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Quantile regression: A short story on how and why
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Abstract: Quantile regression quantifies the association of explanatory variables with a conditional
quantile of a dependent variable without assuming any specific conditional distribution. It hence models
the quantiles, instead of the mean as done in standard regression. In cases where either the requirements
for mean regression, such as homoscedasticity, are violated or interest lies in the outer regions of the
conditional distribution, quantile regression can explain dependencies more accurately than classical
methods. However, many quantile regression papers are rather theoretical so the method has still not
become a standard tool in applications. In this article, we explain quantile regression from an applied
perspective. In particular, we illustrate the concept, advantages and disadvantages of quantile regression
using two datasets as examples.
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1 Introduction

Mathematically speaking, the probable [...] and the improbable [...] are
not different in kind, but only in frequency, whereby the more frequent
appears a priori more probable. But the occasional occurrence of the
improbable does not imply the intervention of a higher power, something
in the nature of a miracle, as the layman is so ready to assume. The term
probability includes improbability at the extreme limits of probability, and
when the improbable does occur this is no cause for surprise, bewilderment
or mystification.

(Frisch, 1959)

This is a quote from Max Frisch’s most famous book Homo Faber in which the main
character meets his daughter, whose existence he did not know of, and falls in love
with her. This is only one of the many coincidences in this book, or—as he puts it—one
of the improbable events. Another one is a plane crash, which leads him to the earlier
quoted reasoning. This example is not very close to our everyday life experience. As
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an introduction to the topic of this tutorial article, we hence use a dataset on the
body mass index (BMI) of Dutch males aged 0 to 21 (from now on referred to as the
‘Dutch boys’ dataset). The data will be described in detail in Section 2. The average
BMI of the 7 294 observations is 18.027. Thus, we can say ‘the expected BMI for a
dutch male between 0 and 21 years is’ 18.027. However, reducing an experiment to its
expectation is exactly what the main character of our novel criticizes the ‘layman’ for,
who is surprised by the occurrence of events at the ‘the extreme limits of probability’.
Furthermore, those extreme limits are highly relevant for the BMI data since obesity
and (in case of the Dutch population maybe less relevant) underweight are more
relevant than the simple question for the average weight. But what are those ‘limits
of probability’ and how can we capture them? A histogram of the data, together with
a fitted Gaussian distribution is displayed in the left panel of Figure 1. Distributions
can be described quite accurately by their moments, that is, expectation, variance,
skewness and so on, as well as by a list of quantiles.
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Figure 1 Histogram of the BMI from the Dutch boys dataset with the Gaussian distribution with mean and

standard deviation taken from the dataset

In the case of the Gaussian distribution, just as for most distributions from a
parametric family, those statistics are known and can be calculated for arbitrary
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parameters. As we can see in the left panel of Figure 1, however, the shape of the fitted
Gaussian distribution is quite different from that of the observed distribution of the
data, as the histogram is quite asymmetric in comparison to the distribution curve.
When one is interested in the extreme values of the dataset (e.g., the 95% quantile),
we would hence refrain from using the quantiles calculated via the distribution and
simply use the quantile of the data itself: while the 95% quantile of the fitted normal
distribution is 22.809, the 95% quantile of the data is 23.612. This is a relevant
difference; the approximation with the Gaussian distribution would substantially
misinform us. Researchers, however, hardly ever only deal with the simple description
of the univariate dataset, but are more interested in the influence of covariates on a
dependent variable or the prediction based on independent variables. In our case, we
could imagine wanting to predict the BMI depending on the age of an individual.
The plot in the right panel of Figure 1 displays the scatterplot of age and BMI.
The asymmetry already visible in the univariate representation also shows in the
scatterplot. When doing classical regression on this relation however, we would
assume exactly the same thing as when plainly approximating our histogram with a
Gaussian distribution: that the BMI conditional on the age is normally distributed
and this assumption hence underlies all statistics we derive from this (such as the
conditional 95% quantile). The solution to this problem is to use quantile regression,
that is, calculating the impact of covariates on quantiles directly, rather than assuming
an underlying conditional distribution. This tutorial article explains what quantile
regression is and how it can be calculated.

