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Abstract

Avian influenza viruses (AIVs) periodically cross species barriers and infect humans. The

likelihood that an AIV will evolve mammalian transmissibility depends on acquiring and

selecting mutations during spillover, but data from natural infection is limited. We analyze

deep sequencing data from infected humans and domestic ducks in Cambodia to examine

how H5N1 viruses evolve during spillover. Overall, viral populations in both species are pre-

dominated by low-frequency (<10%) variation shaped by purifying selection and genetic

drift, and half of the variants detected within-host are never detected on the H5N1 virus phy-

logeny. However, we do detect a subset of mutations linked to human receptor binding and

replication (PB2 E627K, HA A150V, and HA Q238L) that arose in multiple, independent

humans. PB2 E627K and HA A150V were also enriched along phylogenetic branches lead-

ing to human infections, suggesting that they are likely human-adaptive. Our data show that

H5N1 viruses generate putative human-adapting mutations during natural spillover infec-

tion, many of which are detected at >5% frequency within-host. However, short infection

times, genetic drift, and purifying selection likely restrict their ability to evolve extensively

during a single infection. Applying evolutionary methods to sequence data, we reveal a

detailed view of H5N1 virus adaptive potential, and develop a foundation for studying host-

adaptation in other zoonotic viruses.
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Author summary

H5N1 avian influenza viruses can cross species barriers and cause severe disease in

humans. H5N1 viruses currently cannot replicate and transmit efficiently among humans,

but animal infection studies and modeling experiments have suggested that human adap-

tation may require only a few mutations. However, data from natural spillover infection

has been limited, posing a challenge for risk assessment. Here, we analyze a unique dataset

of deep sequence data from H5N1 virus-infected humans and domestic ducks in Cambo-

dia. We find that well-known markers of human receptor binding and replication arise in

multiple, independent humans. We also find that 3 mutations detected within-host are

enriched along phylogenetic branches leading to human infections, suggesting that they

are likely human-adapting. However, we also show that within-host evolution in both

humans and ducks are shaped heavily by purifying selection and genetic drift, and that a

large fraction of within-host variation is never detected on the H5N1 phylogeny. Taken

together, our data show that H5N1 viruses do generate human-adapting mutations during

natural infection. However, short infection times, purifying selection, and genetic drift

may severely limit how much H5N1 viruses can evolve during the course of a single

infection.

Introduction

Influenza virus cross-species transmission poses a continual threat to human health. Since

emerging in 1997, H5N1 avian influenza viruses (AIVs) have caused 860 confirmed infections

and 454 deaths in humans[1]. H5N1 viruses naturally circulate in aquatic birds, but some line-

ages have integrated into poultry populations. H5N1 viruses are now endemic in domestic

birds in some countries[2–4], and concern remains that continued human infection may one

day facilitate human adaptation.

The likelihood that an AIV will adapt to replicate and transmit among humans depends on

generating and selecting human-adaptive mutations during spillover. Influenza viruses have

high mutation rates[5–8], short generation times[9], and large populations, and rapidly gener-

ate diversity within-host. Laboratory studies using animal models[10–12] show that only 3–5

amino acid substitutions may be required to render H5N1 viruses mammalian-transmissible

[10–12], and that viral variants present at frequencies as low as 5% may be transmitted by

respiratory droplets[13]. Subsequent modeling studies suggest that within-host dynamics are

conducive to generating human-transmissible viruses, but that these viruses may remain at fre-

quencies too low for transmission[14,15]. Although these studies offer critical insight for

H5N1 virus risk assessment, it is unclear whether they adequately describe how cross-species

transmission proceeds in nature.

H5N1 virus outbreaks offer rare opportunities to study natural cross-species transmission,

but data are limited. One study of H5N1 virus-infected humans in Vietnam identified muta-

tions affecting receptor binding, polymerase activity, and interferon antagonism; however,

they remained at low frequencies throughout infection[16]. Recent characterization of H5N1

virus-infected humans in Indonesia identified novel mutations within-host that enhance poly-

merase activity in human cells[17]. Unfortunately, neither of these studies include data from

naturally infected poultry, which would provide a critical comparison for assessing whether

infected humans exhibit signs of adaptive evolution. A small number of studies have examined

within-host diversity in experimentally infected poultry[18–20], but these may not recapitulate

the dynamics of natural infection.
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As part of ongoing diagnostic and surveillance effort, the Institut Pasteur du Cambodge col-

lects and confirms samples from AIV-infected poultry during routine market surveillance, and

from human cases and poultry during AIV outbreaks. Since H5N1 was first detected in Cam-

bodia in 2004, 56 human cases and 58 poultry outbreaks have been confirmed and many more

have gone undetected[21]. Here we analyze previously generated deep sequence data[22] from

8 infected humans and 5 infected domestic ducks collected in Cambodia between 2010 and

2014. We find that viral populations in both species are dominated by low-frequency variation

shaped by population expansion, purifying selection, and genetic drift. We identify a handful

of mutations in humans linked to improved mammalian replication and transmissibility, two

of which were detected in multiple samples, suggesting that adaptive mutations arise during

natural spillover infection. Although most within-host mutations are not linked to human

infections on the H5N1 virus phylogeny, three mutations identified within-host are enriched

on phylogenetic branches leading to human infections. Our data suggest that known adaptive

mutations do occur in natural H5N1 virus infection, but that a short duration of infection, ran-

domness, and purifying selection may together limit the evolutionary capacity of these viruses

to evolve extensively during any individual spillover event.

Methods

Viral sample collection

The Institute Pasteur in Cambodia is a World Health Organization H5 Reference Laboratory

(H5RL) and has a mandate to assist the Cambodian Ministry of Health and the Ministry of

Agriculture, Forestry, and Fisheries in conducting investigations into human cases and poultry

outbreaks of H5N1 virus, respectively. Surveillance for human cases of H5N1 virus infection is

conducted through influenza-like-illness, severe acute respiratory illness, and event-based sur-

veillance in a network of hospitals throughout the country [23]. Poultry outbreaks of H5N1

virus are detected through passive surveillance following reports from farmers and villagers of

livestock illness or death. The H5RL conducts confirmation of H5N1 virus detection and fur-

ther characterization (genetic and antigenic) of H5N1 virus strains.

Human subjects and IRB approval

The Cambodian influenza surveillance system is a public health activity managed by the Minis-

try of Health in Cambodia and has a standing authorization from the National Ethics Commit-

tee for Human Research. The deep sequence analysis of H5N1 influenza virus from human

samples was approved for this study by the National Ethics Committee for Human Research

(#266NECHR).

RNA isolation and RT-qPCR

RNA was extracted from swab samples using the QIAmp Viral RNAMini Kit (Qiagen, Valen-

cia, CA, USA), following manufacturer’s guidelines and eluted in buffer AVE. Extracts were

tested for influenza A virus (M-gene)[24] and subtypes H5 (primer sets H5a and H5b), N1,

H7, and H9 by using quantitative RT-PCR (qRT-PCR) using assays sourced from the Interna-

tional Reagent Resource (https://www.internationalreagentresource.org/Home.aspx), as previ-

ously outlined[25]. Only samples with high viral load (�103 copies/μl of extracted viral RNA

in buffer AVE), as assessed by RT-qPCR, were selected for sequence analysis. All samples were

sequenced directly from the original specimen, without passaging in cell culture or eggs. Infor-

mation on the samples included in the present analyses are presented in Table 1.
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cDNA generation and PCR

cDNAwas generated using Superscript IV Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA)

and custom influenza primers targeting the conserved ends for whole genome amplification[26].

