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Abstract

Extending the theory of lower bounds to reliability based on splits given by Guttman (1945), this 

paper introduces quantile lower bound coefficients λ4(Q) that refer to cumulative proportions of 

potential locally optimal “split-half” coefficients that are below a particular point Q in the 

distribution of split-halves based on different partitions of variables into two sets. Interesting 

quantile values are Q = .05,.50,.95,1.00 with λ4(.05) ≤ λ4(.50) ≤ λ4(.95) ≤ λ4(1.0). Only the global 

optimum λ4(1.0), Guttman’s maximal λ4, has previously been considered to be interesting, but in 

small samples it substantially overestimates population reliability ρ. The three coefficients λ4(.05), 

λ4(.50), and λ4(.95) provide new lower bounds to reliability. The smallest λ4(.05), provides the most 

protection against capitalizing on chance associations and thus overestimation, λ4(.50) is the 

median of these coefficients, while λ4(.95) tends to overestimate reliability but also exhibits less 

bias than previous estimators. Computational theory, algorithm, and publicly available code based 

in R are provided to compute these coefficients. Simulation studies evaluate the performance of 

these coefficients and compare them to coefficient alpha and the greatest lower bound under 

several population reliability structures.

In spite of its controversial nature and despite the availability of newer coefficients with 

more advantageous properties, coefficient α remains the most widely used descriptor of 

internal consistency reliability; see e.g., Sijtsma (2009) and discussants. Actually, almost 70 

years ago when Guttman (1945) defined his coefficient λ3, now known as Cronbach’s α, he 

had already recognized that better lower bounds to reliability were available. One of these, 

his maximum λ4 coefficient, is easy to think about conceptually, simply being the largest 

possible λ4 coefficient based on two parts that are item composites obtained from an optimal 

allocation of items to one of two sets. Unfortunately, Guttman provided no way to actually 

compute his coefficient in practice. Obtaining all possible allocations of items to two sets 

and computing the associated λ4 is only feasible with small item sets. With a large number 

of items, the number of splits to consider may require consideration of trillions of 

possibilities. In part, this difficulty may explain the absence of λ4(max) as a practical 

alternative to coefficient α.
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Actually, practical computational methods for λ4(max) have been proposed, but these appear 

to have been studied only by their developers. While focusing on computations for the 

greatest lower bound (glb, ρ+) to population reliability ρ, Bentler and Woodward (1980) 

noted that a special case of their computational method would yield λ4(max). Similarly, 

Callender and Osburn (1977) and Osburn (2000) provided a recursive partitioning 

computational methodology for approximating λ4(max) in small item sets.Osburn’s (2000) 

results support λ4(max) as the most consistent and accurate computable lower bound to 

reliability with population covariance matrices. Nevertheless, the latter authors also made 

the important point that an estimator λ4̂(max) might well overestimate reliability in small 

samples due to capitalization on chance associations arising from data-based allocation of 

items to one or another of two sets in order to maximize λ4. These observations provide the 

motivation for our work. We aim to produce an estimator λ̂
4(1.0) that is consistent for λ4(max) 

and also feasible to compute even in large problems, as well as placement of λ̂4(1.0) into a 

chain of coefficients λ̂4(Q) that improve on α̂ while minimizing the chances of 

overestimation of population reliability ρ in small samples.

When developing a chain of λ4 coefficients, it is possible to consider two different 

approaches that define coefficients with different properties. The first approach involves 

quantiles in the distribution of λ4 coefficients associated with the entire distribution of 

possible split halves. In this case every possible split is considered, and the results are 

summarized with quantile coefficients λ4[Q]. In practice, due to the increasing computational 

requirements, larger problems necessitate systematic or randomly sampled points in this 

distribution. Since many such λ4 coefficients will be very small and, hence, of no interest in 

lower-bound reliability estimation, we consider a second approach in which a systematic 

methodology is used to move away, if possible, from any uninteresting split towards a 

locally optimal split that yields a greater value of λ4. For example, there is no justification 

for keeping items assigned to two sets if a simple move of an item from one set to the other 

would increase λ4. If no further simple reassignments increase λ4, the resulting coefficient 

represents a locally optimal λ4 coefficient. The distribution of these locally optimal 

coefficients is summarized by the quantile coefficients λ4(Q). While the varying coefficients 

in a chain will differ in these two approaches, e.g., their minima λ4[min] and λ4(min) and other 

quantile points will be different, their maxima λ4[max] and λ4(max) will be the same since 

both represent the global maximum. This paper addresses only the distribution of locally 

optimal quantile coefficients λ4(Q).