The remainder of the article is structured in the following way: the second section
deals with univariate quantile regression model illustrated by the aforementioned
dataset on the BMI of Dutch boys. The dataset will be analysed with both standard
regression method as well as with quantile regression and the differences will be
discussed. The third section will present a second example dataset, which is then
used to show an additive quantile regression model, containing different types of
covariates. In the fourth section different estimation methods and related models will
be introduced. The last section consists of a short summary and a guideline of when
to use quantile regression.

The supplementary material to this article includes the commented code for both
examples. They are estimated with component-wise gradient boosting (Hofner et al.,
2017); for more detailed explanation for this method please see the tutorial on
boosting (Mayr and Hofner, 2018).

2 Basic quantile regression

2.1 Data example I: The BMI in the Netherlands

As a first illustrative example, we present the Fourth Dutch Growth Study which was
already mentioned in the introduction. The dataset originates from a cross-sectional
study that measures growth and development of the Dutch population between 0
and 21 years. We use a subset of the data available in the R package gamlss
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(Stasinopoulos et al., 2017), which includes 7 294 observations of male Dutch
children. In the following, we will refer to the dataset as ‘Dutch boys’ dataset.

The variable of interest in this example will be the BMI of the individuals with
a special focus on those who are overweight. Recall Figure 1, where the fitted
Gaussian distribution yields P(BMI > 30) = 1F(BMI < 30) = 1.91 · 10−5, while the
empirical probability (i.e., the proportion of participants with BMI > 30) is 0.0021,
which is two orders of magnitude larger. This is something that already shows in
the comparison of the histogram to the theoretical distribution: the data deviates
substantially from a Gaussian distribution. But what if we ask questions such as:
Which BMI values should we consider to be comparatively high? Where on the scale
are the 5% of children with the highest BMI? Which value does y have to have
such that

P(BMI < y) = 95%

holds? The correct answer to those questions is the 95% quantile of the distribution,
which can be defined in the following way: ‘the � quantile is the value y, for which
100�% of the values are smaller or equal than this X’ or (in a formula):

Q�(y) = F−1
y (�). (2.1)

The 95% quantile of the fitted normal distribution is 22.809, the 95% quantile of
the data is 23.612. Hence, 5% have a higher BMI, and the rest has a lower BMI.
Again theoretical and empirical result differs a lot, the distribution can thus not be
considered to be Gaussian.

When only analysing the BMI, we ignore the fact that its conditional distribution
varies with age, as can be seen in Figure 1 on the right side. The questions asked
should not be restricted to the simple quantile (2.1) but be a quantile conditioned on
age:

Q�(y|x) = F−1
y|x(�|x) = y�(x), (2.2)

where x is age. The most simple explanation for this formula is that for each � it
determines a function y�(x) bisecting the data such that, for any age x, 100�% of
the data lie below the value of the function at that age. The function defined in this
way splits the data into a � and a 1 − � proportion, which is based on the covariate
age. This model was first established by Koenker and Bassett (1978) by introducing
a linear quantile regression and explaining a first algorithm that is able to calculate
the parameters desired to choose a ˇ such that

Q�(y|X ) = Xˇ�,

with X being the covariate matrix just as in usual mean regression. In order to cut
off 100�% proportions sensibly in the case of the plot in the right panel of Figure 1,
the quantile regressions cannot simply consist of linear functions, since the relation
between age and BMI does not seem to be a linear one. In the following, we will use
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penalized splines (P-splines) (Eilers and Marx, 1996) in order to model the different
regression curves. P-splines are a special way of modelling non-linear effects. For a
detailed explanation see Fahrmeir et al. (2013).

2.2 Modelling the BMI of Dutch boys

In the following, both mean regression and quantile regression models will be applied
to the presented dataset.

