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Abstract An unprecedented spectroscopic data stream will soon become available with 
forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. 
This data stream will open up a vast array of opportunities to quantify a diversity of bio-
chemical and structural vegetation properties. The processing requirements for such large 
data streams require reliable retrieval techniques enabling the spatiotemporally explicit 
quantification of biophysical variables. With the aim of preparing for this new era of 
Earth observation, this review summarizes the state-of-the-art retrieval methods that have 
been applied in experimental imaging spectroscopy studies inferring all kinds of vegeta-
tion biophysical variables. Identified retrieval methods are categorized into: (1) paramet-
ric regression, including vegetation indices, shape indices and spectral transformations; (2) 
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nonparametric regression, including linear and nonlinear machine learning regression algo-
rithms; (3) physically based, including inversion of radiative transfer models (RTMs) using 
numerical optimization and look-up table approaches; and (4) hybrid regression methods, 
which combine RTM simulations with machine learning regression methods. For each 
of these categories, an overview of widely applied methods with application to mapping 
vegetation properties is given. In view of processing imaging spectroscopy data, a critical 
aspect involves the challenge of dealing with spectral multicollinearity. The ability to pro-
vide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are 
other important aspects in view of operational processing. Recommendations towards new-
generation spectroscopy-based processing chains for operational production of biophysical 
variables are given.

Keywords Imaging spectroscopy · Retrieval · Vegetation properties · Parametric and 
nonparametric regression · Machine learning · Radiative transfer models · Inversion · 
Uncertainties

1 Introduction

Quantitative vegetation variable extraction is fundamental to assess the dynamic response 
of vegetation to changing environmental conditions. Earth observation sensors in the opti-
cal domain enable the spatiotemporally explicit retrieval of plant biophysical variables. 
This data stream has never been so rich as is foreseen with the new-generation imaging 
spectrometer missions. The forthcoming EnMAP (Guanter et al. 2015), HyspIRI (Lee et al. 
2015), PRISMA (Labate et al. 2009) and FLEX (Drusch et al. 2017) satellite missions will 
produce large spectroscopic data streams for land monitoring, which will soon become 
available to a diverse user community. This upcoming vast data stream will not only be 
standardized (e.g., atmospherically corrected), but will also require reliable and efficient 
retrieval processing techniques that are accurate, robust and fast.

Since the advent of optical remote sensing science, a variety of retrieval methods for 
vegetation attribute extraction emerged. Most of these methods have been applied to the 
data of traditional multispectral sensors (Verrelst et  al. 2015), but increasingly they are 
also applied within imaging spectroscopy studies. This review provides a summary of 
recently developed methodologies to infer per-pixel biophysical variables from imaging 
spectroscopy data, covering the visible, near-infrared (NIR) and shortwave infrared spec-
tral regions. Essentially, quantification of surface biophysical variables from spectral data 
always relies on a model, enabling the interpretation of spectral observations and their 
translation into a surface biophysical variable. Biophysical variable retrievals, as tradition-
ally described in the terrestrial remote sensing literature, are grouped into two categories: 
(1) the statistical (or variable-driven) category and (2) the physical (or radiometric data-
driven) category (Baret and Buis 2008). Over the last decade, however, both methodologi-
cal categories expanded into subcategories and combinations thereof. Exemplary is the 
increasing number of elements of both categories which have been integrated into hybrid 
approaches. This methodological expansion, therefore, demands for a more systematic cat-
egorization. From an optical remote sensing point of view, and in line with an earlier, more 
general review paper (Verrelst et al. 2015), retrieval methods can be classified in the fol-
lowing four methodological categories:
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1. Parametric regression methods Parametric methods assume an explicit relationship 
between spectral observations and a specific biophysical variable. Thus, explicit param-
eterized expressions are built; they are usually based on some physical knowledge of 
absorption and scattering properties and statistical relationship between the variable 
and the spectral response. Typically, a band arithmetic formulation is defined (e.g., a 
spectral index) and then linked to the variable of interest based on a fitting function.

2. Nonparametric regression methods Nonparametric methods directly define regression 
functions according to information from the given spectral data and associated variable, 
i.e. they are data-driven methods. Hence, in contrast to parametric regression methods, 
a non-explicit choice is to be made on spectral band relationships, transformation(s) 
or fitting function. Nonparametric methods can further be split into linear or nonlinear 
regression methods.

3. Physically based model inversion methods Physically based algorithms are applications 
of physical laws establishing photon interaction cause–effect relationships. Model vari-
ables are inferred based on specific knowledge, typically obtained with radiative transfer 
functions.

4. Hybrid regression methods A hybrid-method combines elements of nonparametric sta-
tistics and physically based methods. Hybrid models rely on the generic properties of 
physically based methods combined with the flexibility and computational efficiency 
of nonparametric nonlinear regression methods.

These categories provide a theoretical framework to organize the myriad of retrieval 
methods, as well to overview the diversity of published imaging spectroscopy applica-
tions based on these methods. However, a few remarks must be considered. One should be 
aware that the boundaries of these categories are not always clearly defined; for instance, 
spectral indices are also often used as input into nonparametric methods. Another impor-
tant aspect is that the majority of the methods reviewed here is not exclusively designed 
for retrieval of biophysical variables. This especially holds for the statistical methods, 
whereby a regression model is used to link spectral data with a biophysical variable. In 
optical remote sensing science, these methods are commonly applied to map any feasible 
continuous variable, as well in the domains of snow, water or soil properties [see Matthews 
(2011), Mulder et al. (2011) and Dietz et al. (2012) for reviews]. Nevertheless, to keep this 
review comprehensive, it is limited to retrieval methods with applications in the domain 
of vegetation properties mapping. On the other hand, even within these boundaries each 
of the above methodological categories continues to be expanded with all kinds of spec-
troscopic data processing applications (e.g., Gewali et  al. 2018). The drivers behind this 
methodological expansion can be found in the: (1) the interminable increase in computa-
tional power, (2) the increasing availability and democratizing of spectroscopic data, and 
(3) the steady progress in imaging spectroscopy sensor technology, which produces each 
time more sensitive sensors. This progress in imaging spectroscopy technology enables us 
to infer each time more subtle and highly dynamic vegetation properties from spectral data. 
For instance, the forthcoming FLEX mission aims to deliver a portfolio of dynamic plant 
stress and productivity variables based on, among others, the exploitation of sun-induced 
chlorophyll fluorescence emitted by terrestrial vegetation (Drusch et al. 2017). Hence, this 
underlines the fact that the list of biophysical variables that can be extracted from imaging 
spectroscopy is not closed, but instead continues to grow with ongoing progress in spec-
trometer technology. Consequently, biophysical variables are in this review paper defined 
as any vegetation property that can be quantified, i.e. any pigments, chemical constituents, 
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structural variables, but also variables related to plant photosynthesis, productivity or dis-
eases. Altogether, the drivers behind methodological expansion are not mutually exclu-
sive, but they strengthen each other, which leads to a rapid progress in the development of 
advanced retrieval methods that goes hand in hand with improved capabilities to quantify 
a broad diversity of biophysical variables. As will be demonstrated throughout this review, 
these trends are resulting in an unprecedented richness of imaging spectroscopy mapping 
applications.

Regardless of the methodology used or the targeted application, the principal char-
acteristic of spectroscopic data lies in their dense information content embedded in a few 
hundred spectrally narrow bands. Although such a spectrally dense data source proved to 
be beneficial for the majority of targeted mapping applications, a key challenge for many 
retrieval methods is how to deal with spectral multicollinearity, i.e. band redundancy. Spe-
cial attention, therefore, will be devoted to address common spectroscopic data processing 
challenges, and solutions will be given how to overcome them. Finally, while imaging spec-
trometers are so far mostly applied in an experimental context, the developments towards 
operational systems have manifestly taken off and undoubtedly will lead to new directions 
and possibilities of Earth observation. In view of getting prepared for these upcoming global 
spectroscopic data streams, we will close this review with recommendations about the pos-
sibilities of integrating promising retrieval approaches into operational schemes.

2  Parametric Regression Methods

Parametric regression methods have long been the most popular method to quantify bio-
physical variables in optical remote sensing, and the field of imaging spectroscopy is no 
exception to that. This simplest way of developing a regression model explicitly determines 
parameterized expressions relating a limited number of spectral bands with a biophysical 
variable of interest. The empirical models rely on a selection of bands with high sensitivity 
towards the variable of interest, typically in combination with subtle spectral features to 
reduce undesired effects, related to variations of, for instance, other leaf or canopy prop-
erties, background soil reflectance, solar illumination and sensor viewing geometry and 
atmospheric composition (e.g., Verrelst et al. 2008, 2010). In the following overview, we 
present common parametric regression methods, which are based on (1) vegetation indices, 
(2) shape indices and (3) spectral transformations (Fig. 1).