The plan of the paper is as follows. A general overview is given in the next section. The 

subsequent section provides a computational theory for the new coefficients as well as 

details on implementation. Empirical results observed from three simulation studies follow 

in the next section. The paper concludes with a discussion.

General Theory and Expectations

While coefficient α (Cronbach, 1951) receives by far the most emphasis in assessment of 

internal consistency reliability, research has also addressed coefficients that may be better 

lower bounds to reliability ρ (e.g., Guttman, 1945; Novick & Lewis, 1967; Bentler, 1972; 

Jackson & Agunwamba, 1977; Woodhouse & Jackson, 1977; Bentler & Woodward, 1980, 
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1983; ten Berge, Snijders, & Zegers, 1981; Shapiro, 1982). A good recent review is given by 

Sijtsma (2009) and his various discussants. In general, with the exception of Woodward and 

Bentler (1978), who provided a “statistical” lower bound to α that would with high 

probability yield a coefficient not exceeding population reliability, existing coefficients are 

utilized without concern for whether properties established for a population coefficient also 

hold in a sample. However, a given coefficient that is an excellent coefficient in a population 

may be grossly biased for some purposes in medium to small samples. For example, a 

coefficient that is an unbiased estimator under appropriate conditions cannot be an 

acceptable lower bound coefficient since it will exceed its population counterpart a 

substantial amount of the time (half the time if the sampling distribution is unimodal and 

symmetric). Bias in the sample glb ρ+̂ and λ̂
4(max) is easy to see when the population 

covariance matrix is diagonal. In such a case, their population values will be zero, but 

sample covariances will not all be zero. Then, non-zero common variance exists and, hence, 

ρ̂
+ > ρ+; and some allocation of items to two parts will be possible so that λ̂

4(max) > λ4(max). 

More generally, ρ̂
+ has been found to exhibit unacceptable overestimation bias in samples 

less than 1000 (Cronbach, 1988; ten Berge & Sočan, 2004). While research has aimed to 

provide methods to estimate and correct for this bias (Verhelst, 1998; Shapiro & ten Berge, 

2000; Li & Bentler, 2011), this work has not provided a statistical lower-bound to 

population reliability. Similarly, until a bias corrected method is proposed and validated, 

coefficient α will remain ubiquitous in circumstances where it may or may not be 

appropriate. The dominance of α means that other potentially useful estimates for 

calculating reliability will be ignored (Yuan & Bentler, 2002; ten Berge & Socan, 2004; 

Sijtsma, 2009; Revelle & Zinbarg, 2009).

Due to the difficulty of constructing an accurate distribution of λ4(Q) coefficients, in practice 

the quantiles must be computationally approximated. Although the entire distribution of 

λ̂4(Q) may be approximated, in practice only certain points, such as λ4̂(.05), λ̂
4(.50), and 

λ4̂(.95), may be of interest, with λ̂4(.05) providing the most protection for capitalization on 

chance, λ̂
4(.50) an intermediate amount, and λ4̂(.95) providing some minimal protection for 

large samples. Of course, Guttman (1945) had recommended λ4(max) as the best possible 

lower bound; but as noted, previous research (Callender & Osburn, 1977; Osburn, 2000; 

Yuan & Bentler, 2002; ten Berge & Socan, 2004) can make one doubt the relevance of 

λ̂
4(max) = λ4̂(1.0) for small and intermediate sized sample data.