2.2.1 Mean regression

The conventional non-linear regression model estimating the association of age with
the expected value of BMI was calculated with R-package mgcv (Wood, 2014).
As can be seen in Figure 2, the resulting curve lies in the centre of the data, but
is unaffected by the asymmetry of the data, which is especially pronounced at
higher ages.
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Figure 2 Scatterplot of age and BMI of the dataset Dutch boys with the regression line from a non-linear

Gaussian regression model

The assumptions for conventional mean regression models which are violated
quite obviously in this dataset are homoscedasticity and the symmetry of the
Gaussian distribution. In addition to the mean curve, the quantiles which are
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implied by the assumption of a Gaussian distribution are displayed for � =
(0.01, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 0.99). These are calculated based on the
variance obtained, when assuming a Gaussian distribution for the errors. These
quantile curves do not fit the data very well for low and high BMI, which
makes it even clearer that the assumption of parallel quantiles implied by the
constant variance assumed in conventional regression is not met at all in the data,
yet it is assumed in the requirements of the mean regression model. The BMI
of the boys varies more the older they get. This increase in variation is not
symmetrical. While the data is only slightly less dense for low BMIs, it is quite
sparse in higher BMIs. It is unfavourable that exactly the part of the distribution
which is of medical interest (i.e., potentially overweight children) is captured
so badly.

2.2.2 Quantile regression

When modelling the quantiles independently of distributional assumptions yet
conditional on the data (i.e., Q(Y|X)), we get the model as displayed in the right
panel of Figure 3. The quantile-specific regression curves show differences to the ones
extracted from the aforementioned Gaussian model in both aspects. The asymmetry
of the distribution is captured by the approach. If the distribution was symmetrical,
the distance between the median regression and the curve for � = 0.6 should be the
same as the difference between the median regression and the curve for � = 0.4.
The distance between � = 0.4 and � = 0.3 should be the same as the difference
between � = 0.6 and � = 0.7, etc. This assumption does not hold in any of the
quantile curves. The difference which is most obvious can be seen in the distance
between the first and second (i.e., the � = 0.01 and the � = 0.1) quantile and the
distance between the second to last and the last (i.e., the � = 0.9 and the � = 0.99)
quantile. This reflects the positive skewness of the data which was already visible
in Figure 1 in the left panel. The second central difference to the model shown
earlier is the capturing of the heteroscedasticity. Again, the effect is most pronounced
in the extremer quantiles: the increasing difference between the � = 0.01 quantile
and the � = 0.99 quantile shows drastically how the variance in the BMI increases
with increasing age. The difference in behaviour of the curves ultimately shows
the importance of the approach: deviations from a conditional normal distribution
could not have been captured without it. A second visualization of the fact that the
conditional distribution is skewed is Figure 4, in which we can see that the mean is
slightly above the median.

A third feature of quantile regression is the robustness against outliers. As can be
seen in Figure 4, the median regression simply divides the data into two 50% parts.
This figure also shows that the values scattered further away from the dense central
cloud (e.g., those close to 35) only have an influence on the 99% quantile regression
curve and not the more central curves. This, however, is not a problem since those
are the data points that should be captured and described when looking at the 1% of
the population with the highest BMI. The fact that the mean regression is above the
50% quantile regression curve is due to the long tail of the conditional distribution
of the BMI.
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3 Additive quantile regression

3.1 Data example II: Stunting in India

For the second data example, a dataset called india from the R package
gamboostLSS (Hofner et al., 2017) was used (please note that the original dataset
is publicly available on http://www.measuredhs.com after registration). It includes a
number of outcomes from an Indian study on malnutrition in children up to the age
of 3 which was conducted in the years 1998 and 1999. Since the process of growth is
inhibited by malnutrition, stunting itself can be used as indicator for nutritional status
of children. The outcome of interest in this case is hence stunted growth represented
by a z-score measuring growth ranging from −6 to 6, where negative values mean
that a child is too short for its age, which is an indicator of prolonged malnutrition.
Children with values below −2 are considered stunted (height-for-age). Since India
has a severe problem with malnutrition among children, the interest in this dataset is
very different from the the Dutch dataset. While the focus in the previous section was
on analysing the higher quantiles due to the interest in risk of overweight, in this case,
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Figure 3 Scatterplot of age and BMI of the dataset Dutch boys. Left hand side: the bold line is the

regression line from a non-linear Gaussian regression model, the other lines depict the