Fig. 1  Principles of parametric regression. Left: red, green, blue (RGB) subset of a hyperspectral HyMap 
image (125 bands) over Barrax agricultural site (Spain). Right: illustrative map of a vegetation property 
(leaf area index (LAI), m2/m2 ) as obtained by a two-band normalized difference index and linear regression. 
The model was validated with a squared correlation coefficient, R2 of 0.89 (RMSE: 0.63; NRMSE 10.1%). 
It took 0.2 s to produce the map using ARTMO’s SI toolbox (Rivera et al. 2014). No uncertainty estimates 
are provided
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2.1  Discrete Spectral Band Approaches: Vegetation Indices

Parametric regression models based on vegetation indices (VIs) are by far the oldest and 
largest group of variable estimation approaches. VIs are defined to enhance spectral fea-
tures sensitive to a vegetation property, while reducing disturbances by combining some 
spectral bands into a VI (Clevers 2014; Glenn et al. 2008). The main advantage of VIs is 
their intrinsic simplicity. VI-based methods found their origin in the first applications of 
broadband sensor satellites. During the pioneering years of optical remote sensing, only 
a small set of spectral bands were available and computational power was limited. It led 
to a long tradition of the development of simple two bands, or at most three to four band 
indices that continues until today (e.g., Kira et  al. 2016). New possibilities have opened 
with the advent of imaging spectrometers. Optimized narrowband information extraction 
algorithms were developed based on adaptations of established index formulations, such as 
simple ratio and normalized difference [see reviews by Clevers (2014), Glenn et al. (2008), 
Xue and Su (2017)]. On the other hand, the possibilities to develop spectral indices based 
on a few band combinations grew exponentially, and that demanded more systematic band 
evaluation methods.

A popular solution involves correlating all possible band combinations according to 
established index formulations. For two-band index formulations, such as simple ratio or 
normalized difference, this approach leads to 2D correlation matrices, which enables to 
visually identify optimal band combinations (e.g., Atzberger et al. 2010; Maire et al. 2004, 
2008; Mariotto et al. 2013; Rivera et al. 2014; Thenkabail et al. 2000). Subsequently, given 
all possible combinations permit to select a ‘best-performing index’. Nevertheless, while 
being mathematically simple, this method is not only tedious—especially when evaluat-
ing all possible combinations of more than two bands—but also keeps on being restricted 
to formulations that make use of a few bands only, with at most using three or four bands. 
Thus, although the approach is systematic, it continues to underexploit the comprehensive 
information content hidden in the contiguous spectral data. Moreover, when applying this 
technique in mapping applications making use of imaging spectroscopy, identical best-
performing spectral band combinations for the same biophysical variable have rarely been 
reported. This suggests that optimized narrowband VIs are strongly case specific and seem 
to lack generic capacity (Gonsamo 2011; Heiskanen et al. 2013; Mariotto et al. 2013).

More fundamentally, it remains dubious whether relying on transformed data originat-
ing from a few discrete bands fully captures the complexity of real-world observation con-
ditions as has been observed by a spectroradiometer. Reducing full-spectrum datasets into 
simple indices formulations intrinsically leads to remaining spectral information left unex-
ploited. Accordingly, the following two aspects should be considered to ensure optimized 
use of VIs in a spectroscopic context: (1) Band selection. Spectral indices are mathematical 
functions based on discrete bands, or at best a subset of full spectral information. Thus, 
the question arises: how do we assess with high enough accuracy whether the most sensi-
tive spectral bands—with respect to biophysical variable retrieval—have been selected? (2) 
Formulation. Enhancing spectral information according to a mathematical transformation 
should lead to an optimal sensitivity of the spectral signal with respect to the variable of 
interest. While established formulations such as the simple ratio or normalized difference 
are commonly used, here the question arises again: how can we be sure whether these lin-
ear formulations are the most powerful ones with respect to biophysical variable retrieval? 
These two questions are almost impossible to resolve considering the unlimited possibili-
ties of band selections together with designing index formulations. Consequently, given 
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their inherent constraints, it can be concluded that VI-based regression models exploit 
spectroscopic data suboptimally.

2.2  Parametric Approaches Based on Spectral Shapes and Spectral 

Transformations

Because none of the above few band index methods take full advantage of spectroscopic 
datasets, alternative methods were pursued with the advent of hyperspectral spectroradiom-
eters that allow us to exploit specific absorption regions of the reflectance spectrum. It led 
to the development of so-called shape indices and spectral transformation methods. Shape 
indices, listed below, extract shape-related information from contiguous spectral signatures 
for a specific spectral region that is then correlated with a biophysical variable. These types 
of parametric methods are therefore exclusively applicable to spectroscopic data. The fol-
lowing categories can be identified:

– Red-edge position (REP) calculations. Mathematically, the REP inflection point is the 
position of a wavelength defined as the maximum of the first derivative reflectance 
between the red and NIR regions, i.e. between 670 and 780 nm (Kanke et al. 2016). 
The red-edge position is known to be sensitive to multiple biophysical variable vari-
ations, both chlorophyll pigments (Delegido et  al. 2011) and structural variables, for 
instance the leaf area index (LAI) (Delegido et al. 2013). Therefore, REP-related meth-
ods are typically used to derive canopy chlorophyll content, being the product of LAI 
and leaf chlorophyll content (Clevers and Kooistra 2012; Li et al. 2017). Many math-
ematical approaches have been proposed to exploit this region as a sensitive indicator, 
including: (1) high-order curve fitting (Broge and Leblanc 2001; Clevers et al. 2004; (2) 
inverted Gaussian models (Cho and Skidmore 2006; Cho et al. 2008; Miller et al. 1990; 
(3) linear interpolation and extrapolation methods (Cho et al. 2008; Tian et al. 2011; 
4) Lagrangian interpolation (Dawson et al. 1998; Pu et al. 2003; (5) rational function 
application (Baranoski and Rokne 2005); and, more recently, (6) a wavelet-based tech-
nique (Li et al. 2017).

– Derivative-based indices. Although several of the above-described methods make use 
of derivatives, e.g., linear extrapolation (Cho and Skidmore 2006) and Lagrangian tech-
nique (Dawson et al. 1998), the calculation of a derivative does not have to be restricted 
to the red edge. The derivative of any spectral region can be calculated and transformed 
into an index (Elvidge and Chen 1995; Penuelas et al. 1994; Sims and Gamon 2002; 
Zarco-Tejada et al. 2002). A systematic comparison of first derivative-based indices and 
conventional indices was performed by Maire et al. (2004) using the leaf optical model 
PROSPECT. Interestingly, the authors concluded that derivative-based indices are not 
necessarily better than conventional and properly elaborated indices.

– Integration-based indices. Alternatively, some authors proposed to calculate finite 
integrals of specific spectral regions, typically covering a part of the visible and the 
red-edge region for LAI or chlorophyll content estimations, into a (normalized) index 
(Broge and Leblanc 2001; Delegido et al. 2010; Malenovský et al. 2006, 2015; Mutanga 
et al. 2005; Oppelt and Mauser 2004). Likewise, in a recent study of Pasqualotto et al. 
(2018) this method exploited the water absorption spectral regions to quantify canopy 
water content. In these studies, integration-based indices were demonstrated to per-
form superior to classical vegetation indices, as they exploit more optimally absorption 
regions embedded in spectroscopic data than indices relying on a reflectance intensity 
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of few individual bands (Kováč et al. 2013). It can be expected that with the upcoming 
free availability of imaging spectroscopy data more methods of this kind of that explic-
itly exploit absorption features related to foliar constituents and pigments will emerge.

– Continuum removal. Whereas the above techniques focus on one or more specific spec-
tral regions, continuum removal is a spectral transformation that can be applied over the 
full spectrum. This technique normalizes reflectance spectra, allowing comparison of 
individual absorption features with a common baseline (Clark and Roush 1984). The 
continuum removal transformation enhances and standardizes the specific absorption 
features related to vegetation properties. Continuum removal can be considered as a 
standard spectroscopic data processing technique and has found its way into various 
image processing software packages. Spectroscopic examples of applications include 
mapping of chlorophyll (Broge and Leblanc 2001; Malenovský et  al. 2013, 2017), 
numerous studies on mapping nitrogen content (Huang et al. 2004; Mitchell et al. 2012; 
Mutanga and Kumar 2007; Mutanga and Skidmore 2004; Schlerf et al. 2010; Yao et al. 
2015), foliar water condition (Stimson et al. 2005), plant stress (Sanches et al. 2014) 
and grassland biomass (Buchhorn et al. 2013; Cho et al. 2007).

– Wavelet transform. Wavelet analysis has been increasingly used to extract information 
from spectral data, e.g., related to vegetation properties (Rivard et al. 2008). Processing 
of reflectance spectra with wavelets can be performed as discrete or continuous (CWT) 
transforms. CWT outputs are directly comparable to the original spectrum and are sim-
ple to interpret. In this case, the original spectrum is represented by a set of spectra 
from small (narrow bandwidth absorption feature and noise) to larger scales (broad fea-
tures, continuum). By selecting small-scale spectra (i.e. discarding the smallest scale, 
which contains white noise and high scales related to the continuum), the absorption 
features of the components are enhanced, preserving the spectral information of the 
original data (Scafutto et  al. 2016). Based on the type of wavelet transform, specific 
bands sensitive to the targeted variable are then selected (Bao et  al. 2017). CWT is 
often compared in spectroscopic studies against spectral indices and was found to be 
capable of delivering stronger correlations, e.g., in the detection of wheat aphid pests 
(Luo et al. 2013), LAI estimation (Huang et al. 2014), nitrogen content and chlorophyll 
content estimation (He et al. 2015; Kalacska et al. 2015; Luo et al. 2013) and in ampli-
fying spectral separability of alpine wetland grass species (Bao et al. 2017).