The following primers were pooled together in a 1.5 : 0.5 : 2.0 : 1.0 ratio: Uni-1.5: ACGCGTGAT

CAGCAAAAGCAGG, Uni-0.5: ACGCGTGATCAGCGAAAGCAGG, Uni-2.0: ACGCGTGAT

CAGTAGAAACAAGG, and Uni-1.0: AGCAAAAGCAGG. 1 μl of this primer pool was added to

1 μl of 10 mM dNTPmix (Invitrogen) and 11 μl of RNA. Contents were briefly mixed and heated

for 5 minutes at 65˚C, followed by immediate incubation on ice for at least 1 minute. Next, a sec-

ondmastermix was made with 4 μl of 5X Superscript IV Buffer, 1 μl of 100 mMDTT, 1 μl of RNa-

seOut Recombinant RNase Inhibitor, and 1 μl of SuperScript IV Reverse Transcriptase (200 U/μl)

(Invitrogen). 7 μl of mastermix was added to each sample, for a total volume of 20 μl. This mixture

was briefly mixed, incubated at 55˚C for 20 minutes, then inactivated by incubating at 80˚C for 10

minutes. Whole genomic amplification of the influenza virus was conducted using Ex Taq™Hot

Start Version (TaKaRa). Forward primers were Uni-1.5 and Uni-0.5 mixed in a ratio of 3:2, and

reverse primer was Uni-2.0. The temperature cycle parameters were 98˚C for 2 min, and then 5

cycles (98˚C for 30 seconds, 45˚C for 30 seconds, and 72˚C for 3 minutes), followed by 25 cycles

(98˚C for 30 seconds, 55˚C for 30 seconds, and 72˚C for 3 minutes).

Library preparation and sequencing

For each sample, amplicons were quantified using the QubitTM dsDNA BR Assay Kit (Invitro-

gen), pooled in equimolar concentrations, and fragmented using the NEBNext dsDNA

Table 1. Sample information.

Sample ID Host Sample type Collection Date Days post-
symptom onset

vRNA copies/μl (after
vRNA extraction)

Clade

A/duck/Cambodia/
PV027D1/2010

Domestic
duck

Pooled organs Poultry outbreak
investigation

April 2010 NA 5.45 x 106 1.1.2

A/duck/Cambodia/
083D1/2011

Domestic
duck

Pooled organs Poultry outbreak
investigation

September
2011

NA 3.74 x 107 1.1.2

A/duck/Cambodia/
381W11M4/2013

Domestic
duck

Pooled throat and
cloacal swab

Live bird market
surveillance

March 2013 NA 7.37 x 105 1.1.2/2.3.2.1a
reassortant

A/duck/Cambodia/
Y0224301/2014

Domestic
duck

Pooled organs Poultry outbreak
investigation

February
2014

NA 2.0 x 105 1.1.2/2.3.2.1a
reassortant

A/duck/Cambodia/
Y0224304/2014

Domestic
duck

Pooled organs Poultry outbreak
investigation

February
2014

NA 5.0 x 106 1.1.2/2.3.2.1a
reassortant

A/Cambodia/
V0401301/2011

Human (10F,
died)

Throat swab Event-based
surveillance

April 2011 9 5.02 x 103 1.1.2

A/Cambodia/
V0417301/2011

Human (5F,
died)

Throat swab Event-based
surveillance

April 2011 5 8.98 x 104 1.1.2

A/Cambodia/
W0112303/2012

Human (2M,
died)

Throat swab Event-based
surveillance

January 2012 7 2.05 x 103 1.1.2

A/Cambodia/
X0125302/2013

Human (1F,
died)

Throat swab Event-based
surveillance

January 2013 12 6.84 x 104 1.1.2/2.3.2.1a
reassortant

A/Cambodia/
X0128304/2013

Human (9F,
died)

Throat swab Event-based
surveillance

January 2013 8 5.09 x 103 1.1.2/2.3.2.1a
reassortant

A/Cambodia/
X0207301/2013

Human (5F,
died)

Throat swab Event-based
surveillance

February
2013

12 1.73 x 105 1.1.2/2.3.2.1a
reassortant

A/Cambodia/
X0219301/2013

Human (2M,
died)

Throat swab Event-based
surveillance

February
2013

12 1.66 x 103 1.1.2/2.3.2.1a
reassortant

A/Cambodia/
X1030304/2013

Human (2F,
died)

Throat swab Event-based
surveillance

October
2013

8 1.08 x 104 1.1.2/2.3.2.1a
reassortant

https://doi.org/10.1371/journal.ppat.1008191.t001
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Fragmentase (New England BioLabs, Ipswich, MA). DNA fragments with the size of 350–700

bp were separated on an agarose gel during electrophoresis and purified for input into the

NEBNext Ultra DNA Library Prep Kit for Illumina1 (New England BioLabs). Prepared

libraries were quantified using KAPA Library Quantification Kits for Illumina1 platforms

(KAPA Biosystems) and pooled in equimolar concentrations to a final concentration of 4 nM,

and run using an MiSeq Reagent Kit v2 (Illumina, San Diego, CA) for 500 cycles (2 x 250 bp).

Demultiplexed files were output in FASTQ format.

Processing of raw sequence data, mapping, and variant calling

Human reads were removed from raw FASTQ files by mapping to the human reference

genome GRCH38 with bowtie2[27] version 2.3.2 (http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml). Reads that did not map to human genome were output to separate FASTQ files

and used for all subsequent analyses. Illumina data was analyzed using the pipeline described

in detail at https://github.com/lmoncla/illumina_pipeline. Briefly, raw FASTQ files were

trimmed using Trimmomatic[28] (http://www.usadellab.org/cms/?page=trimmomatic), trim-

ming in sliding windows of 5 base pairs and requiring a minimum Q-score of 30. Reads that

were trimmed to a length of<100 base pairs were discarded. Trimming was performed with

the following command: java -jar Trimmomatic-0.36/trimmomatic-0.36.jar SE input.fastq

output.fastq SLIDINGWINDOW:5:30 MINLEN:100. Trimmed reads were mapped to consen-

sus sequences previously derived[22] using bowtie2[27] version 2.3.2 (http://bowtie-bio.

sourceforge.net/bowtie2/index.shtml), using the following command: bowtie2 -x reference_se-

quence.fasta -U read1.trimmed.fastq,read2.trimmed.fastq -S output.sam—local. Duplicate

reads were removed with Picard (http://broadinstitute.github.io/picard/) with: java -jar picard.

jar MarkDuplicates I = input.sam O = output.sam REMOVE_DUPLICATES = true. Mapped

reads were imported into Geneious (https://www.geneious.com/) for visual inspection and

consensus calling. Consensus sequences were called by reporting the majority base at each site.

For nucleotide sites with<100x coverage, a consensus base was not reported, and was instead

reported as an “N”. To avoid issues with mapping to an improper reference sequence, we then

remapped each sample’s trimmed FASTQ files to its own consensus sequence. These bam files

were again manually inspected in Geneious, and a final consensus sequence was called. We were

able to generate full-genome data for all samples except for A/Cambodia/X0128304/2013, for

which we were lacked data for PB1. These BAM files were then exported and converted to mpi-

leup files with samtools[29] (http://samtools.sourceforge.net/), and within-host variants were

called using VarScan[30,31] (http://varscan.sourceforge.net/). For a variant to be reported, we

required the variant site to be sequenced to a depth of at least 100x with a minimum, mean

PHRED quality score of 30, and for the variant to be detected in both forward and reverse reads

at a frequency of at least 1%.We called variants using the following command: java -jar VarScan.

v2.3.9.jar mpileup2snp input.pileup—min-coverage 100—min-avg-qual 30—min-var-freq 0.01

—strand-filter 1—output-vcf 1> output.vcf. VCF files were parsed and annotated with coding

region changes using custom software available here (https://github.com/blab/h5n1-cambodia/

tree/master/scripts). All amino acid changes for HA are reported and plotted using native H5

numbering, including the signal peptide, which is 16 amino acids in length. For ease of compari-

son, some amino acid changes are also reported with mature H5 peptide numbering in the man-

uscript when indicated.