� = (0.01, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 0.99) quantiles of the mean regression model. Right hand side:

the lines depict the � = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99) quantile regression models
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Figure 4 Scatterplot of age and BMI of the dataset Dutch boys. The solid line displays the median

regression and the dashed line displays the mean regression

we are mainly interested in analysing the lower part of the distribution. The dataset
contains the ‘z-score’ of 4 000 children, and the covariate ‘age’ in months, the ‘BMI
of the mother’ and the ‘district’ the child was living in at the time of the study. The
model described in the following section will measure the impact of the covariates
on the z-score. For a further analysis of this dataset with a more content-related
interpretation, see for example Fenske et al. (2013). The same data example is used
in the tutorial article on boosting (Mayr and Hofner, 2018).

3.2 Modelling the Z-score of Indian children

The model presented in the previous section (i.e., a model with one continuous
explanatory variable) is a comparatively simple explanatory model. Quantile
regression methods were extended, however, in many different ways towards
more complex model classes, just like mean regression, such as for models with
measurement errors by Wei and Carroll (2009), time series by Kley et al. (2016),
or additive, partly non-linear models by Lee et al. (2010). For an overview over the
progress that has been made, see the paper of Koenker (2017); for the range of types
of effects that can be included in structured additive quantile regression, see Kneib
(2013). In the following, we present an additive model for the dataset on stunting in
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India described earlier. The model includes three covariates, being modelled in two
different ways. While the influence of the age of the child—just as for the Dutch boys
dataset—and the BMI of the mother will be modelled by P-splines (Eilers and Marx,
1996), the geographical differences will be modelled by a Markov random field. This
method allows all districts to have their own effect on the dependent variable (or
in our case the quantile of interest of the dependent variable), but it does not allow
neighbouring districts to vary too much from each other. This leads to a similar type
of penalization as in P-splines and thus also to a smooth surface (Fahrmeir et al.,
2004). The model formula hence looks like this:

Q�(ystunting|X ) = ˇ0 + f�nl(xage) + f�nl(xBMI) + f�spat(xdistrict),

where ˇ0 is an intercept and the f stands for non-linear (nl) and spatial (spat)
functions. Due to the predictor being a sum of different functions, this type of model is
called ‘additive model’. There are many different ways to estimate the effects of those
kinds of models, three of which will be listed in the next section. For this example, the
component-wise gradient ‘boosting’ approach (Fenske et al., 2011) with the following
call was used:

qr_boost <- gamboost(stunting ˜

age + BMI +

bmrf(district,"markov", bnd=india.bnd, center=F),

family = QuantReg(tau = 0.3),

data = india)

The call gamboost combined with the specification family = QuantReg(tau

= 0.3) produces an additive quantile regression model for the � = 0.3 quantile.
The algorithm is programmed such that it recognizes age and BMI to be continous
variables and thus automatically assigns them smooth non-linear effects. The inner
function bmrf(district,"markov", bnd=india.bnd, center=F) uses the
regions in the variable districts which are linked to an additional data object
india.bnd. This object is a so-called ‘boundary file’ which includes information
on the districts and their boundaries. The "markov" tells the function to use
the aforementioned Markov properties (i.e., values f�spat(xdistrict) from neighbouring
districts to be dependent in certain ways). The boosting algorithm can, besides
estimating the effects, also carry out variable selection. This feature will not be
described here in detail, but we note that it can be useful when dealing with a large
number of possibly influential variables and being interested in variable selection in
general. The models obtained by this algorithm have the advantage of a very good
interpretability.

A set of models with different quantile levels � = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.99)) was calculated. The estimated effects for these models are
illustrated by Figures 5–7. In Figure 5, the effect of age on the different quantiles
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Figure 5 Scatterplot of age and z-score of the dataset on stunting in India. The lines depict the

� = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99) quantile regression models adjusted for the rest

of the data

is displayed. In order to be able to plot the non-linear effects into one graph, each
quantile is shifted to the level of the predicted values for this quantile.