Although the main focus of this paper is on various λ̂4(Q) coefficients, α̂ and ρ̂
+ are also 

computed to yield comparative information. Very old results (Cronbach, 1951; Novick & 

Lewis, 1967) lead one to expect that α̂ should perform well at all sample sizes when the 

population matrix fits a very restricted 1-factor model with equal factor loadings, but should 

perform poorly otherwise. Also, ρ+̂ should perform very well asymptotically, but should be 

substantially biased at smaller sample sizes. We should expect λ̂4(1.0) to overestimate 

population reliability at the smaller sample sizes, but prior research provides no hint on 

whether λ̂4(1.0) or ρ̂
+ is liable to be less biased. We expect our various new coefficients to 

typically outperform α̂. We expect λ4̂(.05) to perform well generally, especially at the 

smallest samples sizes. Finally, we expect that λ̂
4(.95) will outperform Guttman’s λ4̂(1.0), but 

to be positively biased in all but the largest sample sizes.
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Computational Theory

First we give an overview of the computational method that we use to find a candidate 

coefficient λ̂4 (or λ4 with population covariance matrices). A given coefficient or estimate is 

obtained as the solution to a mathematical minimization problem subject to constraints. As 

noted by Bentler and Woodward (1980, 1983), such a methodology only finds local minima. 

In order to locate the global minimum, the procedure is repeated from different random 

starting positions a large number of times. We recommend use of at least 1000 repetitions, 

and thus obtainment of a vector of 1000 λ4̂ estimates. An ordering of these values allows us 

to obtain λ̂4(Q) for any quantile values of interest. We take Q = .05, .50, .95, and 1.0.

Function to be Optimized

For optimization purposes, we drop the notational distinction between the population and 

samples since our methodology works with any covariance matrix. We will let Σ be the p by 

p (population or sample) covariance matrix to be analyzed. Let t1 and t2 be p-vectors of 0 

and 1 elements such that t1+t2 = 1, a unit-vector. Then, any split-half coefficient can be 

defined as

(1)

There are many such coefficients that depend on whether specific items are assigned to one 

composite or the other. Obviously, the specific vectors t1 and t2 that globally maximize (1) 

yield λ4(max) = λ4(1.0). Rather than work with two different vectors, we relate them to one 

vector t with +1 and -1 elements where  and . Then, we may write 

(1) as

(2)

where Σ0 is Σ except that 0s replace it’s diagonal and DΣ is the diagonal matrix of Σ. From 

this expression it is clear that maximizing λ4 is equivalent to minimizing

(3)

Since the term 1′ DΣ1 is a constant, namely the sum of the p variances, minimizing f* only 

requires minimizing t′Σ0t.

We now provide an approach to optimization that does not require the use of calculus. To do 

this, we concentrate on a particular element in t and provide a rationale for updating it to its 

most optimal value (either +1 or -1). Let  where i = 1, …, p is an index for 

variables. The value of ti is either +1 or -1, and t0i is the vector of remaining +1 or -1 
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elements in t. Similarly, let , where the ith row and column of Σ0 have 

been distinguished, i.e., σ0i is any ith column not just the first; it excludes the diagonal 

element. Then, to obtain an optimal λ4 we need to minimize

(4)

In this expression the right-most term is constant when considering ti as an element to be 

updated and t0i as constant for the moment. Then it is only necessary to minimize tiσ0i′t0i, 

since σ0i ′t0i can be considered fixed when we want to update ti only.

To be even more concrete, we introduce a notation that distinguishes between the current 

values and potential updated values of the vector t. Specifically, we have  and want to get 

. These are tied to the current function  and we want to choose  to minimize 

. That is, for this ith variable, we want to minimize

(5)

The only choices for  are +1 and -1. Clearly, fi will be minimized using the following 

decision rule:

(6)

This update makes the function value  negative, and provides the basis for our 

algorithm.

Iterative Algorithm

A systematic way to use the above theory is to

1. Randomly pick a variable i that is in the range 1 to p.

2. Randomly generate a vector t of +1 and -1 elements.

3. Randomly pick an order of jth elements for the t vector in #2 (j ≠ i), and update 

each t-value (or not) according to equation (6) until all (p -1) values of t have been 

updated.

4. Compute λ4 using the final t from #3 using equations (1) or (2) and save it.

5. Redo Steps 1-4 1000 times, yielding 1000 values of λ4.

6. Compute the quantile λ4 values of interest, such as λ4(.05) ≤ λ4(.50) ≤ λ4(.95) ≤ 

λ4(1.0).