Altogether, correlations based on shape indices and spectral transformations are undoubt-
edly more sophisticated normalization approaches than traditional spectral indices for 
exploiting the spectral information embedded in spectroscopic data. Moreover, their rela-
tively simple mathematical formulation ensures fast processing. It thus seems logical that 
these spectral transformation methods became standard spectroscopy image processing 
techniques. However, these methods alone provide nothing more than spectral transforma-
tions and enhancements. When aiming to estimate a biophysical variable, a fitting func-
tion—typically a linear least squares fitting, but also exponential, power and polynomial—
is still required. Yet it remains questionable whether the selected fitting function is the most 
suitable one. Moreover, since parametric approaches are based on relatively simple math-
ematical definitions—as opposed to more advanced methods—no associated uncertainty 
intervals are provided. Although their strengths lie in their straightforward use and fast pro-
cessing, with the absence of a per-pixel uncertainty estimate, the performance quality of 
parametric regression methods as a mapping method is hard to judge. Given the surface 
diversity captured in a single airborne or spaceborne image, and despite a standard vali-
dation exercise for a number of pixels, it still remains unknown how the retrieval quality 
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evolves throughout a complete image. The absence of a quality indicator is, therefore, in 
our view the main reason why parametric regression methods (Fig. 2) are not recommend-
able for operational quantification of biophysical variables.

3  Nonparametric Regression Methods

Contrary to parametric methods, nonparametric methods optimize the regression algorithm 
by means of an inherent learning phase based on training data. Essentially, the nonpar-
ametric model develops weights (coefficients) adjusted to minimize the estimation error 
of the variables extracted. This means that no explicit parametrization is required, which 
practically simplifies the model development, but more expert knowledge to understand 
and execute these models may be required. Another important advantage of nonparamet-
ric methods is the possibility of training with the full-spectrum information. Hence, an 
explicit selection of spectral bands or transformations is in principle not required. A flex-
ible model is able to combine different data structure features in a nonlinear manner to con-
form requirements; however, model definition with a too flexible capacity may incur the 
problem of overfitting the training dataset. To avoid this pitfall, model weights are defined 
by jointly minimizing the training set approximation error while limiting the model com-
plexity. In view of processing spectroscopic data, a more prevalent problem lies in the so-
called curse of dimensionality (Hughes phenomenon) (Hughes 1968). Adjacent, contigu-
ous bands carry highly intercorrelated information, which may result in redundant data and 
possible noise and potentially suboptimal regression performances. As discussed further 
on, band selection or dimensionality reduction methods that transform the spectral data to 
lower-dimensional space, while containing the vast majority of the original information, 
can overcome this problem (Fig. 3).

500 1000 1500 2000 2500

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

fl
e

c
ta

n
c

e

500 1000 1500 2000 2500

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

fl
e

c
ta

n
c

e
R

e
fl

e
c

ta
n

c
e

R
e

fl
e

c
ta

n
c

e

500 1000 1500 2000 2500

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

fl
e

c
ta

n
c

e

-4

-2

0

2

4

6

F
ir

s
t 

d
e
ri

v
a
ti

v
e

× 10
-3

500 1000 1500 2000 2500

Wavelength (nm) Wavelength (nm) Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

fl
e

c
ta

n
c

e

(a) (b) (c)

(d) (e) (f)

Fig. 2  Schematic illustrations of parametric regression methods: spectral indices (a), red-edge position 
(REP) calculation (b), derivative-based indices (c), integral-based indices (d), continuum removal (e) and 
wavelet transform (f). Note that a fitting function is still required to convert transformations towards a bio-
physical variable
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3.1  Linear Nonparametric Methods

Nonparametric regression algorithms that apply linear transformations are attractive 
because of their fast performance. These methods became standard methods in chemo-
metric and in image processing software packages. Multivariable linear regression meth-
ods can cope with spectroscopic data and typically rely on the estimation of co-variances. 
When moving towards spectroscopic data, however, this can become problematic when 
input data quantity is limited with respect to the dimensionality of the dataset. To alle-
viate collinearity, often linear nonparametric methods are applied in combination with a 
dimensionality reduction step. Some methods are even intrinsically based on this princi-
ple, i.e. principal component regression (PCR) (Wold et al. 1987) and partial least squares 
regression (PLSR) (Geladi and Kowalski 1986). Common linear nonparametric regression 
approaches are provided in Table 1, and imaging spectroscopy applications are discussed 
below.

On the application side, stepwise multiple linear regression (SMLR) is a classical 
multivariable regression algorithm commonly applied in chemometrics (Atzberger et  al. 
2010). To evaluate its predictive power, SMLR has been often compared with alternative 
regression techniques such as PLSR and some studies concluded that PLSR yielded better 
results when estimating LAI (Darvishzadeh et  al. 2008) and canopy chlorophyll content 
(Atzberger et al. 2010). Also Ramoelo et al. (2011) compared both regression algorithms 
to estimate foliar nitrogen and phosphorus in combination with continuum removal using 
field spectrometry. By estimating canopy nitrogen, Miphokasap et al. (2012) demonstrated 
that the model developed by SMLR led to a higher correlation coefficient and lower errors 
than model applications based on narrowband VIs. This suggests that nonparametric (full-
spectrum) models tend to be more powerful than parametric models. Likewise, Yi et  al. 
(2014) compared SMLR with PLSR and spectral indices for carotenoid estimation in cot-
ton and concluded that best estimations were obtained with PLSR. Likewise, SMLR was 
compared with PLSR and (nonlinear) machine learning regression algorithms for estimat-
ing leaf nitrogen content (Yao et al. 2015). Because of their enhanced flexibility, it may not 
be a surprise that the nonlinear methods outperformed SMLR and PLSR. This was also 
observed by various similar studies, as will be addressed in Sect. 3.2.

PCR seems to be more effective in the conversion of spectroscopic data into the esti-
mation of vegetation properties, because the PCA-based dimensionality reduction method 
is embedded in the method in combination with a linear regression function. Hence, by 

Fig. 3  Principles of nonparametric regression. Left: red, green, blue (RGB) subset of a hyperspec-
tral HyMap image (125 bands) over Barrax agricultural site (Spain). Right: illustrative map of a vegeta-
tion property (leaf area index (LAI), m2/m2 ) as obtained by PROSAIL with Gaussian processes regression 
(GPR). The model was validated with a squared correlation coefficient, R2 of 0.94 (RMSE: 0.39; NRMSE: 
6.3%). It took 5.7 s to produce the map using ARTMO’s MLRA toolbox (Rivera Caicedo et al. 2014). With 
GPR also uncertainty estimates are provided (not shown)
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converting the spectral data to a lower-dimensional space automatically overcomes the 
band redundancy problem. This method has been improved with PLSR, where the projec-
tions are optimized in view of the regression. It is, therefore, not a surprise that only few 
spectroscopic studies examined the predictive power of PCR. Those studies compared PCR 
against PLSR or against VIs (Atzberger et al. 2010; Fu et al. 2012; Marshall and Thenka-
bail 2014; Rivera Caicedo et al. 2014; Wang et al. 2017b). Although PCR generally out-
performed VIs in explaining variability of a vegetation attribute, in all cases PLSR or any 
other nonparametric method overran PCR.

PLSR found its way into a broad diversity of imaging spectroscopy applications, espe-
cially in the mapping of biochemicals, pigments and vegetation density properties. For 
instance, PLSR was used in several spectroscopic studies applied to estimate foliage nitro-
gen content (Coops et al. 2003; Hansen and Schjoerring 2003; Huang et al. 2004). Also 
Gianelle and Fb (2007) used PLSR to derive grassland phytomass and its total (percent-
age) nitrogen content from spectroscopic data. Similarly, Cho et al. (2007) and Im et al. 
(2009) applied PLSR to estimate a diversity of grass and crop biophysical variables (LAI, 
stem biomass and leaf nutrient concentrations), and Ye et al. (2007) applied PLSR for yield 
prediction purposes. Beyond individual vegetation attributes, PLSR was recently used to 
predict landscape-scale fluxes of net ecosystem exchange (NEE) and gross primary pro-
ductivity (GPP) across multiple timescales (Matthes et al. 2015), and also for the estima-
tion of floristic composition of grassland ecosystems (Harris et al. 2015; Neumann et al. 
2016; Roth et al. 2015). At the same time, thanks to its PLS-vectors, PLSR is also increas-
ingly applied for band sensitivity analysis of spectroscopic datasets in view of the targeted 
application (e.g., Feilhauer et al. 2015; Kiala et al. 2016; Kira et al. 2016; Li et al. 2014a; 
Neumann et al. 2016). Various experimental studies demonstrated the superior predictive 
power of PLSR as opposed to VIs for the prediction of multiple vegetation properties, 
including above-ground biomass, LAI, leaf pigments (chlorophyll, carotenoids), GPP and 
NEE fluxes, leaf rust disease detection and nutrients concentration (nitrogen and phospho-
rus concentrations) (Capolupo et al. 2015; Dreccer et al. 2014; Foster et al. 2017; Hansen 
and Schjoerring 2003; Matthes et  al. 2015; Wang et  al. 2017a; Yue et  al. 2017). How-
ever, when compared against machine learning methods, then PLSR no longer appeared to 
be top performing (Ashourloo et al. 2016; Kiala et al. 2016; Wang et al. 2015; Yao et al. 
2015). As will be addressed in Sect. 3.2, this is due to the nonlinear transformation con-
ducted in machine learning methods.

