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SUMMARY

In longitudinal studies, measurements of the same individuals are taken repeatedly through time. Of-
ten, the primary goal is to characterize the change in response over time and the factors that influence
change. Factors can affect not only the location but also more generally the shape of the distribution of
the response over time. To make inference about the shape of a population distribution, the widely pop-
ular mixed-effects regression, for example, would be inadequate, if the distribution is not approximately
Gaussian. We propose a novel linear model for quantile regression (QR) that includes random effects in
order to account for the dependence between serial observations on the same subject. The notion of QR
is synonymous with robust analysis of the conditional distribution of the response variable. We present a
likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace
density. In a simulation study, the proposed method had an advantage in terms of mean squared error of
the QR estimator, when compared with the approach that considers penalized fixed effects. Following our
strategy, a nearly optimal degree of shrinkage of the individual effects is automatically selected by the
data and their likelihood. Also, our model appears to be a robust alternative to the mean regression with
random effects when the location parameter of the conditional distribution of the response is of interest.
We apply our model to a real data set which consists of self-reported amount of labor pain measurements
taken on women repeatedly over time, whose distribution is characterized by skewness, and the signifi-
cance of the parameters is evaluated by the likelihood ratio statistic.

Keywords: Asymmetric Laplace distribution; Clinical trials; Markov Chain Monte Carlo; Quantile regression;
Random effects.

1. INTRODUCTION

In the last few years, quantile regression (QR) has become a more widely used technique to describe the
distribution of a response variable given a set of explanatory variables. Median regression is a special
case. In their seminal work, Koenker and Bassett (1978) argued on the omnipresent Gaussian assumption
for the model error, and formalized asymptotic properties of the least absolute deviations estimator of the
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Quantile regression for longitudinal data 141

QR model for independent observations. A comprehensive guide of the subject is provided by Koenker
(2005).

The foundations of the methods for independent data are now consolidated, and some computational
commands for the analysis of such data are provided by most of the available statistical software (e.g.
R/S-PLUS, SAS, and Stata).

We explore the use of QR for the analysis of longitudinal data. These kinds of data occur in a wide
variety of studies, such as clinical trials, panel studies, and epidemiological surveys. The within-subject
variability due to the measurements on the same subject should be accounted for to avoid bias in the
parameter’s estimate. As motivating example, in Section 4 we consider a clinical trial study on the ef-
fectiveness of a medication for relieving labor pain. The marginal distribution of the response (Figure 2)
is characterized by a marked skewness. In addition, the skewness of the conditional distribution changes
sign over time. In such a case, the appropriateness of mean regression should be seriously questioned: it
would be highly inefficient to estimate the location, and, more important, entirely inadequate to estimate
the quantiles of the conditional distribution of the response.

We propose a method to estimate the parameter of conditional quantile functions with subject-specific,
location-shift random effects. This approach is analogous to estimating mean regressions with random
intercepts. We introduce a likelihood based on the asymmetric Laplace density (ALD), which provides
an automatic choice of the optimal level of penalization. In a simulation study, our strategy outperformed
some of the best competing models.

Several works have appeared in the literature that propose methods for repeated measurements data.
Koenker (2004) considered the penalized interpretation of the classical random-effects estimator in order
to estimate quantile functions with subject-specific fixed effects. The variability induced in the estimation
process by these effects was controlled by some forms of shrinkage, or regularization, whose degree and
type required a suitable choice of a penalization term. The application’s areas include reference charts
in medicine (Heagerty and Pepe, 1999; Cole and Green, 1992) and clinical trials (Robins and others,
1995; Lipsitz and others, 1997). Jung (1996) proposed a quasi-likelihood approach for median regression
estimation, where the dependency structure is modeled by the covariance matrix of the indicator functions.
Lipsitz and others (1997) made use of Jung’s work and described the use of QR methods to analyze
longitudinal data on CD4 cell counts, and following Robins and others (1995) accounted for missing
at random dropouts by weighting the generalized estimating equations. They estimated the regression
parameters’ standard errors by using the bootstrap.

The remainder of this paper proceeds as follows: in Section 2, we briefly present the conditional
quantile functions for independent data and the ALD. We then propose a model for repeated measurements
along with related inferential procedures. In Section 3, we present the results of a simulation. In Section 4,
we apply the methodology to clinical trial data, and, in Section 5, we conclude the paper with some final
remarks.