Phylogenetic reconstruction

We downloaded all currently available H5N1 virus genomes from the EpiFlu Database of the

Global Initiative for Sharing All Influenza Data[32,33] (GISAID, https://www.gisaid.org/) and
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all currently available full H5N1 virus genomes from the Influenza Research Database (IRD,

http://www.fludb.org)[34] and added consensus genomes from our 5 duck samples and 8

human samples. Sequences and metadata were cleaned and organized using fauna (https://

github.com/nextstrain/fauna), a database system part of the Nextstrain platform. Sequences

were then processed using Nextstrain’s augur software[35] (https://github.com/nextstrain/

augur). Sequences were filtered by length to remove short sequences using the following length

filters: PB2: 2100 bp, PB1: 2100 bp, PA: 2000 bp, HA: 1600 bp, NP: 1400 bp, NA: 1270 bp, MP:

900 bp, and NS: 800 bp. We excluded sequences with sample collection dates prior to 1996,

and those for which the host was annotated as laboratory derived, ferret, or unknown. We

also excluded sequences for which the country or geographic region was unknown. Sequences

for each gene were aligned using MAFFT[36], and then trimmed to the reference sequence.

We chose the A/Goose/Guangdong/1/96(H5N1) genome (GenBank accession numbers:

AF144300-AF144307) as the reference genome. IQTREE[37,38] was then used to infer a maxi-

mum likelihood phylogeny, and TreeTime[39] was used to infer a molecular clock and tempo-

rally-resolved phylogeny. Tips which fell outside of 4 standard deviations away from the

inferred molecular clock were removed. Finally, TreeTime[39] was used to infer ancestral

sequence states at internal nodes and the geographic migration history across the phylogeny.

We inferred migration among 9 defined geographic regions, China, Southeast Asia, South

Asia, Japan and Korea, West Asia, Africa, Europe, South America, and North America, as

shown by color in Fig 1 and S2 Fig. Our final trees are available at https://github.com/blab/

h5n1-cambodia/tree/master/data/tree-jsons, and include the following number of sequences:

PB2: 4063, PB1: 3867, PA: 4082, HA: 6431, NP: 4070, NA: 5357, MP: 3940, NS: 3678. Plotting

was performed using baltic (https://github.com/evogytis/baltic).

Tajima’s D calculation

Tajima’s D was calculated with the following equation:

D ¼
d
ffiffiffiffiffiffiffiffiffiffi

VðdÞ
p ¼

p� S

a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e
1
Sþ e

2
SðS� 1Þ

p
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e
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π = πN or πS as calculated below in “Diversity (π) calculation”, and S is the number of segre-

gating sites, i.e., the number of within-host single nucleotide variants called for a given sample

and coding region. Within-host variants were called as described above, requiring a minimum

coverage of 100x, a minimum frequency of 1%, a minimal base quality score of Q30, and detec-

tion on both forward and reverse reads. For each sample, we treated synonymous variants and

nonsynonymous variants separately, calculating D for nonsynonymous variation as the
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Fig 1. Phylogenetic placement of H5N1 samples from Cambodia. All currently available H5N1 sequences were downloaded from the Influenza Research Database
and the Global Initiative on Sharing All Influenza Data and used to generate full genome phylogenies using Nextstrain’s augur pipeline as shown in the trees on the left.
Phylogenies for the full genome are shown in S2 Fig. Colors represent the geographic region in which the sample was collected (for tips) or the inferred geographic
location (for internal nodes). The x-axis position indicates the date of sample collection (for tips) or the inferred time to the most recent common ancestor (for internal
nodes). In the full phylogeny (left), H5N1 viruses from Cambodia selected for within-host analysis are indicated by tan circles with black outlines. The subtrees
containing the Cambodian samples selected for within-host analysis are shown to the right and are indicated with grey, dashed arrows. In these trees, human tips are
marked with a tan circle with a black outline, while duck tips are denoted with a tan square with a black outline. All samples from our within-host dataset are labelled in
the subtrees with their strain name. Internal genes from samples collected prior to 2013 belong to clade 1.1.2, while internal genes from samples collected in 2013 or later
belong to clade 2.3.2.1a. All HA and NA sequences in this dataset, besides A/duck/Cambodia/Y0224304/2014, belong to clade 1.1.2.

https://doi.org/10.1371/journal.ppat.1008191.g001
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difference between πN and SN, and D for synonymous variation as the difference between πS

and SS. For n, we used the average coverage across the coding region. Values shown in Fig 2C

represent mean D when values were combined across all human or duck samples. To calculate

the 95% confidence interval, we performed a bootstrap. We resampled our D values with

replacement, 10,000 times, and calculated the mean of the resampled values in each iteration.

We then calculated the 2.5% and 97.5% percentile of these bootstrapped means and report this

as the 95% confidence interval.

Diversity (π) calculation

Within-host variants were called as described above, requiring a minimum coverage of 100x,

a minimum frequency of 1%, a minimal base quality score of Q30, and detection on both

Fig 2. Within-host diversity in humans and ducks is dominated by low-frequency variation. (a) Within-host polymorphisms present in at least 1% of sequencing
reads were called in all human (red) and duck (blue) samples. Each dot represents one unique single nucleotide variant (SNV), the x-axis represents the nucleotide site of
the SNV, and the y-axis represents its frequency within-host. (b) For each sample in our dataset, we calculated the proportion of its synonymous (light blue and light
red) and nonsynonymous (dark blue and dark red) within-host variants present at frequencies of 1–10%, 10–20%, 20–30%, 30–40%, and 40–50%. We then took the
mean across all human (red) or duck (blue) samples. Bars represent the mean proportion of variants present in a particular frequency bin and error bars represent
standard error. Grey dots and connecting lines represent the expected proportion of variants in each bin under a neutral model. (c) We calculated Tajima’s D across the
full genomes of humans and ducks, separately for synonymous and nonsynonymous sites. Values represent the mean Tajima’s D across all humans or ducks, and values
in parentheses represent the 95% confidence interval.

https://doi.org/10.1371/journal.ppat.1008191.g002

Within-host diversity of H5N1 influenza in humans and poultry in Cambodia

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008191 January 17, 2020 8 / 26

https://doi.org/10.1371/journal.ppat.1008191.g002
https://doi.org/10.1371/journal.ppat.1008191


forward and reverse reads. Variants were annotated as nonsynonymous or synonymous. For

each sample and coding region, we computed the average number of pairwise nonsynon-

ymous differences per nonsynonymous site (πN) and the average number of pairwise synony-

mous differences per synonymous site and (πS) with SNPGenie[40,41] (https://github.com/

chasewnelson/SNPGenie). We used the same set of within-host variants as reported through-

out the manuscript (minimum frequency of 1%) for these diversity calculations. In both Fig 3

and Table 2, we present the mean πN (dark colors) or πS (light colors) when values were com-

bined across all humans (red bars) or ducks (blue bars). To calculate the standard error of

these estimates, we performed a bootstrap. We resampled our diversity values with replace-

ment, 10,000 times, and calculated the mean of the resampled values in each iteration. We

then calculated the standard deviation among our sampled means, and report this as the stan-

dard error. Error bars in Fig 3 reflect this calculated standard error.

Comparison to functional sites

We used the Sequence Feature Variant Types tool from the Influenza Research Database[34]

to download all currently available annotations for H5 hemagglutinins, N1 neuraminidases,

and all subtypes for the remaining gene segments. We then annotated each within-host SNV

identified in our dataset that fell within an annotated region or site. The complete results of

this annotation are available in S1 Table. We next filtered our annotated SNVs to include only

those located in sites involved in “host-specific” functions or interactions, i.e., those that are

distinct between human and avian hosts. We defined host-specific functions/interactions as

receptor binding, interaction with host cellular machinery, nuclear import and export,

immune antagonism, 5’ cap binding, temperature sensitivity, and glycosylation. We also

included sites that have been phenotypically identified as determinants of transmissibility and

virulence. Sites that participate in binding interactions with other viral subunits or vRNP, con-

served active site domains, drug resistance mutations, and epitope sites were not categorized

as host-specific for this analysis. We annotated both synonymous and nonsynonymous muta-

tions in our dataset, but only highlight nonsynonymous changes in Fig 4 and Table 3.