Other linear nonparametric regression methods, such as ridge regression (RR) and 
LASSO, hardly made it into applications for vegetation properties mapping. Yet a few 
spectroscopic examples are worth mentioning. For instance, Addink et  al. (2007) used 
RR to map LAI and biomass, and more recently Bratsch et al. (2017) applied LASSO to 
estimate above-ground biomass quantities among different plant tissue type categories in 
Alaska. In another biomass estimation study, both RR and LASSO were compared against 
PLSR (Lazaridis et al. 2010) and also random forests (Zandler et al. 2015). Interestingly, 
RR and LASSO appeared to be top performing. One may, therefore, wonder why these 
techniques have not been applied more often. On the other hand, these linear methods are 
increasingly replaced by their nonlinear counterparts. For instance, RR has been replaced 
by kernel ridge regression (KRR) (Suykens and Vandewalle 1999), and also PLSR has 
been redesigned into a kernel version, i.e. the KPLSR, which proved to be more power-
ful than PLSR for chlorophyll concentration estimation (Arenas-García and Camps-Valls 
2008). The family of kernel methods is addressed in Sect. 3.2. That none of these linear 
nonparametric methods (Fig. 4) deliver uncertainty estimates is another drawback. Similar 
as in case of parametric regression, without uncertainty estimates it remains questionable 
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whether these methods can deliver consistent mapping quality throughout a complete 
image, or are applicable to other images in space and time.

3.2  Nonlinear Nonparametric Methods

When advancing beyond linear transformation techniques, a diversity of nonlinear non-
parametric methods has been developed during last few decades. These methods, also 
referred to as machine learning regression algorithms, apply nonlinear transformations. An 
important methodological advantage is their capability to capture nonlinear relationships 
of image features without explicitly knowing the underlying data distribution. Hence, they 
are developed without assuming a particular probability density distribution, which is the 
reason why they work well with all kinds of data types. Machine learning methods also 
offer the possibility to incorporate a prior knowledge and the flexibility to include different 
data types into the analysis. In principle, they are perfectly suited to process spectroscopic 
data. In the following sections, examples of the families of (1) decision trees, (2) artificial 
neural networks and (3) kernel-based regression are explained.

3.2.1  Decision Trees

Decision tree algorithms use a branching method to illustrate every possible outcome of a 
decision (Table 2). They are more frequently applied in classification than in regression. 
Only a few decision tree feasibility studies dealing with imaging spectroscopy data are pre-
sented in the scientific literature (e.g., Im et  al. 2009) most likely because boosted and 
bagging trees hardly found their way to regression applications. They might be considered 
as obsolete with the improvements introduced into random forest (RF), which is essen-
tially a specific type of bagging trees. RF builds an ensemble of individual decision trees 
working with different subsets of features (bands) and eventually different training data 
points both selected randomly, from which a final prediction is made using particular com-
bination schemes. RF can handle a large number of training samples, does not suffer from 
overfitting and is robust to outliers and noise (Belgiu and Drăguţ 2016), which makes it 
an attractive method for spectroscopic mapping applications. RF has recently been made 
available in various software packages and proved to be a competent regression algorithm. 
It therefore comes as no surprise that RF gained rapid popularity in imaging spectroscopy 
mapping of a diverse range of vegetation attributes, including biomass (Adam et al. 2014; 
Vaglio Laurin et al. 2014), canopy nitrogen (Li et al. 2014) and as indicator of plant species 

Fig. 4  Schematic illustrations of principal component (PC) (a), partial least squares (PLS) (b), ridge 
regression and LASSO (c). PC and PLS are combined with a linear regression model
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composition (Feilhauer et al. 2017). Some of these studies have compared RF with support 
vector regression (SVR) or neural networks, but no strong preference towards one or the 
other method was found, which suggests that all three methods are competitive (Han et al. 
2016; Pullanagari et al. 2016). However, just like other machine learning regression meth-
ods, RF can face difficulties coping with the collinearity of the spectroscopic data (Rivera-
Caicedo et  al. 2017). To overcome this problem, RF is often used in combination with 
sensitive bands or simple transformations in the form of VIs that are known to be sensitive 
to the targeted vegetation property (Adam et al. 2014; Han et al. 2016; Liang et al. 2016). 
Alternatively, RF is inherently able to identify sensitive spectral bands, and selection of 
only those sensitive bands can subsequently improve the regression model (Balzarolo et al. 
2015; Feilhauer et al. 2015). Whether applying a band selection method is the most suc-
cessful strategy, however, remains an open question. Rather than seeking for optimized 
individual bands, a more elegant solution may lie in firstly applying dimensionality reduc-
tion method and then inputting the features of the lower-dimensional space (i.e. compo-
nents) into the decision tree (Rivera-Caicedo et al. 2017).

3.2.2  Artificial Neural Networks

Artificial neural network (ANN) methods are listed in Table 3. Since the early 1990s, feed-
forward and back-propagation ANNs thrived in all kinds of mapping applications, includ-
ing vegetation properties mapping (Francl and Panigrahi 1997; Kimes et al. 1998; Paruelo 
and Tomasel 1997). Their strengths lie in their adaptability that can lead to excellent per-
formances. The superiority of ANNs in vegetation properties mapping compared to para-
metric models (e.g., those based on VIs) has been demonstrated repeatedly in experimen-
tal studies (Kalacska et  al. 2015; Malenovský et  al. 2013; Uno et  al. 2005; Wang et  al. 
2013). Examples of successful spectroscopic applications include the estimation of foliage 
nitrogen concentrations (Huang et al. 2004) and LAI (Jensen et al. 2012; Neinavaz et al. 
2016). In both cited studies, ANN outperformed other linear nonparametric models (e.g., 
PLSR). Alternative powerful structures involve RBFANNs, BRANNs and RANNs (for 
explanation, see Table 3). Although these advanced ANNs have been primarily used for 
classification applications, only recently they were explored to map vegetation properties 
from spectroscopic data (Chen et al. 2015; Feng et al. 2016; Pôças et al. 2017; Wang et al. 
2013). Some of these studies mention the superiority of these advanced ANN designs as 
compared to standard ANN designs or other machine learning approaches in estimating 
vegetation properties (Du et al. 2016; Li et al. 2017; Pham et al. 2017).

Applying ANNs to spectroscopic data, nonetheless, can be quite challenging due to the 
multicollinearity. Feeding many bands into an ANN requires a complex design and conse-
quently a long training time. Just as with decision trees, a popular approach is applying a 
band selection or the calculation of several sensitive VIs or shape indices such as red-edge 
position that are then entered either individually or as a combination into the ANN. Various 
of these band selection studies investigated combinations of VIs that led to the best predic-
tion models (Chen et al. 2015; Feng et al. 2016; Jia et al. 2013; Liang et al. 2015; Mutanga 
and Kumar 2007; Pôças et al. 2017; Schlerf and Atzberger 2006). As discussed before, it 
remains questionable whether the selected indices preserve a maximum amount of use-
ful information. On the contrary, when compressing the spectral data using dimensional-
ity reduction methods into a lower-dimensional space, then it is ensured that a maximum 
amount of spectral information is preserved. This approach was applied, e.g., to assess corn 
yield (Uno et  al. 2005) and phosphorus and nitrogen concentrations (Knox et  al. 2011). 
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It is therefore not surprising that a study comparing PCA vs. indices inputted into ANNs 
concluded that the PCA-ANN design outperformed VI-ANN designs (Liu and Pan 2017). 
Moreover, given that only linear transformations are applied in PCA, it may even be that 
more adaptive dimensionality reduction methods yield superior accuracies when com-
bined with ANN, e.g., partial least squares (PLS), or in the field of nonlinear kernel-based 
dimensionality reduction methods, e.g., kernel PCA (KPCA) or kernel PLS (KPLS). To 
ascertain this hypothesis, PCA was compared against 10 alternative dimensionality reduc-
tion methods in combination with ANN to carry out LAI estimation. As expected, various 
alternative dimensionality reduction methods outperformed PCA in developing accurate 
models (e.g., PLS, KPLS, KPCA) (Rivera-Caicedo et al. 2017).