2. MODEL AND METHOD

2.1 The mean absolute error minimization and the ALD for independent data

Consider data in the form (xT
i , yi ), for i = 1, . . . , N , where yi are independent scalar observations of a

continuous random variable with common cumulative distribution function Fy , whose shape is not exactly
known, and xT

i are row p-vectors of a known design matrix X .
The linear conditional quantile functions are defined as

Gyi (τ |xi ) = xT
i β, i = 1, . . . , N , (2.1)

where 0 < τ < 1, Gyi (·) ≡ F−1
yi

(·), and β ∈ R
p is a column vector of length p with unknown fixed

parameters.
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142 M. GERACI AND M. BOTTAI

We refer to the τ th regression quantile as any solution β∗, β∗ ∈ Rp, to the minimization problem

min
β∈Rp

VN (β), VN (β) ≡
N∑

i∈(i :yi�xT
i β)

τ |yi − xT
i β| +

N∑
i∈(i :yi <xT

i β)

(1 − τ)|yi − xT
i β|. (2.2)

In order to highlight the τ -distributional dependency, the parameter β and the solution β∗ should be
indexed by τ , i.e. β(τ) and β∗(τ ). For sake of simplicity, however, we will omit this notation in the
remainder of the paper.

A possible parametric link between the minimization of the sum of the absolute deviates in (2.2) and
the maximum likelihood theory is given by the ALD. This skewed distribution appeared in the papers by
Koenker and Machado (1999) and Yu and Moyeed (2001), among others. We say that a random variable
Y is distributed as an ALD with parameters µ, σ , and τ , and we write it as Y ∼ ALD(µ, σ, τ), if the
corresponding probability density is given by

f (y|µ, σ, τ) = τ(1 − τ)

σ
exp

{
−ρτ

(
y − µ

σ

)}
, (2.3)

where ρτ (v) = v(τ − I (v � 0)) is the loss function, I (·) is the indicator function, 0 < τ < 1 is the
skewness parameter, σ > 0 is the scale parameter, and −∞ < µ < +∞ is the location parameter. The
support of the random variable Y is the real line. It should be noted that the loss function ρ assigns weight
τ or 1 − τ to the observations greater or, respectively, less than µ and that Pr(y � µ) = τ . Therefore, the
distribution splits along the scale parameter into two parts, one with probability τ to the left, and one with
probability (1 − τ) to the right. See Yu and Zhang (2005) for further properties and generalizations of this
distribution.

Set µi = xT
i β and y = (y1, . . . , yN ). Assuming that yi ∼ ALD(µi , σ, τ ), then the likelihood for N

independent observations is, bar a proportionality constant,

L(β, σ ; y, τ ) ∝ σ−1 exp

{
−

N∑
i=1

ρτ

(
yi − µi

σ

)}
. (2.4)

If we consider σ a nuisance parameter, then the maximization of the likelihood in (2.4) with respect to
the parameter β is equivalent to the minimization of the objective function VN (β) in (2.2). Thus, the ALD
proves useful as a unifying bridge between the likelihood and the inference for QR estimation. Koenker
and Machado (1999) introduced a goodness-of-fit process for QR and related inference processes, and they
also considered the likelihood ratio statistic under the parametric assumption of a Laplacean distribution
for the error term. For a full Bayesian approach, see Yu and Moyeed (2001), among others.

2.2 Use of random effects for longitudinal data

We now consider repeated measurements data in the form (xT
i j , yi j ), for j = 1, . . . , ni and i = 1, . . . , N ,

where xT
i j are row p-vectors of a known design matrix Xi and yi j is the j th scalar measurement of a

continuous random variable on the i th subject.
A possible penalized approach is offered by Koenker (2004), who proposed an l1 penalty term and

considered

min
α,β

N∑
i=1

ni∑
j=1

wρτ (yi j − xT
i jβ − αi ) + λ

N∑
i=1

|αi |, (2.5)

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/1/140/252234 by guest on 21 August 2022



Quantile regression for longitudinal data 143

where the weight w controls the relative influence of the τ th quantile on the estimation of the fixed
subject-specific effects αi , and λ is the penalization parameter.