Fig 3. Purifying selection and genetic drift shape within-host diversity. For each sample and gene, we computed the average number of pairwise nonsynonymous
differences per nonsynonymous site (πN) and the average number of pairwise synonymous differences per synonymous site (πS). We then calculated the mean for each
gene and species. Each bar represents the mean and error bars represent the standard error calculated by performing 10,000 bootstrap resamplings. Human values are
shown in red and duck values are shown in blue.

https://doi.org/10.1371/journal.ppat.1008191.g003
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Table 2. Mean πN and πS values per gene.

Gene Species Mean πN Mean πS πN/πS p-value

PB2 Human 0.00015 0.00023 0.65 0.50

PB2 Duck 0.00 0.00031 0.00 0.27

PB1 Human 0.000083 0.00038 0.22 0.049

PB1 Duck 0.000009 0.000066 0.14 0.31

PA Human 0.00012 0.00044 0.27 0.083

PA Duck 0.000037 0.00016 0.23 0.094

HA Human 0.00044 0.00035 1.26 0.61

HA Duck 0.000054 0.00025 0.22 0.40

NP Human 0.000050 0.00050 0.10 0.12

NP Duck 0.00011 0.00028 0.39 0.49

NA Human 0.000078 0.0005 0.16 0.064

NA Duck 0.000056 0.00023 0.24 0.27

M1 Human 0.00010 0.00063 0.14 0.23

M1 Duck 0.000068 0.00 NA 0.18

M2 Human 0.00017 0.00 NA 0.042

M2 Duck 0.00 0.00 NA NA

NS1 Human 0.000014 0.00056 0.03 0.20

NS1 Duck 0.000036 0.00 NA 0.37

NEP Human 0.000064 0.00 NA 0.18

NEP Duck 0.000030 0.00013 0.23 0.37

Full genome Human 0.000139 0.000381 0.36 0.0059

Full genome Duck 0.000039 0.00018 0.22 0.038

For each gene and sample, we computed nonsynonymous (πN), and and synonymous (πS) diversity as the average number of pairwise differences between a set of DNA

sequences. Values of 0.00 indicate that there were no SNPs identified in that gene for that host species and mutation type. We then combined values from each sample to

generate a diversity estimate for each gene and host species. Significance was assessed by a paired t-test testing the null hypothesis that πN = πS. Bold values of p < 0.05.

https://doi.org/10.1371/journal.ppat.1008191.t002

Fig 4. Mutations are present at functionally relevant sites.We queried each amino acid changing mutation identified in our dataset against all known annotations
present in the Influenza Research Database Sequence Feature Variant Types tool. Each mutation is colored according to its function. Shape represents whether the
mutation was identified in a human (circle) or duck (square) sample. Mutations shown here were detected in at least 1 human or duck sample. Filled in shapes represent
nonsynonymous changes and open shapes represent synonymous mutations. Grey, transparent dots represent mutations for which no host-related function was known.
Each nonsynonymous colored mutation, its frequency, and its phenotypic effect is shown in Table 3, and a full list of all mutations and their annotations are available in
S1 Table.

https://doi.org/10.1371/journal.ppat.1008191.g004
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Shared sites permutation test

To test whether human or duck samples shared more polymorphisms than expected by

chance, we performed a permutation test. We first counted the number of variable amino acid

sites, n, in which an SNV altered the coded amino acid, across coding regions and samples.

For example, if two SNVs occurred in the same codon site, we counted this as 1 variable amino

acid site. Next, for each gene and sample, we calculated the number of amino acid sites that

were covered with sufficient sequencing depth that a mutation could have been called using

our SNV calling criteria. To do this, we calculated the length in amino acids of each coding

region, L, that was covered by at least 100 reads. Non-coding regions were not included. For

each coding region and sample, we then simulated the effect of having n variable amino acid

sites placed randomly along the coding region between sites 1 to L, and recorded the site

where the polymorphism was placed. After simulating this for each gene and sample, we

counted the number of sites that were shared between at least 2 human or at least 2 duck sam-

ples. This process was repeated 100,000 times. The number of shared polymorphisms at each

iteration was used to generate a null distribution, as shown in Fig 5B. We calculated p-values

as the number of iterations for which there were at least as many shared sites as observed in

our actual data, divided by 100,000. For the simulations displayed in Fig 5C and Fig 5D, we

wanted to simulate the effect of genomic constraint, meaning that only some fraction of the

genome could tolerate mutation. For these analyses, simulations were done exactly the same,

except that the number of sites at which a mutation could occur was reduced to 70% (Fig 5C)

or 60% (Fig 5D). Code for performing the shared sites permutation test is freely available at

https://github.com/blab/h5n1-cambodia/blob/master/figures/figure-5b-shared-sites-

permutation-test.ipynb.

Reconstruction of host transitions along the phylogeny

We used the phylogenetic trees in S2 Fig to infer host transitions along each gene’s phylogeny.

As described above, we used TreeTime[39] to reconstruct ancestral nucleotide states at each

internal node and infer amino acid mutations along each branch along these phylogenetic

trees. We then classified host transition mutations along branches that lead to human or avian

tips as follows (Fig 6A). For each branch in the phylogeny, we enumerated all tips descending

from that branch. If all descendent tips were human, we considered this a monophyletic

human clade. If the current branch’s ancestral node also led to only human descendants, we

labelled the current branch a “to-human” branch. If a branch leading to a monophyletic

human clade had an ancestral node that included avian and human descendants, then we con-

sidered the current branch an “avian-to-human” branch, and also labelled it as “to-human”.

All other branches were considered “to-avian” branches. We did not explicitly allow for

human-to-avian branches in this analysis. Because avian sampling is poor relative to human

sampling, and because H5N1 virus circulation is thought to be maintained by transmission in

birds, we chose to only label branches explicitly leading to human infections as to-human

branches. We also reasoned that for instances in which a human tip appears to be ancestral to

an avian clade, this more likely results from poor avian sampling than from true human-to-

avian transmission. Using these criteria, we then gathered the inferred amino acid mutations

that occurred along each branch in the phylogeny, and counted the number of times they were

associated with each type of host transition. We then queried each SNV detected within-host

in our dataset, in both human and duck samples, to determine the number of host transitions

that they occurred on in the phylogeny, as shown in Fig 6B. To test whether individual muta-

tions were enriched along branches leading to human infections, we performed Fisher’s exact

tests comparing the number of to-avian and to-human transitions along which the mutation
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Table 3. Mutations identified at functionally relevant sites.

Sample Gene Nt
site

Ref
base

Variant
base

Coding
region
change

Freq. Description Type

A/Cambodia/
X0128304/2013

PB2 1069 A T N348Y 6.15% Putative m7GTP cap binding site[64]. replication

A/Cambodia/
V0401301/2011

PB2 1202 A C N392H 3.61% Putative m7GTP cap binding site[64]. replication

A/Cambodia/
W0112303/2012

PB2 1891 G A E627K 6.63% A Lys at 627 enhances mammalian replication[51,53]. replication

A/Cambodia/
X0125302/2013

PB2 2022 G A V667I 2.99% An Ile at 667 was associated with human-infecting H5N1 virus
strains[65].

replication

A/Cambodia/
W0112303/2012

PB2 2113 A G N701D 16.49% An Asn at 701 enhances mammalian replication[55,56]. replication

A/Cambodia/
X0125302/2013

PB2 2163 A G S714G 9.59% An Arg at 714 enhances mammalian replication[55]. replication

A/Cambodia/
X1030304/2013

PB1 631 A G R211G 2.34% Nuclear localization motif. interaction with
host machinery

A/Cambodia/
X0125302/2013

PB1 1078 A G K353R 2.94% An Arg at 353 is associated with higher replication and
pathogenicity of an H1N1 pandemic strain[66].

replication

A/Cambodia/
X0125302/2013

PB1 1716 A T T566S 5.20% An Ala at 566 is associated with higher replication and
pathogenicity of an H1N1 pandemic virus[66].

replication

A/Cambodia/
X0219301/2013

PA 265 A G T85A 2.84% An Ile at 85 enhances polymerase activity of pandemic H1N1 in
mammalian cells[67].

replication

A/Cambodia/
X0128304/2013

PA 1868 A G K615R 2.47% An Asn at PA 615 has been associated with adaptation of avian
influenza polymerases to humans[55].