3.2.3  Kernel-Based Machine Learning Regression Methods

Kernel-based regression methods solve nonlinear regression problems by transferring the 
data to a higher-dimensional space by a kernel function (Table 4). The flexibility offered 
by kernel methods allows us to transform almost any linear algorithm that can be expressed 
in terms of dot products, while still using only linear algebra operations. Kernel methods 
provide a consistent theoretical framework for developing nonlinear techniques and have 
useful properties when dealing with a low number of (potentially high-dimensional) train-
ing samples, and outliers and noise in the data (Gómez-Chova et al. 2011; Tuia et al. 2018). 
Given these attractive properties, kernel-based regression methods seem perfectly suited 
to extract nonlinear information related to vegetation properties from imaging spectros-
copy data. Developed in the mid-1990s, among the most popular kernel-based method 
for classification purposes involves SVM. Its regression version (SVR) gained popularity 
for the retrieval of continuous vegetation attributes from imaging spectroscopy data in the 
last decade. Examples include plant height, leaf nitrogen content and leaf chlorophyll con-
tent (Karimi et al. 2008; Yang et al. 2011). A multi-output version of SVR was presented 
by Tuia et  al. (2011), with LAI, leaf chlorophyll content and fractional vegetation con-
tent being simultaneously estimated. Recently, SVR was used for processing spectroscopic 
images of sub-decimetre spatial resolution as acquired by low-altitude unmanned aircraft 
system to infer Antarctic moss vigour (Malenovský et al. 2017). Yet just as with the other 
advanced regression methods, SVR faces the same difficulties of coping with multicollin-
earity. Therefore, SVR has been commonly applied in combination with specific spectral 
subsets or VIs (Lin et al. 2013; Marabel and Alvarez-Taboada 2013), or with wavelet trans-
forms (He et al. 2015). To deal with spectroscopic band redundancy, an advantage of SVR 
is that it allows band selection (analogous as PLSR and RF), which in principle allows the 
development of more optimized models (Feilhauer et  al. 2015). On the other hand, it is 
likely that the combination with dimensionality reduction methods will lead to more pow-
erful models (Rivera-Caicedo et al. 2017). To assess its predictive power, various spectro-
scopic studies compared SVR against similar methods such as SMLR or PLSR, although 
some band selection method appeared to be essential (Kiala et al. 2016; Wang et al. 2015; 
Yao et al. 2015). Conversely, when comparing SVR against other machine learning meth-
ods such as RF or GPR, then SVR no longer excelled (Pullanagari et al. 2016).

Kernel ridge regression (KRR) emerged as one of the promising upcoming kernel-based 
regression methods, although only a few spectroscopic studies have used it. For instance, Wang 
et al. (2011) compared KRR with linear nonparametric methods (multiple linear regression 
and PLSR) for LAI estimation. The authors concluded that KRR yielded the most accurate 
estimates. Also Peng et al. (2011) used KRR for the detection of chlorophyll content. Apart 
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from these two studies, the spectroscopy vegetation community may not yet be familiar with 
this method. Solely Rivera Caicedo et al. (2014) had compared KRR against other machine 
learning algorithms applied to CHRIS (62 bands) and HyMap (125 bands) spectroscopic data 
for LAI mapping. In that study, KRR not only proved to be a very competitive regression 
algorithm, but also proved to be extremely fast. This is due to its relatively simple design that 
requires only one hyperparameter to be tuned. Because of its simplicity, another advantage is 
that KRR is capable of dealing with collinearity; the method can cope with thousands of con-
tiguous bands. In fact, in the dimensionality reduction comparison study tested with simulated 
(2100 bands) and HyMap data (Rivera-Caicedo et  al. 2017), KRR was the only regression 
method where dimensionality reduction methods did not lead to improvements as compared 
to using all bands. In conclusion, KRR emerged as an attractive regression method due to its 
competitive performance, fast processing and ease of dealing with spectroscopic data.

From all machine learning regression algorithms, probably the most exciting one 
is Gaussian process regression (GPR). Contrary to other methods, the training phase in 
GPR takes place in a Bayesian framework, leading to probabilistic outputs (Camps-Valls 
et  al. 2016; Rasmussen and Williams 2006). GPR applied to spectroscopic data started 
only recently, e.g., for airborne HyMap mapping of leaf chlorophyll content (Verrelst et al. 
2013a), and for spaceborne CHRIS mapping of leaf chlorophyll content, LAI and frac-
tional vegetation content (Verrelst et al. 2012a). Of interest is that along with these maps 
also maps of associated uncertainties (prediction intervals) were provided. Also with an 
Airborne Hyperspectral Scanner, Roelofsen et  al. (2014) applied GPR to map salinity, 
moisture and nutrient concentrations that in turn were used as inputs for plant association 
mapping. In the Rivera Caicedo et  al. (2014) comparison paper, GPR outperformed the 
majority of other tested machine learning methods for the prediction of leaf chlorophyll 
content and LAI from various spectroscopic datasets. Similarly, Ashourloo et  al. (2016) 
concluded that GPR yielded most accurate leaf rust disease detection as compared to VIs, 
PLSR and SVR. However, GPR is no exception in suffering from radiometric collinearity 
when many bands are included, and related spectroscopic studies demonstrated that results 
can be further improved by combining GPR with band selection (Verrelst et al. 2016b) or 
with dimensionality reduction methods (Rivera-Caicedo et  al. 2017). At the same time, 
alternative GPR versions continue to be developed within the machine learning commu-
nity. For instance, Lazaro-Gredilla et al. (2014) refined the GPR method by proposing a 
non-standard variable approximation allowing for accurate inferences in signal-dependent 
noise scenarios. The so-called variational heteroscedastic GPR (VHGPR) appears to be an 
excellent alternative for standard GPR, which was demonstrated on a CHRIS dataset where 
VHGPR outperformed GPR in leaf chlorophyll content estimation. Schematic illustrations 
of popular nonlinear nonparametric methods are shown in Fig. 5. 

(a) (b) (c) (d)

Fig. 5  Schematic illustrations of random forest (RF) (a), neural network (NN) (b), support vector regres-
sion (SVR) (c) and Gaussian processes regression (GPR) (d)
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4  Physically Based Model Inversion Methods

Physically based model inversion is based on physical laws establishing cause–effect 
relationships. Inferences on model variables are based on generally accepted knowledge 
embedded in radiative transfer models (RTMs). RTMs are deterministic models that 
describe absorption and multiple scattering, and some of them even describe the micro-
wave region, thermal emission or sun-induced chlorophyll fluorescence emitted by vegeta-
tion (e.g., see Table  5). A diversity of canopy RTMs have been developed over the last 
three decades with varying degrees of complexity. Gradual increase in RTMs accuracy, yet 
in complexity too, has diversified RTMs from simple turbid medium RTMs to advanced 
Monte Carlo RTMs that allow for explicit 3D representations of complex canopy architec-
tures (e.g., see the RAMI exercises (Pinty et al. 2001, 2004; Widlowski et al. 2007, 2011, 
2015) for a thorough comparison). This evolution has resulted in an increase in the compu-
tational requirements to run the model, which bears implications towards practical appli-
cations. From a computational point of view, RTMs can be categorized as either (1) eco-

nomically invertible (or computationally cheap) or (2) non-economically invertible models 
(or computationally expensive). These terms refer to the model complexity and associated 
run-time constraining the mathematical inversion of such models. Economically invertible 
models are models with relatively few input parameters and fast processing that enables 
fast calculations and consequently fast model inversion or rendering of simulated scenes. 
A well-known example of this category includes the widely used leaf RTM PROSPECT 
(Feret et al. 2008) coupled with the canopy RTM SAIL (Verhoef 1984a) [combined named 
as PROSAIL (Jacquemoud et al. 2009a)].

Non-economically invertible RTMs refer to advanced, computationally expensive 
RTMs, often with a large number of input variables and sophisticated computational 
and mathematical modelling. These types of RTMs enable the generation of complex or 
detailed scenes, but at the expense of a significant computational load. In short, the fol-
lowing families of RTMs can be considered as non-economically invertible: (1) Monte 
Carlo ray-tracing models [e.g., Raytran (Govaerts and Verstraete 1998)], FLIGHT (North 
1996) and librat (Lewis 1999)); (2) voxel-based models [e.g., DART (Gastellu-Etchegorry 
et al. 1996)]; and (3) advanced integrated vegetation and atmospheric transfer models [e.g., 
SCOPE (Tol et al. 2009) and MODTRAN (Berk et al. 2006)]. Descriptions of advanced 
canopy RTM models and their latest developments are provided in Table  5. Although 
these advanced RTMs serve perfectly as virtual laboratories for fundamental research on 
light–vegetation interactions, they are in general less suitable for retrieval applications, 
because of either a large number of input variables or a long processing time. Nevertheless, 
as outlined below, some experimental studies demonstrated that they can as well be applied 
into inversion schemes, e.g., based on look-up tables and in hybrid strategies.

Regardless of their complexity, they all deliver spectroscopic outputs, typically at 1 nm 
resolution. Hence, RTM outputs can fit perfectly into inversion schemes of imaging spec-
troscopy data, while at the same time the simulated data can be resampled to reassemble 
the band settings of multispectral sensors. Because inversion strategies are usually based 
on spectral fitting (i.e. only radiometric information is used), the drawback of collinear-
ity complicating regression is not an issue here; however, removal of noisy bands is still a 
standard and much-needed preprocessing step to enable adequate spectral fitting. Another 
point to be mentioned is that inversion scheme can only retrieve the RTM input variables. 
Hence, using this strategy implies that only RTM state variables can be mapped. Yet 
because the RTM input variables drive the canopy absorbance and scattering mechanisms, 
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the resulting output maps are considered to be physically sound (Knyazikhin et al. 2013; 
Myneni et al. 1995) (Fig. 6).

Given that in principle only a coupled leaf-canopy RTM and an inversion routine are 
required for the retrieval of RTM state variables, the approach is generic and generally 
applicable. Nevertheless, these approaches are not straightforward. First, an RTM has to 
be selected, whereby a trade-off between the realism and inversion possibility of the RTM 
has to be made. As discussed above, typically, complex models are more realistic, but 
they have many variables and consequently challenging to invert, whereas simpler models 
may be less realistic but easier to invert. Secondly, according to the Hadamard postulates, 
RTMs are invertible only when an inversion solution is unique and dependent—in a con-
tinuous mode—on the variables to be extracted. Unfortunately, this boundary condition is 
often not met. The inversion of canopy RTMs is frequently underdetermined and ill-posed. 
The number of unknowns can be much larger than the number of independent observa-
tions. This makes physically based retrievals of vegetation properties a challenging task. 
Several strategies have been proposed to cope with the underdetermined problem of opti-
mizing the inversion process, including (1) iterative numerical optimization methods, (2) 
look-up table (LUT)-based inversion (see Fig. 7 for illustrations), or (3) hybrid approaches 
in which LUTs are generated as input for machine learning approaches (see Sect. 5). Below 
we briefly review some common RTM inversion techniques in view of converting spectro-
scopic data into maps of RTM leaf and canopy input variables.