The parameter λ represents a fundamental issue. Its value needs to be arbitrarily set, yet its choice
heavily influences the inference for the parameter β, as confirmed by the simulation results in Section 3.
Besides, following a penalized approach, estimating a τ -distributional individual effect would be imprac-
ticable. Also, as the sample size increases, so does the dimension of the parameter. We circumvented
these drawbacks by letting the location-shift effects be random and the parameter of their distribution be
dependent on τ .

We define the linear mixed quantile functions of the response yi j

Gyi j |ui (τ |xi j , ui ) = xT
i jβ + ui , j = 1, . . . , ni , i = 1, . . . , N , (2.6)

where Gyi j |ui (·) ≡ F−1
yi j |ui

(·) is the inverse of the cumulative distribution function of the response condi-
tional on a location-shift random effect ui .

We assume that yi j , conditionally on ui , for j = 1, . . . , ni and i = 1, . . . , N , are independently
distributed according to the ALD

f (yi j |β, ui , σ ) = τ(1 − τ)

σ
exp

{
−ρτ

(
yi j − µi j

σ

)}
, (2.7)

where µi j = xT
i jβ + ui is the linear predictor of the τ th quantile. In our model, the conditional quantile to

be estimated, τ , is fixed and known. The random effects induce a correlation structure among observations
on the same subject. We assume that the ui are identically distributed according to some density fu
characterized by a τ -dependent parameter ϕ (i.e. ϕ(τ)), and they are mutually independent. Also, we
assume that εi j are independent, and ui and εi j are independent of one another. In Section 2.4, we elaborate
on the distribution of the random effects.

Let yi = (yi1, . . . , yini ) and f (yi |β, ui , σ ) = ∏ni
j=1 f (yi j |β, ui , σ ) be the density for the i th subject

conditional on the random intercept ui . The complete-data density of (yi , ui ), for i = 1, . . . , N , is then
given by

f (yi , ui |η) = f (yi |β, ui , σ ) f (ui |ϕ), (2.8)

where f (ui |ϕ) is the density of ui and η = (β, σ, ϕ) is the parameter of interest.
If we let y = (y1, . . . , yN ) and u = (u1, . . . , uN ), the joint density of (y, u) based on N subjects is

given by

f (y, u|η) =
N∏

i=1

f (yi |β, ui , σ ) f (ui |ϕ).

2.3 Estimation

We obtain the marginal density of y by integrating out the random effects, leading to f (y|η) = ∫
RN f (y,

u|η)du. Thus, the inference about the parameter η should be based on the marginal likelihood, L(η; y) =∑N
i L(η; yi ). The latter involves an integral that, in general, does not have a closed form solution.
To estimate η, we propose a Monte Carlo EM algorithm, which has been widely applied to generalized

linear mixed models (LMMs) (see for example, Meng and Van Dyk, 1998; Booth and Hobert, 1999). The
presence of intractable integrals in the E-step can be overcome, at some computational expenses, by
using a sampler. Handling missingness due to nonresponse also represents an attractive feature of such an
algorithm (see for example, Ibrahim and others, 1999, 2001).

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/1/140/252234 by guest on 21 August 2022



144 M. GERACI AND M. BOTTAI

We write the E-step for the i th subject at the (t + 1)th EM iteration as

Qi (η|η(t)) = E{l(η; yi , ui )|yi ; η(t)}
=

∫
{log f ( yi |β, ui , σ ) + log f (ui |ϕ)} × f (ui |yi , η

(t))dui , (2.9)

where η(t) = (β(t), σ (t), ϕ(t)), l(η; yi , ui ) is the log likelihood for the i th observation, and the expectation
is taken with respect to the “missing” data ui , conditioned on the observed data yi .

The approximation of the expected value of the log likelihood can be carried out with a suitable Monte
Carlo technique, which depends on the target density to be sampled.