To this end, we use a centred version of the effect and then add the mean of
the conditional quantile (i.e., the average over the prediction for all individuals) of
interest. The different shape of the curves for different quantiles can be seen, just
like in Section 2. Especially, the steeper decline for the lowest quantile (� = 0.01)
in the early months attracts the attention. This indicates that malnutrition worsens
with increasing age in the lower part of the distribution, that is, for children who are
already in a more severe state. Figure 6 shows how in certain data situations, problems
can occur. In this case, the effect of the BMI of the mother on the z-score is displayed.
The estimation of the curves is increasing nearly linearly for lower BMI values, in
most quantiles. In high BMI values, the central quantile, curves are flattening out. In
the highest quantile, the impact of the BMI of the mother is rising until a BMI of 25
and then falling again. Estimations for higher levels of BMI of the mother are less
accurate, since there are fewer observations.

The problem can be illustrated by a simple example: there are 7 women that have
a BMI higher than 35. Thus, between 35 and 40, all 11 functions are estimated based
on those 7 data points, which is very little information. We hence try to construct
functions, which split 7 data points into 12 groups, without even informing one
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Figure 6 Scatterplot of the BMI of the mother and z-score of the dataset on stunting in India. The lines

depict the � = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99) quantile regression models adjusted for the

rest of the data

function about the position of the rest. When estimating the models independently
for the different quantiles (as we did here), this can even lead to the quantiles to
cross. For references to methods avoiding crossing see Section 4. Figure 7 displays
the spatial effects for the quantiles � = 0.2, � = 0.5 and � = 0.8. In all three plots,
the estimations are smooth in the sense that neighbouring districts do not differ very
much in terms of effects. Between quantiles, however, a few differences are present.
As an exemplary region Bihar was chosen. This region has a small frame around it
in the upper row of the figure and is displayed in more detail in the lower row of the
figure. While a negative trend can be spotted in the 0.2 and 0.5 quantiles, this effect
is not visible at all in the 0.8 quantile.

4 Implementations and related models

In this article a gradient boosting approach was used to produce the results for
the illustrative example. This could however have been done with many different
approaches, which will be explained in the following.

Quantile regression has many advantages, but a major disadvantage is that
parameters are harder to estimate than in Gaussian or generalized regression.
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Figure 7 Effect of the district on the � = 0.2, the � = 0.5 and the � = 0.8 quantiles. The framed part

contains the district of Bihar, which is further displayed in more detail

Inference on them can get complicated because the estimators for coefficients are
not available in closed form. There are many ways to estimate quantile regression
parameters; this will be sketched out in the following three ways. The first and original
way is a linear optimization algorithm and was brought forward by Koenker and
Bassett (1978) together with the original proposal. This approach is implemented
in the R-package quantreg (Koenker, 2016), which includes linear as well as
non-linear effects. Confidence intervals for the latter are based on piece-wise linear
approximations and when using too many effects, the algorithm shows instabilities
(Kneib, 2013). Model diagnostics rely on the construction of a statistic related to the
R2 in the mean regression case. The statistic is called R1 and uses the minimizers
of the check function for the models which have to be compared (Koenker and
Machado, 1999). A second option is using boosting algorithms (Fenske et al., 2011) to
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estimate sophisticated quantile regression models, which can handle a whole range
of different effects, such as linear, non-linear and spatial effects; however, it lacks
of a straight forward implementation of p-values and confidence intervals of the
estimated regression parameters. This algorithm is implemented in the R package
mboost (Hothorn et al., 2016). To find the optimal quantile regression model,
however, appropriate tuning parameters like the number of iterations the algorithm
has to perform have to be chosen. In the web-appendix, the example shown in this
article is presented with comments on how to deal with those requirements. Boosting
algorithms do not naturally produce p-values, but they can be generated post hoc.
The gradient boosting algorithm is used in this article because the functions in the
R package (Hothorn et al., 2016) are straightforward to apply. A third option is
to use Bayesian inference (see e.g., Yu and Moyeed, 2001). An implementation of
a structured additive model can be built in the stand-alone MCMC tool BayesX
(Belitz et al., 2013). Due to the Bayesian structure, the algorithm delivers distributions
of the estimated parameters. Uncertainty can hence be captured approximately,
but variances of parameters are usually underestimated (Waldmann et al., 2013).
Model diagnostics in Bayesian quantile regression do in general rely on the auxiliary
distribution and not a real distributional assumption. Comparison between models
is hence possible yet the comparison with models generated by other approaches is
not possible. The Bayesian model involves a well-calibrated specification of the prior
distributions and hyper parameters for optimal modelling. In most cases, they should
be chosen as little informative as possible. For more information on how to chose
appropriate priors and hyperprior parameters see, for example, Berger (2006). One
major drawback of quantile regression is that most estimation techniques can lead
to quantile crossing. This problem is mainly caused by the fact that those techniques
estimate the models for all quantiles independently. There are, however, methods
which prevent this problem, like for example the so-called quantile sheets Schnabel
and Eilers (2013).