Numerical optimization. Iterative optimization is a classical technique to invert 
RTMs in image processing (Botha et  al. 2007; Jacquemoud et  al. 1995; Zarco-Tejada 
et al. 2001). The optimization is minimizing a cost function, which estimates the differ-
ence between measured and estimated variables by successive input variable iteration. 
Optimization algorithms are computationally demanding and hence potentially time-
consuming depending on the complexity of the RTM and the numbers of image pixels 
to be processed. However, with the ongoing increase in computational power and open-
source availability of optimization libraries, a renaissance of numerical approaches is 
emerging. Examples of numerical inversion against spectroscopic data include: PROS-
PECT inversion to retrieve leaf chlorophyll content (Zhang and Wang 2015), retrieval 
of leaf biochemistry against an improved version of PROSPECT (COSINE) (Jay et al. 
2016), and PROSAIL leaf and canopy variables (Bayat et  al. 2016; Tol et  al. 2016). 
Despite a gain in computational power, numerical inversion algorithms applied to 

Fig. 6  Principles of radiative transfer model (RTM) inversion. Left: RGB subset of a hyperspectral HyMap 
image (125 bands) over Barrax agricultural site (Spain). Right: illustrative map of a vegetation property 
(LAI, m2/m2 ) as obtained by RMSE inversion against a 100,000 PROSAIL LUT (5% noise added, mean of 
5% multiple solutions). The model was validated with a R2 of 0.44 (RMSE: 1.85; NRMSE: 31.9%). A sys-
tematic underestimation occurred, which in principle implies that the RTM simulated LUT needs to be bet-
ter parameterized. It took 2315 s to produce the map using ARTMO’s LUT-based inversion toolbox (Rivera 
et al. 2013). Also uncertainty estimates are provided, e.g., in the form of residuals (not shown)
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Table 5  Advanced canopy RTMs commonly used in imaging spectroscopy applications

RTM Description

SCOPE(Soil–Canopy–Observation of Photosyn-
thesis and Energy fluxes)

SCOPE (Tol et al. 2009) is a soil–vegetation–atmos-
phere (SVAT) scheme that includes RTMs along with 
a micrometeorological model for simulating turbulent 
heat exchange, and a plant physiological model for 
photosynthesis (Tol et al. 2014). The radiative transfer 
scheme is based on SAIL (Verhoef 1984b, 1985), 
extended with a similar radiative transfer for emitted 
radiation. The emitted radiation includes chlorophyll 
fluorescence and thermal radiation. Leaf radiative 
transfer is calculated with Fluspect (Vilfan et al. 2016) 
which also includes emitted fluorescence radiation. 
SCOPE is intended as tool to scale processes from leaf 
to canopy, and to analyse the effects of light scattering. 
Recent developments include vertical heterogeneity 
(Yang et al. 2017) and the zeaxanthin–violaxanthin 
pigment cycles

Discrete Anisotropic Radiative Transfer (DART) DART model is being developed since 1992 as a physi-
cally based 3D computer programme (Gastellu-Etch-
egorry et al. 1996), which simulates radiative budget 
and remote sensing (airborne and spaceborne) optical 
image data of natural and urban landscapes for any 
wavelengths from the ultraviolet to the thermal infrared 
part of the electromagnetic spectrum (Gastellu-Etch-
egorry et al. 1999; Guillevic et al. 2003). It computes 
and provides bottom and top of the atmosphere spectral 
quantities (i.e. irradiance, exitance and radiance) that 
are transformed into reflectance or brightness tempera-
ture depending on the user DART mode preferences 
(Gastellu-Etchegorry et al. 2004). Simulated scenes 
may include the atmosphere, topography and any natu-
ral or anthropogenic objects at any geographical loca-
tion (Grau and Gastellu-Etchegorry 2013). The latest 
DART optical development includes also the specular 
reflectance and the light polarization (Gastellu-Etch-
egorry et al. 2015). Apart of passive remote sensing 
data, it also simulates active terrestrial and air-/spa-
ceborne light detection and ranging (LiDAR) discrete 
return, full waveform, multi-pulse and photon counting 
measurements (Gastellu-Etchegorry et al. 2016; Yin 
et al. 2016). In case of vegetation, it can also simulate 
radiative transfer of the solar-induced chlorophyll fluo-
rescence for any virtual 3D Earth scene numerically 
and as images (Gastellu-Etchegorry et al. 2017)
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images are still time-consuming given the many per-pixel iterations and a high number 
of pixels involved. Hence, in its current form this method stays restricted to computa-
tionally fast RTMs in merely experimental settings.

Look-up table (LUT) strategies are based on the generation of simulated spectral reflec-
tance scenarios for a high number of plausible combinations of variable value ranges. As 
such, the inversion problem is reduced to the identification of the modelled reflectance set 
that resembles most closely the measured one. This process is based on querying the LUT 

Table 5  (continued)

RTM Description

Librat Librat is a 3D Monte Carlo ray-tracing radiative transfer 
model developed as a library interface to the original 
ararat (Advanced RAdiometric RAy Tracer) model. 
The first version of ARA RAT  was published in 1992 
(Lewis and Muller 1993) as part of the Botanical Plant 
Modelling System (BPMS) (Lewis 1999; Lewis and 
Muller 1990). Subsequently, the sampling scheme was 
improved as reported in Saich et al. (2002), and the 
codes developed into a library in recent years. Librat 
reads a 3D description of (canopy/soil/topographic) 
geometry, along with associated information on mate-
rial scattering properties. The main function in the 
library then is that a ray is launched from some origin 
in 3D space, in a specified direction, and the code 
returns all information about the associated scattering 
paths and interactions, separated as direct and diffuse 
components. This core functionality, along with a set 
of associated sensor models but integrating paths, fired 
into some volume. It allows for a wide range of radia-
tive transfer calculations, including time-resolved/lidar, 
splitting of the radiometric information per scattering 
order as well as straightforward reflectance/transmit-
tance calculations (e.g., Disney et al. 2006; Hancock 
et al. 2012)

FLIGHT FLIGHT (Barton and North 2001; North 1996) is a 
Monte Carlo ray-tracing model designed to rapidly 
simulate light interaction with 3D vegetation canopies 
at high spectral resolution, and produce reflectance 
spectra for both forward simulation and for use in 
inversion (Leonenko et al. 2013). Foliage is repre-
sented by structural properties of leaf area, leaf angle 
distribution, crown dimensions and fractional cover, 
and the optical properties of leaves, branch, shoot and 
ground components. The model represents multiple 
scattering and absorption of light within the canopy 
and with the ground surface. It has been developed to 
model 3D canopy photosynthesis (Alton et al. 2007), 
to simulate waveform and photon counting lidar 
(Montesano et al. 2015; North et al. 2010) and emitted 
fluorescence radiation (Hernández-Clemente et al. 
2017). Structural data may be specified as a statistical 
distribution, derived from field measurements (Morton 
et al. 2014) or by direct inversion from LiDAR data 
(Bye et al. 2017)
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and applying a cost function. A cost function minimizes the summed differences between 
simulated and measured reflectances for all wavelengths. The main advantage of LUT-
based inversion routines over numerical optimization is their computational speed, since 
the computationally most demanding part of the inversion procedure is completed before 
the inversion itself (Dorigo et al. 2007). Consequently, LUT-based inversion methods are 
typically used as a preferred solution in RTM inversion studies. The classical LUT-based 
inversion approach is based on a RMSE cost function, which continues to be applied until 
today. This approach proved to be especially successful for chlorophyll (Kempeneers et al. 
2008; Omari et al. 2013; Zhang et al. 2008) and LAI mapping. For instance, by using LUT-
based inversion routines imaging spectroscopy data have been processed for the mapping 
of forest LAI (Banskota et al. 2013, 2015), grassland LAI (Atzberger et al. 2015) and LAI 
over agricultural crops based on UAVs (Duan et al. 2014). To further mitigate the ill-posed 
problem and optimize the robustness of the LUT-based inversion routines, a diversity of 
regularization strategies have been explored in inversion applications against spectroscopic 
data:

– The use of prior knowledge to constrain model variables in the development of a LUT 
(Baret and Buis 2008; Darvishzadeh et al. 2008; Koetz et al. 2005). Prior knowledge 
typically involves information on the feasible variable ranges for involved vegetation 
types (Dorigo et al. 2009; Verrelst et al. 2012c). Prior information together with prior 
distributions is also increasingly applied into a Bayesian context, whereby the inverted 
values are generated based on likelihoods (Laurent et  al. 2013, 2014; Shiklomanov 
et  al. 2016). The advantage of a Bayesian framework is its capability to quantify an 
inversion uncertainty around an inversion variable.