replication

A/Cambodia/
X0207301/2013

PA 1903 A G S631G 1.79% A Ser at 631 enhances virulence of H5N1 viruses in mice[68]. virulence

A/Cambodia/
X0128304/2013

HA 299 A G E91G 6.33% A Lys at 91 enhances α-2,6 binding[43]. (H5 mature: 75) receptor binding

A/Cambodia/
V0417301/2011

HA 425 A G E142G 3.20% Putative glycosylation site[69]. (H5 mature: 126) virulence

A/Cambodia/
V0401301/2011

HA 449 C T A150V 20.24% A Val at 150 confers enhanced α-2,6 sialic acid binding in
H5N1 viruses[58,59]. (H5 mature: 134)

receptor binding

A/Cambodia/
X0125302/2013

HA 449 C T A150V 15.09% A Val at 150 confers enhanced α-2,6 sialic acid binding in
H5N1 viruses[58,59]. (H5 mature: 134)

receptor binding

A/Cambodia/
X0128304/2013

HA 542 A C K172T 11.50% Part of putative glycosylation motif that improves α-2,6 binding
[70–72]. (H5 mature: 156)

receptor binding

A/Cambodia/
V0401301/2011

HA 517 T C Y173H 5.04% Residue involved in sialic acid recognition[45]. (H5 mature:
157)

receptor binding

A/Cambodia/
V0401301/2011

HA 593 A G N198S 3.32% A Lys at 198 confers α-2,6 sialic acid binding [43,73](H5
mature: 182)

receptor binding

A/Cambodia/
X0128304/2013

HA 703 A G T226A 28.91% An Ile at 226 enhanced α-2,6 sialic acid binding[63]. (H5
mature: 210)

receptor binding

A/Cambodia/
V0401301/2011

HA 713 A T Q238L 2.80% A Leu at 238 confers a switch from α-2,3 to α-2,6 sialic acid
binding and is a determinant of mammalian transmission
[11,12,73–76]. (H5 mature: 222)

receptor binding

A/Cambodia/
V0417301/2011

HA 713 A T Q238L 8.45% A Leu at 238 confers a switch from α-2,3 to α-2,6 sialic acid
binding and is a determinant of mammalian transmission
[11,12,73–76]. (H5 mature: 222)

receptor binding

A/Cambodia/
X0125302/2013

HA 713 A G Q238R 40.30% A Leu at 238 confers a switch from α-2,3 to α-2,6 sialic acid
binding and is a determinant of mammalian transmission
[11,12,73–76]. (H5 mature: 222)

receptor binding

A/duck/Cambodia/
Y0224304/2014

NP 674 C T T215I 3.69% Nuclear targeting motif[77]. interaction with
host machinery

(Continued)
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Table 3. (Continued)

Sample Gene Nt
site

Ref
base

Variant
base

Coding
region
change

Freq. Description Type

A/Cambodia/
X1030304/2013

M2 861 G A C50Y 2.03% A Cys at position 50 is a palmitoylation site that enhances
virulence[78,79].

virulence

A/Cambodia/
X0128304/2013

NS1 502 C T P159L 2.8% Part of the NS1 nuclear export signal mask[80]. interaction with
host machinery

A/duck/Cambodia/
Y0224301/2014

NS1 646 T C L207P 2.22% NS1 flexible tail, which interacts with host machinery[81]. interaction with
host machinery

A/duck/Cambodia/
Y0224301/2014

NS1 654 C T P210S 2.55% NS1 flexible tail, which interacts with host machinery[81]. interaction with
host machinery

A/Cambodia/
X0207301/2013

NEP 609 A G E47G 4.59% This site was implicated in enhanced virulence of H5N1 viruses
in ferrets[82].

virulence

All nonsynonymous mutations that were identified in sites with putative links to host-specific phenotypes are shown. We identify a handful of amino acid mutations

that have been explicitly linked to mammalian adaptation of avian influenza viruses. For HA mutations, all mutations use native H5 numbering, including the signal

peptide. For ease of comparison, the corresponding amino acid number in mature, H5 peptide numbering is also provided in parentheses in the description column.

Full annotations for all mutations in our data are shown in S1 Table.

https://doi.org/10.1371/journal.ppat.1008191.t003

Fig 5. Ducks share more polymorphisms than expected by chance. (a) All amino acid sites that were polymorphic in at least 2 samples are shown. This includes sites
at which each sample had a polymorphism at the same site, but encoded different variant amino acids. There are 3 amino acid sites that are shared by at least 2 duck
samples, and 9 polymorphic sites shared by at least 2 human samples. 3 synonymous changes are detected in both human and duck samples (PB1 371, PA 397, and NP
201). Frequency is shown on the y-axis. (b) To test whether the level of sharing we observed was more or less than expected by chance, we performed a permutation test.
The x-axis represents the number of sites shared by at least 2 ducks (blue) or at least 2 humans (red), and the bar height represents the number of simulations in which
that number of shared sites occurred. Actual observed number of shared sites (3 and 9) are shown with a dashed line. (c) The same permutation test as shown in (b),
except that only 70% of amino acid sites were permitted to mutate. (d) The same permutation test as shown in (b), except that only 60% of amino acid sites were
permitted to mutate.

https://doi.org/10.1371/journal.ppat.1008191.g005
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was detected vs. the overall number of to-avian and to-human transitions that were observed

along the tree. Mutations that showed statistically significant enrichment are annotated in

Fig 6B.

General availability of analysis software and data

All code used to analyze data and generate figures for this manuscript are publicly available

at https://github.com/blab/h5n1-cambodia. Raw FASTQ files with human reads removed

are available under SRA accession number PRJNA547644, and accessions SRX5984186-

SRX5984198. All reported variant calls and phylogenetic trees are available at https://github.

com/blab/h5n1-cambodia/tree/master/data.

Results

Sample selection and dataset information

We analyzed full-genome sequence data from primary, influenza virus-confirmed samples

from infected humans and domestic ducks from Cambodia (Table 1). Four domestic duck

Fig 6. A small subset of within-host variants are enriched on spillover branches. (a) A schematic for how we classified host transitions along the phylogeny. Branches
within monophyletic human clades were labelled “to-human” (red branches). Branches leading to a monophyletic human clade, whose parent node had avian children
were also labelled as “to-human” (half red, half blue branches), and all other branches were labelled “to-avian” (blue branches). (b) Each amino acid-changing SNV we
detected within-host in either ducks (left) or humans (right) that was present in the H5N1 phylogeny is displayed. Each bar represents an amino acid mutation, and its
height represents the number of to-avian (blue) or to-human (red) transitions in which this mutation was present along the H5N1 phylogeny. Significance was assessed
with a Fisher’s exact test. � indicates p< 0.05, ���� indicates p< 0.0001.

https://doi.org/10.1371/journal.ppat.1008191.g006
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samples (pooled organs) were collected as part of poultry outbreak investigations, while one

was collected during live bird market surveillance (pooled throat and cloacal swab)[4]. All

human samples (throat swabs) were collected via event-based surveillance upon admittance to

various hospitals throughout Cambodia[22]. Because of limited sample availability and long

storage times, generating duplicate sequence data for each sample was not possible. We there-

fore focused on samples whose viral RNA copy numbers after viral RNA extraction were�103

copies/μl of buffer as assessed by RT-qPCR (Table 1), and whose mean coverage depth

exceeded 100x (S1 Fig). We analyzed full genome data for 7 human and 5 duck samples, and

near complete genome data for A/Cambodia/X0128304/2013, for which we lack data from the

PB1 gene.