If the random effects were known and the model in (2.6) is correctly specified, we could define

Ṽi (β) =
ni∑

j∈( j : ỹi j�xT
i j β)

τ |ỹi j − xT
i jβ| +

ni∑
j∈( j : ỹi j <xT

i j β)

(1 − τ) |ỹi j − xT
i jβ|, (2.10)

where ỹi j = yi j − ui , and apply a linear programming algorithm to solve

min
β∈R p

ṼN (β), ṼN (β) ≡
N∑

i=1

Ṽi (β), (2.11)

since the ỹi j values would be no longer dependent.
Since the random effects are unobserved, we propose to take a sample vi = (vi1, . . . , vimi ) of size mi

from the density of the random effects conditional to the response

f (ui |yi , η) ∝ f (yi |β, ui , σ ) f (ui |ϕ), (2.12)

and to approximate the expected value in (2.9) with

Q∗
i (η|η(t)) = 1

mi

mi∑
k=1

l(η; yi , vik).

To obtain the maximum likelihood estimate of the parameter η for the τ th quantile model, we applied
the following iterative procedure:

Step 1: Initialize the parameter η(t) = (β(t), σ (t), ϕ(t)), set t = 0, and plug η(t) in (2.12);

Step 2: Draw a sample v(t)
i = (

v
(t)
i1 , . . . , v

(t)
imi

)
from f (ui |yi , η

(t)), for i = 1, . . . , N , independently, by
using a sampling technique, e.g. via the Gibbs sampler with the adaptive rejection sampling algorithm
(Gilks and others, 1995);

Step 3: Solve

argmin
β∈B

N∑
i=1

1

mi

mi∑
k=1

ni∑
j=1

ρτ (ỹ(t)
ik j − xT

i jβ),

where ỹ(t)
ik j = yi j − v

(t)
ik , set the solution of the minimization problem equal to β(t+1), and calculate

σ (t+1) = 1∑N
i=1 ni

1∑N
i=1 mi

N∑
i=1

mi∑
k=1

ni∑
j=1

ρτ (ỹ(t)
ik j − xT

i jβ
(t+1))
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and
ϕ(t+1) = 
̂(vi , . . . , vN ),

where 
̂ is the maximum likelihood estimate (estimator) of ϕ, conditional on y;

Step 4: Set t = t + 1 and repeat Steps 1–3 until the parameter η reaches the convergence.

The minimization problem in Step 3 is equivalent to a weighted QR with an offset and thus can be
easily solved. Then, at each iteration, η(t+1) is the maximum likelihood estimate of η, given η(t).

The sampling step, obviously, requires evaluating the Markov chain’s convergence (see for example,
Cowles and Carlin, 1996) and the sensitivity of the parameter’s estimates to different burn-in and sample
sizes. Alternative strategies for choosing the size of the Gibbs samples are available. One can consider a
constant size mi = m, for all i and each EM iteration, or increase mi at each EM iteration.

The availability of a parametric likelihood function allowed us to evaluate a likelihood ratio statistic
to test the null hypotheses H0: βl = 0, l = 1, . . . , p. A bootstrap method can also be used to obtain an
estimate of the standard error of the estimates of β and it can be implemented for longitudinal data by
regarding the matrix (yi , Xi ) as the basic resampling unit (Lipsitz and others, 1997). Buchinsky (1995)
studied the performance of various estimators for the asymptotic variance matrix for QR models and found
that the bootstrap procedure yielded the best results, performing well for relatively small samples and also
when the data exhibit heteroscedasticity.

2.4 Random effects distribution

In Section 1, we argued that the usual choice of the normal distribution for the error model is sometimes
questionable and, most important, leaves the estimation out to the influence of the outliers. The use of a
joint normal distribution within the mixed models simplifies considerably the analytical form of the ex-
pected value of the log likelihood when using the EM algorithm and thus reduces the time to convergence.
Robustness issues, however, apply to the random effects as well (see for example, Lange and others, 1989;
Richardson and Welsh, 1995; Richardson, 1997). For our model, we considered the normal distribution,
although it is possible to consider a vast range of symmetric as well as asymmetric distributions such as
the asymmetric Laplace. Simulation results are reported in Section 3.