– Selection of cost function. The inverse problem of a nonlinear RTM is based on the 
minimization of a cost function concurrently measuring the discrepancy between (i) 
observed and simulated reflectance, and (ii) variables to estimate and the associated 
prior information (Jacquemoud et al. 2009b). To avoid solutions reaching fixed bounda-
ries, a modified cost function in the LUT search that takes uncertainty of provided prior 
information into account is sometimes used, e.g., by means of the above-mentioned 
Bayesian approach. Alternatively, Leonenko et al. (2013) proposed and evaluated over 
60 different cost functions dealing with different error distributions. Some more spec-
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Fig. 7  Illustrations of numerical inversion (a) and LUT-based inversion (b). A HyMaP spectrum was 
inverted against PROSAIL. In the case of LUT-inversion, overview statistics of 5% best multiple solutions 
are shown
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troscopic studies have evaluated among others the role of cost function (Danner et al. 
2017; Locherer et al. 2015) in LUT-based inversion. Although the classical RMSE is a 
robust cost function, sometimes improvements can be gained with alternative cost func-
tions, e.g., when the LUTs are non-normal distributed.

– The use of multiple best solutions in the inversion (mean or median), as opposed to a 
single best solution (Banskota et al. 2015; Kattenborn et al. 2017; Koetz et al. 2005; 
Locherer et al. 2015).

– The addition of artificial noise (additive or inverse multiplicative white noise) to 
account for uncertainties linked to measurements and models (Danner et  al. 2017; 
Koetz et al. 2005; Locherer et al. 2015).

– Several spectroscopic studies reported that the relationship between measured and esti-
mated variable perceptibly improves when only specific (sensitive) spectral ranges are 
selected for model inversion (Darvishzadeh et  al. 2012; Meroni et  al. 2004; Schlerf 
et  al. 2005). To account for noise in the observations, other spectroscopic studies 
instead manipulated the observed spectra by applying a smoothing filter (Arellano et al. 
2017) or wavelet transforms (Ali et  al. 2016; Banskota et  al. 2013; Kattenborn et  al. 
2017). Spectral selection and spectral polishing methods can be applied at the same 
time in order to enhance the resemblance with the usually more spectrally smooth sim-
ulated spectra.

Because of taking sun–target–sensor geometry into account, the use of RTM-based meth-
ods has been demonstrated to improve robustness to solar and view angle effects, compared 
to index-based methods (Kempeneers et al. 2008). Another advantage of RTM inversion 
routines is that uncertainties are provided as spectral residuals (Rivera et al. 2013) or stand-
ard deviations, when mapping multiple solution means (Verrelst et al. 2014). Yet the main 
drawback lies in its computational burden resulting from too many per-pixel iterations. 
Although LUT-inversion approaches may speed up the inversion process as opposed to 
numerical inversion, these inversion routines are still computationally expensive due to the 
iterative calls of LUT entries on a per-pixel basis. Consequently, despite attempts to opti-
mize inversion algorithms in order to save up computational time for solving inverse radia-
tive transfer problems (Favennec et al. 2016; Gastellu-Etchegorry et al. 2003), in terms of 
processing speed the RTM inversion routines still run behind statistical methods.

5  Hybrid Regression Methods

Having discussed the more fundamental categories of retrieval methods, this section 
addresses hybrid regression methods. Hybrid methods combine the generalization level 
of physically based methods with the flexibility and computational efficiency of advanced 
machine learning methods. This approach replaces the ground data needed for training of 
the parametric or nonparametric models by RTM input variables, which makes it com-
putationally efficient. It is important to note that the hybrid approach does not alleviate 
the main issues of RTMs, notably that they only include existing knowledge and concepts. 
Similarly as in the case of LUT-based inversion, RTM simulations build a LUT represent-
ing a broad set of canopy realizations and the hybrid approach uses all available data stored 
in LUT to train a machine learning regression model (Fig. 8).

The awareness in the mid-1990s that ANNs are excellent algorithms to deal with large 
datasets led to the introduction of hybrid methods based on ANNs trained with generically 
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applicable RTM-generated data. It led to operational retrieval algorithms for datastreams 
acquired by multispectral and superspectral sensors [see Verrelst et al. (2015)]. Although 
this approach is less straightforward in the context of imaging spectroscopy, because of 
the challenge of collinearity, some recent efforts have been undertaken in exploring this 
research direction. Noteworthy is the work of Vohland et al. (2010) comparing a numeri-
cally optimized ANN with a LUT-based inversion using PROSAIL RTM simulations. Pre-
diction accuracies generally decreased in the following sequence: numerical optimization 
> LUT > ANN. This would indicate that an ANN may not always be the best choice for 
inversion applications. However, no dimensionality reduction method was applied, which 
suggests that the regression model suffered from band collinearity effects. Also Fei et al. 
(2012) compared a PROSAIL-ANN hybrid approach with a PCA approach. The authors 
concluded that a PCA transformation into a regression function can mitigate the known 
reflectance saturation effect of dense canopies to some extent. This PROSAIL-ANN strat-
egy was revisited by Rivera-Caicedo et al. (2017) with alternative dimensionality reduction 
methods. Although PCA improved accuracies as opposed of using all bands, substantially 
more improvements were achieved when converting the spectra into components by means 
canonical correlation analysis (CCA) or orthonormalized PLS (OPLS).

Likewise, inputs from more advanced RTMs were explored to develop specialized 
hybrid structures. In Malenovský et al. (2013), an ANN was trained based on PROSPECT-
DART simulations that explicitly took 3D canopy structures into account to estimate for-
est leaf chlorophyll content from hyperspectral airborne AISA data. In this approach, the 
DART simulations went first through a continuum removal transformation. Alternatively, 
some studies have attempted to move away from ANN models by exploring hybrid struc-
tures on the basis of kernel-based machine learning regression algorithms, particularly the 
popular SVR. For instance, leaf chlorophyll content was estimated based on a PROSAIL-
SVR model and applied to imaging spectroscopy (Preidl and Doktor 2011). An analogous 
concept was applied for a SVR that was trained by PROSPECT-DART simulations in com-
bination with continuum removal transformations, with the purpose of quantifying forest 
biochemical and structural properties (Homolová and Janoutová 2016). Similarly, Doktor 
et al. (2014) used a PROSAIL dataset to train a random forest (RF) model to predict LAI 
and leaf chlorophyll content, and Liang et  al. (2016) compared PROSAIL-based hybrid 
models with SVR and RF for leaf and canopy chlorophyll content estimation from CHRIS 
data. Finally, Rivera-Caicedo et  al. (2017) analysed ensembles of regression algorithms 

Fig. 8  Principles of hybrid regression. Left: RGB subset of a hyperspectral HyMap image (125 bands) over 
Barrax agricultural site (Spain). Right: illustrative map of a vegetation property (LAI, m2/m2 ) as obtained 
by PROSAIL with Gaussian processes regression (GPR) and 15% white noise added. The model was val-
idated with a R

2 of 0.88 (RMSE: 0.70; NRMSE: 10.1%). It took 6.3 seconds to produce the map using 
ARTMO’s MLRA toolbox (Rivera Caicedo et al. 2014). With GPR also uncertainty estimates are provided 
(not shown). Because of not being trained with bare soil spectra, LAI over the non-irrigated parcels is over-
estimated
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with dimensionality reduction methods to consolidate the most ideal PROSAIL-based 
(2101 bands) hybrid regression model. This study concluded that compressing PROSAIL 
data into CCA or OPLS components led to highest accuracies when trained with a GPR 
model. Altogether, although these studies have only been developed in experimental set-
tings—similar as the operational multispectral hybrid algorithms (e.g., Bacour et al. 2006; 
Baret et al. 2013)—the hybrid structures can be perfectly implemented into global mapping 
schemes. When combined with a dimensionality reduction method to suppress collinearity, 
hybrid methods have a great potential to advance towards operational spectroscopy-based 
processing schemes.

6  Discussion

The mapping of spatially continuous biophysical variables from imaging spectroscopy data 
is a progressively expanding field of research and development thanks to advances in spec-
trometer technology and in specialized methods interpreting the acquired spectral data. As 
a follow-up of an earlier, more general review on retrieval methods applicable to optical 
remote sensing (Verrelst et  al. 2015), here a summary on retrieval methods specifically 
applied to spectroscopic data has been compiled. Four categories have been summarized: 
(1) parametric, (2) nonparametric, (3) RTM inversion and (4) hybrid methods. The first two 
categories are statistical methods commonly used with experimental (field) data, whereas 
the latter two rely on RTM simulations. A schematic flowchart of the main retrieval meth-
ods and their hierarchy is provided in Fig. 9.

While pros and cons of each of these methodological categories have been earlier dis-
cussed (Verrelst et  al. 2015), here we discuss these categories from the perspective of 
forthcoming routinely acquired and standardized (e.g., atmospherically corrected) imaging 
spectroscopy data streams. First of all, the choice of a method bears implications, not only 
on the retrievability and processing time of mappable vegetation properties, but also on 
the purpose of the retrieval. Parametric and nonparametric methods rely on ground data 
for training, which obviously need to be available in order to apply these methods. If they 
are available, they are the ‘shortest’ way to the variables of interest, because especially the 
nonparametric methods do no impose any limitation on the relationship between the spec-
trum and the variable of interest. In contrast, RTMs describe radiative transfer processes, 
i.e. they use existing knowledge (as materialized in the models) rather than ground meas-
ured data. Retrieval from an RTM through inversion is most useful if one is more interested 
in the underlying radiative transfer processes (scattering, sun and shade foliage fractions, 
light distribution within vegetation canopies, relationships between canopy structure and 
photosynthesis), rather than in merely extracting a specific variable. However, strategies 
relying on RTM simulations are inherently limited by the input variables of the RTM and, 
as discussed in Sect. 4, ancillary data and regularization methods may be required to opti-
mize their inversions.