Steps 1-4 that produce a single estimate of λ4 produce only a local minimum of functions (1) 

or (2). The randomized choices in Steps 1-3 are used to avoid reaching the same local 
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minimum whenever these steps are run. An illustration of the monotonic convergence of this 

algorithm is given in Figure 1, which plots λ̂4 function values against potential sequential 

sign changes for 100 runs of Steps 1-4 for an 8-item 2-factor congeneric data structure in a 

sample of size 320. Each line summarizes the function change or non-change due to Step 6. 

Minimization with Equations (5) and (6) maximizes λ4 in Equation (2), which is plotted in 

the figure. Although the initial λ4̂ function values range from below .3, all 100 functions 

increase monotonically to a substantially higher maximum with the largest being near .8.

Because Steps 1-4 are only guaranteed to find local optima, Step 5 is used to create a 

reasonably large sampling of possible λ4 values for the Σ being analyzed. Basically, the 

number of repetitions in Step 5 should be as large as possible, subject to practicality. In the 

population, the resulting coefficients are computational approximations to true quantile 

values that could only be obtained with an infinite set of repetitions (instead of 1000) in Step 

5. In the analysis of sample data, the algorithm gives computational approximations to 

sample quantile values. Information about the R implementation of the above optimization 

methodology is given in the appendix. Additionally, the R package Lambda4, developed by 

the author, includes the function (Hunt, 2012).

Simulations

A series of three simulation studies was designed to compare the performance of the various 

new quantile λ̂
4(Q) coefficients to α̂ and ρ̂

+. The glb ρ+̂ is computed using glb.algebraic 

(Moltner & Revelle, 2012). The new quantile λ̂4(Q) coefficients can be calculated using 

quant.lambda4 (Hunt, 2012) or the code that is included in the appendix. We increased the 

number of start iterations to 2500 instead of the minimally recommended 1000 in hopes of 

decreasing the standard deviations in the sampling distributions. The number of variables 

(items) selected to be studied was taken as sixteen, large enough to be computationally 

challenging while being small enough to avoid nearing the upper asymptote of 1.0 for the 

various coefficients.

Procedure

Simulations were conducted in R system for statistical computing (R Development Core 

Team, 2011) using the psych package (Revelle, 2008). Any given simulation consisted of 

the following steps: (1) A population covariance structure model was specified with given 

parameters; (2) A random multivariate normal sample of a given size was obtained from this 

population, the sample covariance matrix was computed and six internal consistency 

coefficients were computed from it; (3) Step 2 was repeated 500 times; and (4) Summary 

statistics based on Step 3 were computed and saved, specifically, for each coefficient, its 

mean estimate ρ,̂ its standard deviation S, and its bias δ = ρ̂ − ρ was computed and saved. 

Steps 1-4 were repeated for 5 different sample sizes of 50, 100, 400, 1000, and 2000 cases. 

All of this was repeated for three different population covariance structures.

Population Models and Reliabilities

The first population covariance matrix Σ1 is based a one-factor model with tau-equivalent 

items. Factor loadings are all equal to .6 and error variances are set at .6, .7, .8, and .9, 
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repeated 4 times. This is a model setup where coefficient α is known to perform well 

(Novick, 1966; and Novick & Lewis, 1967; Sijtsma, 2009). The second population 

covariance matrix Σ2 is based on two factors. The factor-loading matrix consists of a simple 

cluster structure (no complex loadings) with equal loadings of .6 and error variances set at .

6, .7, .8, and .9, repeated twice for both factors. The factors correlate 0.30. The third 

population covariance matrix Σ3 is also based on a factor-loading matrix with a simple 

cluster structure, but factor loadings vary across items. The loadings repeat with values of .

9, .8, .7, and .6 and error variances repeat .6, .7, .8, and .9 across the 16 items, while the 

factors also correlate 0.30.

The three population covariance structures can be represented as special cases of the 

confirmatory factor model Σ = ΛΦΛ′ + Ψ. In all three populations, Ψ is a 16×16 diagonal 

matrix. In Σ1, Λ is 16×1 and Φ = 1, while in Σ2 and Σ3, Λ is 16×2 and Φ is a 2×2 correlation 

matrix. Population internal consistency reliabilities are defined in all cases as

(7)

The specific values of (7) for the three populations are .9092, .8669, and .9105.