Another form of regression that exceeds the form of simply modelling the mean
but does not have the issue of crossing quantiles is the generalized additive model for
location, shape and scale (GAMLSS Rigby and Stasinopoulos, 2005). For a tutorial
paper on this topic see Stasinopoulos et al. (2018). In this type of regression, all
parameters of the assumed distribution can be modelled by covariates. The model is
estimated as a whole, hence problems similar to the quantile crossing issue cannot
occur in this case. This method is in some cases more stable than quantile regression
(Kneib, 2013) and delivers similar results, as long as the assumed distribution is
close enough to the real data distribution. This can be checked either graphically or
by cross-validation. The Bayesian approach called distributional regression works
analogously to this approach (Umlauf and Kneib, 2018). A related idea which has
been explored less is the so-called Bayesian density regression (Dunson et al., 2007).
In this case, the distribution of the dependent variable does not have to be specified
beforehand but drawn in a Dirichlet process mixture scheme. A further model form
closely related to this kind of model are the so-called conditional transformation
models (Hothorn, 2018). Those models have the advantage of flexibly estimating the
conditional distribution of the variable of interest.
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There is one further model type which is very similar to quantile regression.
Expectile regression is a generalization of the mean regression in the same way
that quantile regression is a generalization of the median regression. The resulting
regression functions minimize asymmetrically weighted squared residuals, where the
weights are the same as the weights in quantile regression. The interpretation of those
models is slightly harder than for quantile regression yet it is very useful in the analysis
of financial risks, for example, the expected shortfall (Taylor, 2008).

5 Summary and Recommendations

Our goal in this article is to explain quantile regression in a simple way, in order
to provide some guidance in the decision for which research questions it should be
used. When only being interested in the mean and its characteristics and predictions,
standard tools can already provide enough information. Quantile regression on the
other hand is suitable for the following situations:

When being interested in events at the ‘limits of probability’: One example for this type
of question was described in this article using the data from studies on stunting and
obesity. Similar models were used in many publications such as in Fenske et al. (2011).
In general, many medical questions might not search for answers on the centre of a
distribution. Reliable results for extreme quantiles can however only be produced if
large datasets are available.

If the conditional distribution does not follow a known distribution: For approaches
such as GAMLSS or even glms, it is important to know the conditional distribution.
Datasets hardly ever follow those distributions perfectly. This is however only
important if the deviation changes the answers and if the focus is on the entire
conditional distribution. In case of doubts, it makes sense to simply run both types of
analyses (GAMLSS and quantile regression) and then compare the results. In many
cases, graphical analyses of the data will shed light on the question for the appropriate
distribution.

If there are a lot of outliers in the conditional distribution: Quantile regression is able
to cope with outliers better due to its robustness. Outliers only have an influence on
the quantile curves close to them.

In the case of heteroscedasticity: If the variance depends on the covariates, quantile
regression can capture this effect. Just like earlier, most datasets will slightly violate the
assumption of homoscedasticity and the model should be chosen based on the effect
this violation has. In this case, just like for violation of the distributional assumptions,
graphical analyses should be done to find out whether there is heteroscedasticity in
the dataset.
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