H5 viruses circulating in Cambodia were exclusively clade 1.1.2[4] until 2013, when a novel

reassortant virus emerged[42]. This reassortant virus expressed a hemagglutinin (HA) and

neuraminidase (NA) from clade 1.1.2, with internal genes from clade 2.3.2.1a[22]. All 2013/

2014 samples in our dataset come from this outbreak, while samples collected prior to 2013 are

clade 1.1.2 (Table 1, Fig 1, and S2 Fig). All HA sequences (with the exception of A/duck/Cam-

bodia/Y0224304/2014, which expresses a divergent HA) derive from the same lineage that has

been circulating in southeast Asia for years (Fig 1). For the internal gene segments, samples

collected between 2010–2012 and samples collected between 2013–2014 fall into distinct parts

of the tree, each nested within the diversity of other southeast Asian viruses (S2 Fig). The 2013

reassortant viruses share 4 amino acid substitutions in HA, S123P, S133A, S155N, and K266R

[22] (H5, mature peptide numbering). S133A and S155N have been linked to improved α-2,6
linked sialic acid binding, independently and in combination with S123P[43–45]. All samples

encode a polybasic cleavage site in HA (XRRKRR) between amino acids 325–330 (H5, mature

peptide numbering), a virulence determinant for H5N1 AIVs[46,47], and a 20 amino acid

deletion in NA. This NA deletion is a well-documented host range determinant[48–51].

Duck samples are not immediately ancestral to the human samples in our dataset, and they

therefore are unlikely to represent transmission pairs. We therefore treat these samples as

examples of within-host diversity in naturally infected humans and ducks, rather than direct

transmission pairs. With this caveat, we aimed to use this subset of 8 human and 5 duck sam-

ples to determine whether positive selection would promote adaptation in humans. Positive

selection increases the frequency of beneficial variants, and is often identified by tracking

mutations’ frequencies over time. While multiple time points were not available in our dataset,

all human samples were collected 5–12 days after reported symptom onset[22]. Animal infec-

tion studies have observed drastic changes in within-host variant frequencies in 3–7 days

[11,13], suggesting that 5–12 days post symptom onset may provide sufficient time for trans-

mitted diversity to be altered within-host. We reasoned that while we expect positive selection

to promote the emergence of human-adapting mutation in humans, H5N1 viruses should be

well-adapted for replication in ducks, which are a natural host species. We therefore hypothe-

size to observe the following patterns: (1) During replication in humans, positive selection

should increase the frequencies of human-adaptive mutations, resulting in elevated rates of

nonsynonymous diversity and a higher proportion of high-frequency variants. In contrast,

viruses in ducks should be fit for replication and be shaped by purifying selection, leading to

an excess of synonymous variation and an excess of low-frequency variants. (2) Viruses in

humans should harbor mutations phenotypically linked to mammalian adaptation. (3) If selec-

tion is strong at a particular site, then viruses in humans should exhibit evidence for conver-

gent evolution, i.e., the same mutation arising across multiple samples. (4) If human-adaptive

variants arising within humans are present on the H5N1 phylogeny, then they should be more

likely to occur on branches leading to human infections than on branches leading to bird

infections.
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Within-host diversity in humans and ducks is dominated by low-frequency
variation

We called within-host variants across the genome that were present in�1% of sequencing

reads and occurred at a site with a minimum read depth of 100x and a minimum PHRED

quality score of 30 (see Methods for details). All coding region changes are reported using

native H5 numbering, including the signal peptide, unless otherwise noted. Most single nucle-

otide variants (SNVs) were present at low frequencies (Fig 2A). We identified a total of 206

SNVs in humans (111 nonsynonymous, 91 synonymous, 4 missense) and 40 in ducks (16 non-

synonymous, 23 synonymous, 1 missense). Human samples had more SNVs than duck sam-

ples on average (mean SNVs per sample: humans = 26 ± 19, ducks = 8 ± 3, p = 2.79 x 10−17,

Fisher’s exact test), although the number of SNVs per sample was variable among samples in

both species (S3 Fig).

To determine whether humans had more high-frequency variants than ducks, we generated

a site frequency spectrum (Fig 2B). Purifying selection removes new variants from the popula-

tion, generating an excess of low-frequency variants, while positive selection promotes accu-

mulation of high-frequency polymorphisms. Exponential population expansion also leads to

an excess of low-frequency variation. In both humans and ducks, over 80% of variants (both

synonymous and nonsynonymous) were present in<10% of the population, and the distribu-

tion of SNV frequencies were strikingly similar (Fig 2B). In both host species, there is an excess

of low-frequency variation compared to the expectation under a neutral model (no population

size changes or selection), and a deficiency of intermediate and high-frequency variants (Fig

2B, grey dots and connecting line). Overall, the frequencies of SNVs in humans and ducks

were not statistically different (p = 0.11, MannWhitney U test), and mean SNV frequencies

were similar (mean SNV frequency in human samples = 5.8%, mean in duck samples = 6.6%).

To determine whether the excess of low-frequency variation we observed was better

explained by purifying selection or demography, we summarized the frequency spectrum by

calculating Tajima’s D (Fig 2C). Tajima’s Dmeasures the difference between the average num-

ber of pairwise differences between a set of sequences (π) with the number of variable sites (S).

π is weighted by variant frequencies, and will be largest when the population has a large num-

ber of high-frequency variants, while S is simply a count of the number of variable sites, and is

not impacted by variant frequencies. Both population expansion and purifying selection

should lead to an excess of low-frequency variation and negative Tajima’s D. However, while

population expansion should impact nonsynonymous and synonymous sites equally, purifying

selection should have a greater effect on nonsynonymous variants. If the excess of low-fre-

quency variation we observed was driven solely by demographic factors, then we expect synon-

ymous and nonsynonymous sites to have similar Tajima’s D values, while purifying selection

should lead to more negative Tajima’s D values at nonsynonymous sites. When calculated

across the full genome, Tajima’s D was similar between humans and ducks, and was compara-

ble when calculated for synonymous and nonsynonymous sites. Taken together, these data

suggest that in both humans and ducks, viral populations are dominated by low-frequency var-

iation. Furthermore, this excess of low-frequency variation can be explained by within-host

population expansion.

Purifying selection and genetic drift shape within-host diversity

Comparing nonsynonymous (πN) and synonymous (πS) polymorphism in a population is

another common measure for selection that is robust to differences in sequencing coverage

depth[52]. An excess of synonymous polymorphism (πN/πS< 1) indicates purifying selection,

an excess of nonsynonymous variation (πN/πS> 1) suggests positive selection, and
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approximately equal rates (πN/πS ~ 1) suggest that genetic drift is the predominant force shap-

ing diversity. We calculated the average number of nonsynonymous and synonymous pairwise

differences between DNA sequences, and normalized these values to the number of synony-

mous and nonsynonymous sites. In both species, most genes exhibited πN< πS, although there

was substantial variation among samples (Table 2 and Fig 3). The difference between πs and

πN was generally not statistically significant (Table 2), with the exception of human M2 (πN =

0.00017, πS = 0, p = 0.042, paired t-test) and PB1 (πN = 0.000083, πS = 0.00038, p = 0.049,

paired t-test), which exhibited weak evidence of purifying selection. When diversity estimates

across all genes were combined, both species exhibited πN/πS< 1 (Fig 3) (human πN/πS = 0.36,

p = 0.0059, unpaired t-test; duck πN/πS = 0.21, p = 0.038, unpaired t-test). Genome-wide diver-

sity was not correlated with days post symptom onset (S4A Fig). Taken together, these data

suggest that H5N1 within-host populations in both humans and ducks are broadly shaped by

weak purifying selection and genetic drift. We do not find evidence for widespread positive

selection in any individual coding region.

SNVs are identified in humans at functionally relevant sites

Influenza phenotypes can be drastically altered by single amino acid changes. We took advan-

tage of the Influenza Research Database29 Sequence Feature Variant Types tool, a catalogue of

amino acids that are critical to protein structure and function, and that have been experimen-

tally linked to functional alteration. We downloaded all available annotations for H5 HAs, N1

NAs, and all subtypes for the remaining proteins, and annotated each mutation in our dataset

that fell within an annotated region (S1 Table). We then filtered these annotated amino acids

to include only those located in sites involved in host-specific functions (see Methods for

details).