Results

The results for the first population with covariance matrix Σ1 are shown in Table 1. As 

shown in the left side of the table, the results are tabulated by sample size (from 50-2000) 

and within each sample size, the mean estimate ρ̂, the standard deviation S of the estimates, 

and the mean bias δ = ρ̂ − ρ are reported. The six columns of the table provide these results 

for each of the six coefficients of interest. The results for populations 2 and 3 based on their 

covariance matrices Σ2 and Σ3 are presented in the same format in Tables 2 and 3, 

respectively.

Population 1—It is expected that α̂ will perform well at all sample sizes, and, as shown in 

the last column of Table 1, this expectation is fulfilled. The mean bias is minimal at all 

sample sizes. Similarly, λ4̂(.05) has virtually the same minimal level of bias at all sample 

sizes. As expected, λ̂
4(1.00) and ρ+̂ substantially overestimate ρ at all but the largest sample 

size, with the bias shown by the glb to exceed that of Guttman’s λ̂
4(1.00). While λ̂4(.95) 

reduces this bias, the reduction is not as successful as that observed with λ̂4(.50). Actually, 

λ̂4(.50) has much lower bias than ρ̂
+, with λ̂4(.50) always being an improvement over the glb 

and having minimal bias when sample size is 100 or greater.

Population 2—On the 2-factor model with equal factor loadings, α̂ can no longer be 

expected to perform well; and as shown in Table 2, it does not do so. Across various sample 

sizes, α̂ on average underestimates population reliability by about .03-.04. Both λ4̂(.05) and 

λ̂
4(.50) yield a bias that is smaller than that exhibited by α̂ across the various sample sizes; 

further, this improvement is consistently accomplished with a smaller standard error. There 

may be a reason to prefer λ4̂(.05) since it never overestimates ρ on average, while λ4̂(.50) only 

avoids overestimation when sample sizes are greater than 400. As in population 1, the 
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maximized coefficients λ4̂(1.00) and ρ̂
+ always overestimate population reliability, although 

the positive bias is small when sample size is 1000 or more. As before, the bias of λ4̂(1.00) is 

always smaller than that of ρ+̂. Interestingly, as seen from the S entries, the standard errors 

of all coefficients are smaller than those obtained by α̂.

Population 3—The results for the 2-factor model with varyingly-sized factor loadings, 

shown in Table 3, essentially mirror all the results just described for population 2 with its 2-

factor model with equal factor loadings. Although the details are important, they need not be 

repeated.

Discussion

We have presented a theory to extend the idea of Guttman’s λ4 coefficients to an entire 

chain of locally optimal quantile-based split-half reliability coefficients λ4(Q) and provided a 

computational methodology for obtaining these coefficients in practice. In this initial report 

on these coefficients, we concentrated on four specific values of Q = .05,.50,.95,1.00 

although other values may be worth studying as well. Only the coefficient λ4(1.00) has 

previously been considered interesting; and in the population, it is certainly the coefficient 

we should utilize. However, due to its inherent capitalization on chance associations in 

sample data, it seemed unlikely to be the best estimated quantile λ4̂(Q) coefficient to use in 

practice. Although we were open to the possibility that λ̂
4(.05) or λ4̂(.95) might perform better 

in practice than λ̂4(.50), a priori we leaned toward the latter coefficient as a moderate member 

of the λ4(Q) chain. The generally best performing lower bound λ4̂(Q) coefficient in our 

simulations with covariance matrices of order 16 is λ4̂(.05). Not only did this coefficient 

come to within about .01 of the population reliability on average under various model 

structures and sample sizes, it had the virtue of essentially never overestimating population 

reliability.1 In contrast, in the more realistic multiple factor population models, coefficient α̂ 

substantially underestimated population reliability in general. On the other hand, one of the 

recently recommended alternatives to α̂, namely ρ̂+, the greatest lower bound (see Jackson & 

Agunwamba, 1977; Bentler & Woodward, 1980, 1983), essentially always overestimated 

population reliability. While Guttman’s (1945) maximal λ4̂(1.00) did yield less 

overestimation than that by ρ+̂, the degree of overestimation of reliability was still 

substantial and unacceptable at all but the largest sample sizes. As far as we can tell, the 

proposed methodology is the first in about 35 years to be concerned with obtaining a 

sample-based lower bound to population reliability. Although our proposed approach is 

promising as we have shown, other approaches to the development of statistical lower 

bounds to population reliability should be considered. Future research can be directed at 

obtaining confidence intervals for our Lambda4 coefficients and adapting these to lower 

bound estimation of population reliability as demonstrated by Woodward and Bentler 

