can vary throughout the day and the year 75-76. An 

increased load might potentially affect the performance of the WWTP in removing the chemicals, as it 

could influence the bacterial community 77. Further, seasonal variability induced by changes in 

temperature, in turn impacting the performance of the bacteria in the system, might also reduce the 

performance of activated sludge WWTPs 78. The reported information was however not sufficient to 

properly assess this aspect. Additional monitoring studies would be necessary to thoroughly understand 

their influence on REs.  

Finding a way to include these parameters into process-based models like SimpleTreat appears even more 

important given the poor agreement between measured and predicted REs by SimpleTreat. Besides the 

explanations provided above concerning the deconjugation processes and electrochemical interactions, a 

better differentiation of the redox conditions present in the WWTP could also improve SimpleTreat’s 

predictions.  

4.3. Limitations and uncertainties 

Explaining the heterogeneities observed in the monitored removal of chemicals from activated sludge 

WWTPs was complicated by (1) the complexity of modelling chemical’s behaviour in the environment, (2) 

the lack of experimental data in measured REs as well as physico-chemical properties, (3) the large 

variability in the experimental settings, (4) the lack of uniformity in the way measured results were 

generated and reported, and (5) the uncertainty in the reported concentrations. The first point is typified 

by perfluorinated surfactants that were excluded on the basis of their complex chemistry and the difficulty 

to identify the parent chemical. Excluding perfluorinated surfactants reduced the number of data points 

for surfactants by 90%. However, complex chemistry, the lack of measured physico-chemical properties, 

and the use of screening biodegradability test results also limit the application of process-based models 

like SimpleTreat.  

Differences in the way environmental concentrations are measured and reported justified the use of 

mixed-effect models. These models can account for such between-study variability, among other sources 

of variation (different WWTP, different chemicals, etc.), whereas conventional regression models cannot. 
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However, using a mixed-effect model does not guarantee to account for all variations in study design. For 

example, some studies reported only dissolved concentrations, while others measured total 

concentrations. A possible solution would have been to estimate total concentration by adding the fraction 

of chemicals bound to suspended solids to the dissolved concentration. However, this approach would 

have implied assuming an influent suspended solids concentration and an organic carbon fraction, besides 

using an often estimated KOC. Given the uncertainty induced by this procedure and the potential bias to 

the KOC, we decided to use the data as reported in the papers. The overall RE reported here might therefore 

be underestimated, as the influent concentration of chemical might be underestimated.  

Further, the lack of uniformity in the way monitoring studies reported their results reduced the choice of 

potential moderators. Very few studies, for example, reported concentrations of suspended solids, water 

temperatures, or pH values (on average less than 20%). Also, many studies could not be considered 

because only averaged concentrations over different plants were reported, or no details on the 

methodology and/or the WWTP were available.  

Finally, assuming half of the LOD or LOQ whenever concentrations were below these thresholds also 

introduces additional uncertainty in the derived REs, which was not quantified in our study.  

 

5. Conclusion 

Large variability exists in monitored REs between types of chemicals but also for a single chemical 

depending on a range of factors other than chemical-specific properties and this is not fully accounted for 

in process-based models using mainly physico-chemical properties to predict REs. Using mixed-effect 

models, we showed that WWTP design parameters could help to explain some of this heterogeneity. We 

highlighted the importance of the SRT as well as the flow rate. Additional research to identify the exact 

relationship between the SRT and the REs could be beneficial for process-based models like SimpleTreat, 

which implement a categorical relationship between the SRT and the sludge loading rate. 

More work is further necessary to thoroughly identify all potential influencing factors. In fact, there are 

still examples of reported concentrations for which the design parameters fail to explain observed 

differences. In these cases, our analysis, in line with other recent developments 15, pointed out that a 

better modelling of deconjugation processes and electrochemical interactions of chemicals with sludge 

could improve RE predictions.  

Overall, a recommendation for future monitoring studies would be to measure of characterise the WWTP 

and its performance with more parameters. Special attention should be given to the SRT as this is an 

important factor in determining the microbial community which in turn is responsible for the 
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biodegradation and removal of chemicals. Extensive studies are however missing, thus calling for more 

work in this area.  
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