Of the 218 unique, polymorphic amino acid sites in our dataset (including both human and

duck samples), we identified 34 nonsynonymous mutations at sites involved in viral replica-

tion, receptor binding, virulence, and interaction with host cell machinery (Fig 4). Some sites

are explicitly linked to H5N1 virus mammalian adaptation (Table 3). PB2 E627K was detected

as a minor variant in A/Cambodia/W0112303/2012, and in A/Cambodia/V0417301/2011 at

consensus. A lysine at position 627 is a conserved marker of human adaptation[51,53] that

enhances H5N1 replication in mammals[11,12,51,54]. A/Cambodia/W0112303/2012 also

encoded PB2 D701N at consensus. Curiously, this patient also harbored the reversion muta-

tion, N701D, at low-frequency within-host. An asparagine (N) at PB2 701 enhances viral repli-

cation and transmission in mammals[55,56], while an aspartate (D) is commonly identified in

birds. We cannot distinguish whether the founding virus harbored an asparagine or aspartate,

so our data are consistent with two possibilities: transmission of a virus harboring asparagine

and within-host generation of aspartate; or, transmission of a virus with asparate followed by

within-host selection but incomplete fixation of asparagine. All other human and avian sam-

ples in our dataset encoded the “avian-like” amino acids, glutamate at PB2 627, and aspartate

at PB2 701. None of the adaptive polymerase mutations that were recently identified byWelk-

ers et al.[17] in H5N1 virus-infected humans in Indonesia were present in our samples, nor

were any of the human-adaptive mutations identified in a recent deep mutational scan of PB2

[57].

We also identified HAmutations linked to human receptor binding. Two human samples

encoded an HA A150V mutation (134 in mature, H5 peptide numbering, Fig 4). A valine at

HA 150 improves α-2,6 linked sialic acid binding in H5N1 viruses[58,59], and was also identi-

fied in H5N1 virus-infected humans in Vietnam[16]. Finally, HA Q238L was detected in A/

Cambodia/V0417301/2011 and A/Cambodia/V0401301/2011. HA 238L (222 in mature, H5
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peptide numbering) was shown in H5N1 virus transmission studies to confer a switch from α-
2,3 to α-2,6 linked sialic acid binding[11] and mediate transmission[11,12]. An HA Q238R

mutation was identified in A/Cambodia/X0125302/2013, although nothing is known regard-

ing an arganine (R) at this site.

Mutations annotated as host-specific were not detected at higher frequencies than non-

host-specific mutations (mean frequency for host-specific mutations = 8.2% ± 8.8%, mean fre-

quency for non-host-specific mutations = 5.2% ± 4.7%, p-value = 0.084, unpaired t-test). Addi-

tionally, the proportion of mutations that were host-specific was not higher in samples from

longer infections (p-value = 0.72, Fisher’s exact test, S4B Fig). All 8 human samples harbored

at least 1 mutant in a host-specific site. Critically though, the functional impacts of influenza

virus mutations strongly depend on sequence context[60], and we did not phenotypically test

these mutations. We caution that confirming functional impacts for these mutations would

require further study. Still, our data show that putative human-adapting mutations are gener-

ated during natural spillover. Our results also highlight that even mutations that have been

predicted to be strongly beneficial (e.g., PB2 627K and HA 238L) may remain at low frequen-

cies in vivo.

Shared diversity is limited

Each human H5N1 infection is thought to represent a unique avian spillover event. If selection

is strong at a given site in the genome, then mutations may arise at that site independently

across multiple patients. We identified 13 amino acid sites in our dataset that were polymor-

phic in at least 2 samples, 4 of which were detected in both species (PB1 371, PA 307, HA 265

and NP 201). Of the 34 unique polymorphic amino acid sites in ducks, 3 sites were shared by

at least 2 duck samples; of the 188 unique polymorphic amino acid sites in humans, 9 were

shared by at least 2 human samples (Fig 5A). Two of these shared sites, HA 150 and HA 238,

are linked to human-adapting phenotypes (Table 3). To determine whether the number of

shared sites we observe is more or less than expected by chance, we performed a permutation

test. For each species, we simulated datasets with the same number of sequences and amino

acid polymorphisms as our actual dataset, but assigned each polymorphism to a random

amino acid site. For each iteration, we then counted the number of polymorphic sites that

were shared by�2 samples. We ran this simulation for 100,000 iterations for each species, and

used the number of shared sites per iteration to generate a null distribution (Fig 5B, colored

bars). Comparison to the observed number of shared sites (3 and 9, dashed lines in Fig 5B),

confirmed that humans share slightly more polymorphisms than expected by chance

(p = 0.046), while ducks share significantly more (p = 0.00006).

Viral genomes are highly constrained [61], which could account for the convergence we

observe. Experimental measurements of the distribution of fitness effects in influenza A virus

have estimated that approximately 30% of genome mutations are lethal [61], while estimates

from other RNA viruses suggest that lethal percentage ranges from 20–40% [62]. We repeated

our simulations to restrict the number of amino acid sites that could tolerate a mutation to

70% or 60%, representing a lethal fraction of 30% or 40%. When 70% of the coding region was

permitted to mutate, ~23% of simulations resulted in�9 shared sites in humans (p = 0.23)(Fig

5C), and when 60% of the genome was permitted to mutate, ~39% of simulations resulted in

�9 shared sites (p = 0.39)(Fig 5D). In contrast, the probability of observing 3 shared sites

among duck samples remained low regardless of genome constraint (70% of genome tolerates

mutation: p = 0.00014; 60% of genome tolerates mutation: p = 0.00028), suggesting a signifi-

cant, although low, level of convergence (Fig 5C and 5D). Taken together, our results suggest

that duck samples share significantly more variants than expected by chance. In humans,
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despite the presence of shared polymorphisms with known human-adaptive phenotypes, the

degree of convergence we observe is no more than expected given genome constraint.

Within-host SNVs are not enriched on spillover branches

If within-host mutations are human-adapting, then those mutations should be enriched

among H5N1 viruses that have caused human infections in the past. To test this hypothesis,

we inferred full genome phylogenies using all available full-genome H5N1 viruses from the

EpiFlu[32,33] and IRD[34] databases (Fig 1 and S2 Fig), reconstructed ancestral nucleotide

states at each internal node, and inferred amino acid mutations along each branch. We then

classified host transition mutations along branches that led to human or avian tips (Fig 6A). If

a branch fell within a clade that included only human tips, that branch was labelled as a “to-

human” transition. If a branch led to a human-only clade but its ancestral branch included

avian descendants, this was inferred to be an avian-to-human transition, and was also labelled

as “to-human”. All other transitions were labelled “to-avian” (Fig 6A, see Methods for more

details). We then curated the mutations that occurred on each type of host transition, and

compared these counts to the mutations identified within-host in our dataset.

Of the 120 nonsynonymous within-host SNVs we identified in our dataset, 60 (50%) were

not detected on the phylogeny at all. This suggests that many of the mutations generated

within-host are purged from the H5N1 viral population over time. Additionally, because

humans are generally dead-end hosts for H5N1 viruses, even human-adapting variants arising

within-host are likely to be lost due to lack of onward transmission. Of the within-host muta-

tions that were detected on the phylogeny, most occurred on branches leading to avian infec-

tions (Fig 6B, blue bars). However, there were a few exceptions (Fig 6B, red bars). Across the

phylogeny, we enumerated a total of 31,939 to-avian transitions, and 2,787 to-human transi-

tions, so that we expect a 11.46:1 ratio of to-avian transitions relative to to-human transitions.

In contrast, PB2 E627K was heavily enriched among human infections, detected on 15 to-

avian transitions and 36 to-human transitions (p = 4.21 x 10−28, Fisher’s exact test). HA

A150V was detected in only one to-avian transition, but in 8 to-human transitions (p = 1.46 x

10−8, Fisher’s exact test), and HA N198S was detected on 4 to-avian transitions and 3 to-

human transitions (p = 0.014, Fisher’s exact test). Although nothing is known regarding a ser-

ine at HA 198, a lysine at that site can confer α-2,6-linked sialic acid binding[43,63]. Taken

together, these data suggest that the majority of mutations detected within-host are not associ-

ated with human spillover. However, they agree with selection for human-adapting pheno-

types at a small subset of sites (PB2 E627K, HA A150V, HA N198S).