(1978). Confidence intervals and hypothesis testing techniques available for other estimators 

of population reliability (Feldt, Woodruff, & Salih, 1987; Raykov & Shrout, 2002; Raykov 

2002; Maydeu-Olivares, Coffman, & Hartmann 2007) also could be adapted to obtaining 

statistical lower bounds to population reliability. Such work will be considered elsewhere.

1The counterexample of N=50 in Table 1 did find λ4(.05) to be positively biased, but only in the 4th decimal place on average.
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The statistical basis of our approach is that sample quantiles are known to be consistent 

estimators of their population counterparts. We relied naively on λ4̂(Q) ≤ λ4̂(1.0), especially 

for small values of Q, but in future work we could use a specialized bootstrap approach 

(Chatterjee, 2011) to obtain the standard error of λ4̂(1.0) and adapt Woodward and Bentler’s 

(1978) method to provide a probabilistic quantile lower bound. The choice of probability 

level with which λ̂4(1.0) ≤ λ4(1.0) would, of course, remain subjective.

A drawback to the practical use of lower bound λ̂4(Q) coefficients as currently proposed is 

that the choice of the specific value of Q to use in any particular situation is somewhat 

arbitrary. Based on our research, Q=.05 is a good value; but as noted by a reviewer, another 

value such as .01 or .07 also might work well, with smaller values being more appropriate 

for smaller samples to minimize the effect of chance associations in smaller sample sizes. 

Nevertheless, as the sample size increases, the distribution of the Q coefficients becomes 

more leptokurtic and the quantiles converge to very similar estimates of reliability (see 

Tables 1, 2, and 3). An advantage of λ4̂(.05) as shown in the tables is that it is hardly affected 

by sample size. At this point, we would feel comfortable to report λ4(.05) if it is a good bit 

larger than α̂ since, if there is any overestimation in λ̂4(.05), it will be much less than that 

exhibited by its alternatives, such as the frequently recommended glb.

It should be recognized that our approach to computation of λ4(Q) coefficients is not that of a 

simple global optimization problem. Use of global optimization or approximate global 

optimization methods would be appropriate when one is interested only in λ4(1.0), and then 

many methods become available (e.g., in psychometrics, Brusco, Singh, & Steinley, 2009; in 

the optimization literature, Wolsey, 1998, and Floudas & Gounaris, 2009). However, we 

seek to define a distribution of locally maximized λ4 coefficients. Our combination of 

randomized initial splits with local optimization is an effective approach to finding the 

quantiles in the distribution of local maxima. The random restarts are designed to provide 

samples from that distribution. As illustrated at the starting points of Figure 1, random starts 

will encounter very low values of λ4 that no reliability theorist would consider for use as a 

lower bound to reliability. The subsequent local minimization fairly quickly finds better 

solutions in the neighborhood of these start values if they exist.

Although computations involving quantile λ4(Q) coefficients are heavy compared to the 

computation of coefficient α, these computations are trivial on current computer systems 

and promise to become even more trivial in the future. Nonetheless, it has to be 

acknowledged that as the number of variables increases, the size of the potential pool of 

split-half coefficients increases exponentially; and it will be increasingly difficult to be sure 

that the chosen quantiles in the distribution of λ4(Q) coefficients can be computed with 

enough precision. In practice, this may mean that the number of random restarts of our 

iterative algorithm needs to be increased when working with a very large covariance matrix. 

With a large number of items the computation time in R will increase, so cursory testing is 

recommended to determine the stability of the estimates. Further code development in faster 

languages such as Fortran or C could render computation speed concerns unwarranted. If 

one chooses to use 1000 iterations the distribution may not be as symmetrical or smooth; 

but, as seen in seen in Figures 2, 3, and 4,2 the distributional qualities are similar. This issue 
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is outside the scope of the current paper, but clearly research is needed to make meaningful 

empirically-based recommendations in this regard.