Statistical approaches, on the other hand, possess the flexibility to relate reflectance data 
with any measured biophysical variable—state variable or not. As demonstrated in Sects. 
2 and 3 , this can be any quantifiable attribute, typically in the domains of leaf biochemi-
cal constituents (e.g., nitrogen, phosphorus), pigments (e.g., chlorophyll, carotenoids, xan-
thophylls) or higher-level structural variables (e.g., above-ground biomass, grain yield). 
The strength of the correlation with validation data typically determines the validity and 
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transferability of the statistical model. While this ‘seeking for best correlations’ can be 
criticized, because of the absence of a physical basis (Knyazikhin et al. 2013), statistical 
approaches are becoming increasingly powerful to extract biochemical variables through 
complex and often indirect relationships. Particularly, machine learning models are power-
ful in extracting information from subtle variations in spectroscopic data through adaptive, 
nonlinear relationships. The advantage of these statistical models is that not only variable-
specific absorption features can be used for information extraction, but also secondary rela-
tionships with variables related to other absorption features that co-vary with the variable 
of interest can be exploited (Ollinger 2011; Verrelst et al. 2012b). Since high accuracies are 
often obtained with these methods, they are gaining popularity, not only for quantification 
of a diversity of vegetation properties, but also in mapping of floristic composition (Feil-
hauer et al. 2017; Harris et al. 2015; Neumann et al. 2016; Roth et al. 2015).

Regardless of the nature of retrieval method, in view of mapping larger areas, and espe-
cially in an operational and global context, what matters is the possibility to provide asso-
ciated information on the retrieval quality. The characterization of uncertainty is a fun-
damental requirement for postulating correct scientific conclusions from results and for 
assimilating results into statistical or mechanistic higher-level models (Cressie et al. 2009). 
As addressed in Sect. 2, parametric regression methods, i.e. spectral transformation meth-
ods in combination with a fitting function, do not provide uncertainty estimates, which 
undermine their applicability to other images in space and time. Subsequently, while valid 
when locally calibrated and validated, parametric methods are of little use in an opera-
tional context. With regard to inversion routines, uncertainties can be provided as spec-
tral residuals (Rivera et al. 2013) or standard deviations when mapping multiple solution 
means (Verrelst et  al. 2014). Lately, inversion approaches were proposed in a Bayesian 
framework (Shiklomanov et al. 2016), whereby uncertainties are delivered along with the 

Fig. 9  Schematic overview of the main retrieval methods



 Surv Geophys

1 3

retrievals. In the case of traditional statistical models, uncertainty estimation has been 
a complex exercise. Statistical models developed within a Bayesian framework, such as 
GPR, provide uncertainties together with the predictions (Verrelst et  al. 2013b; Camps-
Valls et al. 2016), which indicate the probability interval of an estimation relative to the 
samples used during the training phase. These uncertainties can be used to evaluate GPR 
model transferability. For example, by mapping the uncertainties Verrelst et  al. (2013b) 
demonstrated that a locally developed regression model can be successfully transported to 
other images in space and time for the large majority of pixels (i.e. the uncertainty maps 
were not systematically worse). Similarly, uncertainties can inform about the model perfor-
mance. It was demonstrated that dimensionality reduction methods applied in GPR models 
for LAI mapping not only largely speed up the processing, but they also led to lower per-
pixel uncertainties as opposed to mapping using all bands (Rivera-Caicedo et al. 2017). In 
conclusion, in the view of an operational processing need, just as important as the variable 
retrieval itself is the provision of an associated uncertainty estimate. Uncertainty estimates 
allow evaluating the method’s per-pixel performance and consequently allow evaluating 
the method’s capability to process routinely acquired imaging data. They thus provide a 
measure of the retrieval fidelity, which can be used to identify and mask out the highly 
uncertain and non-reliable results.

Another important aspect for operational production of vegetation properties from typi-
cally bulky imaging spectroscopy data streams implies computational speed. Generally, the 
lower the complexity of a model, the faster it will be able to produce maps. This highly 
favors the application of parametric regression approaches since they consist of only few 
transformations and equations. Also nonparametric regression algorithms, once trained, 
can be applied to process an image almost instantaneously. Training of machine learn-
ing models is frequently related to the tuning of several free variables with costly cross-
validation approaches. These scale poorly with the number of samples (such as in kernel 
machines) or with the data dimensions (such as in ANNs). Although a trained ANN con-
verts an image into a map quasi-instantly, kernel-based methods require more processing 
time, because the similarity between each test pixel in the image and those used to train the 
model has to be estimated. Training can be computationally costly, especially when using 
a big training dataset, e.g., as in hybrid strategies. A solution to shorten training time could 
be in size reduction of the training data in a way that maximal relevant information is pre-
served. This can be achieved by means of dimensionality reduction methods in the spectral 
domain (Rivera-Caicedo et al. 2017), or by means of intelligent sampling in the sampling 
domain, e.g., through active learning (Verrelst et al. 2016a).

Considerably longer run-time is expected in the case of inversion routines. Since RTMs 
take some time to generate simulations, especially for computationally expensive models, 
and also the evaluation takes place on a per-pixel basis, the iterative inversion routines are 
computationally expensive leading to relatively slow mapping speeds. In an attempt to 
accelerate their mapping speed, it has been proposed to approximate the functioning of the 
original RTM by means of statistical learning called emulation (Gómez-Dans et al. 2016; 
Rivera et  al. 2015). Initial experiments to emulate leaf, canopy and atmospheric RTMs 
demonstrated that emulators can successfully generate spectral output from a limited set of 
input variable almost instantly, thereby preserving sufficient accuracy as compared to the 
original RTM (Verrelst et al. 2016c, 2017). Although an emulator reproduces RTM simula-
tions instantly, application of a per-pixel spectral fitting requires many repetitions, which 
implies that these methods still do not reach the speed of statistical methods.
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All in all, having the purpose of advancing towards operational imaging spectroscopy 
data processing in mind, i.e. reaching globally applicable, accurate and fast estimates, we 
end up with the following recommendations:

– To enable model transferability to routinely acquired images, retrieval methods must 
provide associated per-pixel uncertainties as a quality indicator whether the model can 
perform adequately in another space and time.

– Regarding the computational speed, e.g., in case of repetitive image processing, statisti-
cal (i.e. regression) methods are multiple times faster than physically based methods, 
capable of processing full images in the order of minutes or even seconds.

– In the case of regression methods (experimental or hybrid), multicollinearity of spec-
troscopic data complicates the development of powerful models. Physically based 
methods using spectral fitting do not suffer from this problem.

– To mitigate the problem of multicollinearity in regression methods, either band selec-
tion or dimensionality reduction methods can be applied before entering the regression. 
Although band selection is a common practice, more powerful regression models can 
probably be obtained when using a dimensionality reduction method.

7  Conclusions

With forthcoming imaging spectrometer satellite missions, an unprecedented stream of 
datasets on the terrestrial biosphere will become available. This will require powerful pro-
cessing techniques enabling quantification of vegetation variables in an operational and 
global setting. Four categories of retrieval methods have been discussed in this review 
paper: (1) parametric regression; (2) nonparametric regression; (3) physically based RTM 
inversion; and, (4) hybrid methods. For each of these categories, various methodological 
approaches are increasingly applied to imaging spectroscopy data. This literature review 
synthesized the current state of the art in the field of spectroscopy-based vegetation proper-
ties mapping.

Although parametric methods, such as shape indices or spectral transformation, deal 
well with extracting relevant information embedded in spectroscopic data, their lack of 
uncertainty estimates makes them unsuitable for operational use. Higher accuracies can 
be reached with nonlinear nonparametric methods, especially those in the field of machine 
learning that generate probabilistic outputs, e.g., Gaussian process regression. However, an 
additional step to mitigate their spectral multicollinearity is deemed necessary. A popular 
strategy in this respect is selecting a set of vegetation indices or applying spectral transfor-
mation before training the machine learning algorithm. It nevertheless remains question-
able whether such band selection approaches fully capture all relevant information. Instead, 
dimensionality reduction methods that enable compressing the large majority of spectral 
variability into a few components tend to lead to more accurate predictions.

On the other hand, the inversion of physically based RTMs against spectroscopic data 
is generally applicable and physically sound, but optimizing their inversion strategies is 
more challenging compared to the regression methods. RTM-based inversion is compu-
tationally demanding, and ancillary information is usually required as an input or to regu-
late the inversion algorithm. Hybrid regression methods, based on the coupling of an RTM 
with a machine learning regression algorithm, overcome the problem of processing speed. 
Particularly, Bayesian kernel-based hybrid strategies possess promising features, as they 
combine speed, flexibility and the provision of uncertainty estimates. Their accuracies and 
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processing speed can be further improved in combination with dimensionality reduction. 
Altogether, and in the interest of operational spectroscopy-based mapping of vegetation 
properties, we recommend to further explore the feasibility and implementation of hybrid 
strategies into the next-generation data processing chains.
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