Discussion

Our study utilizes a unique dataset to quantify H5N1 virus diversity in natural spillover infec-

tions. We establish a set of hypotheses to interrogate whether H5N1 viruses adapt to humans

during natural spillover, and find support for two of them. We detect putative human-adapt-

ing mutations (PB2 E627K, HA A150V, and HA Q238L) during human infection, two of

which arose multiple times (supporting hypothesis 2). PB2 E627K and HA A150V are enriched

along phylogenetic branches leading to human infections, supporting their potential role in

human adaptation (supporting hypothesis 4). However, we also find that population growth,

genetic drift, and weak purifying selection broadly shape viral diversity in both hosts (rejecting

hypothesis 1), and that convergent evolution in human viruses can be explained by genomic

constraint (rejecting hypothesis 3). Together, our data show that during spillover, H5N1

viruses have the capacity to generate well-known markers of mammalian adaptation in

multiple, independent hosts. However, none of these markers reached high-frequencies
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within-host. We speculate that during spillover, short infection times, genetic drift, demogra-

phy, and purifying selection may together limit the capacity of H5N1 viruses to evolve exten-

sively during a single human infection.

Although data from spillovers are limited, our results align with data from Vietnam[16]

and Indonesia[17]. Welkers et al.[17] identified markers of mammalian replication (PB2

627K) and transmission (HA 220K) in humans, but found that adaptive markers were not

widespread. Welkers et al. also characterized new mutations that improved human replication,

suggesting that there are yet undiscovered pathways for adaptation. Imai et al.[16] character-

ized SNVs in H5N1-infected humans that altered viral replication, receptor binding, and inter-

feron antagonism, but these mutations stayed at low frequencies. Imai et al. also showed that

most within-host variants elicited neutral or deleterious effects on protein function in humans,

aligning with the purifying selection we detect within-host, and the absence of ~50% of

within-host variants in the phylogeny. These findings also agree with predictions by Russell

et al.[14], who hypothesized that H5N1 viruses would generate human-adapting mutations

during infection, but that these mutations would remain at low frequencies and fail to be

transmitted.

One unexpected result is that mutations hypothesized to be strongly beneficial, like PB2

627K and HA 238L, remained low-frequency during infection. These mutations could have

arisen late in infection or been linked to deleterious mutations. Additionally, epistasis is crucial

to influenza virus evolution, and mutations that promote human adaptation in one back-

ground may not be well-tolerated in others. PB2 E627K is widespread among clade 2.2.1

H5N1 viruses, but only sparsely detected in other H5N1 clades. Soh et al.[57] recently uncov-

ered strongly human-adapting PB2 mutations that are rare in nature, likely because they are

inaccessible via single site mutations. Genetic background plays a vital role in determining

how AIVs evolve, and may at least partially explain our findings. Importantly, our study

involves a small number of samples from a single geographic location, and two H5N1 virus

clades. Continued characterization of H5N1 virus spillover in other clades is necessary to

define whether our observations are generalizable across H5N1 virus outbreaks.

An important caveat of our study is that the human and duck samples described likely do

not represent transmission pairs. Although the samples analyzed in this study descend from the

same HA lineage (with the exception of A/duck/Cambodia/Y0224304/2014), the duck samples

are not phylogenetically ancestral to the human samples in this dataset (Fig 1 and S2 Fig), and

most likely were not the source of the human infections. We therefore caution that each sample

in this dataset merely represents an example of within-host diversity in a naturally infected host,

rather than a before and after snapshot of individual cross-species transmission events.

Assessing zoonotic risk is critical but challenging. By quantifying patterns of within-host

diversity, identifying mutations at adaptive sites, measuring convergent evolution, and com-

paring within-host diversity to long-term evolution, we can assemble a nuanced understand-

ing of AIV evolution. These methods provide a foundation for understanding cross-species

transmission that can readily be applied to other avian influenza virus datasets, as well as

newly emerging zoonotic viruses.

Supporting information

S1 Fig. Genome coverage. The mean coverage depth at each nucleotide site (x-axis) for each

gene across our 8 human and 5 duck samples is shown. Solid black lines represent the mean

coverage across samples, and the grey shaded area represents the standard deviation of cover-

age depth across samples.

(PDF)
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S2 Fig. Full genome phylogenetic placement of H5N1 virus samples from Cambodia. All

currently available H5N1 virus sequences were downloaded from the Influenza Research Data-

base and the Global Initiative on Sharing All Influenza Data and used to generate full genome

phylogenies using Nextstrain’s augur pipeline. Colors represent the geographic region in

which the sample was collected (for tips) or the inferred geographic location (for internal

nodes). The x-axis position indicates the date of sample collection (for tips) or the inferred

time to the most recent common ancestor (for internal nodes). In the full phylogenies (left),

H5N1 viruses from Cambodia selected for within-host analysis are indicated by tan circles

with black outlines. The subtrees containing the Cambodian samples selected for within-host

analysis are shown to the right in the order that they appear in the full tree. In these trees,

human tips are marked with a tan circle with a black outline, while duck tips are denoted with

a tan square with a black outline. Both human and duck tips are labelled with their strain

names. Internal genes from samples collected prior to 2013 belong to clade 1.1.2, while internal

genes from samples collected in 2013 or later belong to clade 2.3.2.1a. All HA and NA

sequences in this dataset, besides A/duck/Cambodia/Y0224304/2014, belong to clade 1.1.2.

(PDF)

S3 Fig. All within-host variants detected in our dataset. All within-host variants detected in

our study are shown. Each row represents one sample and each column represents one gene.

The x-axis shows the nucleotide site and the y-axis shows the frequency that the variant was

detected within-host. Filled circles represent nonsynonymous changes, while open circles rep-

resent synonymous changes. Blue dots represent variants identified within duck samples,

while red dots represent variants identified in human samples. Blank plots indicate that no var-

iants were identified in that sample and gene.

(PDF)

S4 Fig. Neither diversity nor host-specific mutations increase over time. (a) For each

human sample, the full genome nucleotide diversity (πN or πS) is plotted vs. the days post-

symptom onset. Dark red dots represent the mean, full-genome nonsynonymous diversity for

a given sample (πN), and light red dots represent the mean, full-genome synonymous diversity

for that same sample (πS). Neither nonsynonymous nor synonymous diversity are correlated

with days post symptom onset (nonsynonymous: r2 = -0.17, p = 0.69; synonymous: r2 = -0.22,

p = -0.61). (b) To compare whether the number of putative host-adapting mutations increased

over time in humans, we compared the number of host-specific and non-host specific muta-

tions in humans sampled either in “early infection” (5–8 days post symptom onset), or in “late

infection” (9–12 days post symptom onset). We divided the data into these categories by split-

ting on the mean days post symptom onset for human samples, which was 8 days. We then

compared the proportion of host-specific variants during early and late infections with a Fish-

er’s exact test. The proportion of variants that are host-specific is not different in early vs. late

infections (p = 0.72).

(PDF)

S1 Table. All within-host SNVs with annotations. Every SNV identified in humans and

ducks within-host are displayed with their frequency, coding region change, and functional

annotation. All annotations for H5 HAs, N1 NAs, and all subtypes for all other genes were

downloaded from the Influenza Research Database Sequence Feature Variant Types tool. Each

SNV was then annotated as shown in the “description” column. These descriptions are para-

phrased from annotations presented in the Influenza Research Database. We then manually

curated annotated mutations to determine whether they were involved in “host-specific” func-

tions or not, as shown in the “host-specific?” column. We defined host-specific functions/
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interactions as receptor binding, interaction with host cellular machinery, nuclear import and

export, immune antagonism, 5’ cap binding, temperature sensitivity, and glycosylation. We

also included sites that have been phenotypically identified as determinants of transmissibility

and virulence. Sites that participate in binding interactions with other viral subunits or vRNP,

conserved active site domains, drug resistance mutations, and epitope sites were not catego-

rized as host-specific for this analysis. We annotated both synonymous and nonsynonymous

mutations in our dataset.
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