The theoretical and empirical research described above is quite encouraging with regards to 

the use of λ̂4(Q) coefficients in practice. Of course, the limited simulations done in this report 

need to be augmented with further research under a greater variety of population structures, 

loading and unique variance parameters, distributional conditions, and with a widely varying 

number of items in order to evaluate whether the conclusions from this research generalize 

to such wider contexts. Furthermore, this paper has only studied the usefulness of locally 

optimal λ4(Q) coefficients. It would be worthwhile to evaluate the usefulness of quantiles of 

split-half λ4[Q] coefficients that describe the entire distribution of λ4 coefficients. Values that 

achieve good lower bound properties will no doubt be different from those found here. For 

example, the median value λ4[.50] should be comparable to coefficient α which, under 

narrow circumstances, is the mean of all (population) split half reliabilities (Cronbach, 1951; 

Novick & Lewis, 1967).3 To improve on α with λ4[Q] coefficients most likely will require Q 

> 0.50. Issues such as this are the focus of our ongoing further research.
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Appendix

R Implementation for Computation of Various λ4(Q) Coefficients

quant.lambda4<-function(x, starts=1000, quantile=.5, show.lambda4s=FALSE) {

l4.vect<-rep(NA, starts)

#Determines if x is a covariance or data matrix and establishes a covariance 

matrix for estimation.

p <- dim(x)[2]

if (dim(x)[1] == p) sigma <- as.matrix(x) else sigma <- var(x, 

use=“pairwise”)

items<-ncol(sigma)

#Creates an empty matrix for the minimized tvectors

splitmtrx<-matrix(NA, nrow=items, ncol=starts)

# creates the row and column vectors of 1s for the lambda4 equation.

onerow<-rep(1,items)

onerow<-t(onerow)

onevector<-t(onerow)

f<-rep(NA,starts)

for(y in 1:starts) {

2The data for Figures 1, 2, and 3 are based on a sample size of 1000 and the two-factor covariance structure with unequal loadings.
3The case of an unequal number of items yields some complications that are discussed by Jackson (1979).
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#Random number generator for the t-vectors

trow<-(round(runif(items, min=0, max=1))-.5)*2

trow<-t(trow)

tvector<-t(trow)

#Creating t vector and row

tk1<-(tvector)

tk1t<-t(tk1)

tk2<-(trow)

tk2t<-t(tk2)

#Decision rule that determines which split each item should be on. Thus 

minimizing the numerator.

sigma0<-sigma

diag(sigma0)<-0

random.order<-sample(1:items)

for (o in 1:items) {

oi<-sigma0 [, random.order [o]]

fi<-oi%*%tk1

if (fi < 0) {tk1 [random.order [o] , 1] <- 1}

if (fi >= 0) {tk1 [random.order [o] , 1]<- -1}

}

t1<- (1/2) * (tk1+1)

fk1 <-tk1t%*%sigma0%*%tk1

t1t<-t (t1)

t2<-(1-t1)

t2t<- t(t2)

f [y]=fk1

splitmtrx [,y]<-t1

l4.vect[y]<-(4*(t1t%*%sigma%*%t2)) / (onerow%*%sigma%*%onevector)

}

quants<-quantile (l4.vect, quantile)

lambda4.quantile=quants

if (show.lambda4s==FALSE) {

result<-list (lambda4.quantile=lambda4.quantile)

}

if(show.lambda4s==TRUE) {

result<-list (lambda4.quantile=lambda4.quantile, l4.vect=l4.vect)

}

return (result)

}

#Example computation

quant.lambda4 (USJudgeRatings, starts=2500, quantile=c(.05, .5, .95))

$lambda4.quantile

5% 50% 95%

0.9772899 0.9846840 0.9902834
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$lambda4.optimal

[1] 0.9919463
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Figure 1. 
Trajectories of 100 randomized starts through 8 iterations of an 8-item two-factor 

congeneric data structure with n=320.
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Figure 2. 
Frequency distribution from 10000 repetitions of Algorithm Step 5.
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Figure 3. 
Frequency distribution from 2500 repetitions of Algorithm Step 5.

Hunt and Bentler Page 16

Psychometrika. Author manuscript; available in PMC 2015 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Frequency distribution from 1000 repetitions of Algorithm Step 5.
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