Assume that ui ∼ N (0, ϕ), identically and independently for i = 1, . . . , N . The joint density of
(yi , ui ) for the i th subject is given by

f (yi , ui |η) = f (ui |ϕ)

ni∏
j=1

f (yi j |β, ui , σ )

=
{

τ(1 − τ)

σ

}ni 1√
2πϕ

exp

⎡⎣−
ni∑

j=1

{
ρτ

(
yi j − µi j

σ

)}
− 1

2ϕ
u2

i

⎤⎦. (2.13)

Note that the conditional distribution of the random effect f (ui |yi , η) ∝ f (yi , ui |η) is log-concave in
ui , where the definition of log-concavity here is derivative-free (Gilks, 1995), i.e. a function g, which is a
density with respect to Lebesgue measure and its domain D is an interval of the real line, is defined to be
log-concave if

ln g(a) − 2 ln g(b) + ln g(c) < 0, ∀ a, b, c ∈ D : a < b < c.

Thus, the Gibbs sampling in conjunction with the adaptive rejection sampling can be applied and the
Monte Carlo E-step carried out by sampling from f (ui |yi , η), for each subject i , i = 1, . . . , N .
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146 M. GERACI AND M. BOTTAI

The maximum likelihood estimator of ϕ, 
̂, at Step 3 of the iterative procedure presented in Section
2.3, is then given by


̂ = 1

N

1∑N
i=1 mi

N∑
i=1

mi∑
k=1

v2
ik .

Assuming that ui ∼ ALD(0, ϕ, 0.5), the joint density of (yi , ui ) for the i th subject would be

f (yi , ui |η) = f (ui |ϕ)

ni∏
j=1

f (yi j |β, ui , σ )

=
{

τ(1 − τ)

σ

}ni 1

4ϕ
exp

⎡⎣−
ni∑

j=1

{
ρτ

(
yi j − µi j

σ

)}
− 1

2ϕ
|ui |

⎤⎦ . (2.14)

The Gibbs sampling can be applied, since the conditional distribution f (ui |yi , η) derived from the joint
density in (2.14) is still log-concave in ui . Thus, the maximum likelihood estimator of ϕ is given by


̂ = 1

N

1∑N
i=1 mi

N∑
i=1

mi∑
k=1

ρ0.5(vik).

Note also that it is possible to consider ui ∼ ALD(0, ϕ, τu) and to estimate the degree of skewness τu of
the random effects in the case the assumption of symmetry of u is untenable.

Consider the median regression for example, i.e. τ = 0.5. If we set λ = σ/ϕ, the density in (2.14)
turns into

f (yi , ui |η) = 1

(4ϕ)ni +1 λni
exp

⎡⎣− 1

2σ

⎧⎨⎩
ni∑

j=1

(|yi j − µi j |) + λ|ui |
⎫⎬⎭

⎤⎦ ,

where the argument of the exponential has a similar form as in the penalized quantile regression (PQR)
in (2.5).

3. SIMULATION STUDY

We conducted a simulation study to evaluate the performance of the proposed method for two different
quantile functions, τ = 0.25 and τ = 0.5. We used N = 100 subjects and ni = n = 23, for i = 1, . . . , N ,
subject measurements. To generate the data, we used the location-shift model

yi j = 1 + 2xi j + ui + εi j , j = 1, . . . , 23, i = 1, . . . , 100. (3.1)

The xi j values were set equal to the values xi1 = 1, xi2 = 2, . . . , xi23 = 23, constant throughout the
simulation study.

Different probability distributions were considered for the error term: the standard normal, N (0, 1),
the Student’s t distribution with 3 degrees of freedom, t3, and the chi-square with 3 degrees of freedom,
χ2

3 . The random effects were generated by using a standard normal. For the data (yi , ui ), i = 1, . . . , 100,
generated using the model in (3.1), we assumed the joint density in (2.13) and we estimated the parameter
η = (β, σ, ϕ) using the method proposed in Section 2.3. We simulated 1000 replications from each
distribution of the error term.

For each replication, the Monte Carlo E-step was carried out via the Gibbs sampler (see Section 2.4)
with a constant sample size of mi = m = 5000, i = 1, . . . , 100, and a burn-in size of 2500.
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Quantile regression for longitudinal data 147

We compared the quantile regression with random effects (QRRE) with the PQR reported in (2.5),
using λ = 0.01, λ = 5, and λ → ∞. The latter is equivalent to the ordinary QR, in which the fixed
effects are fully shrunk to zero. The choice of these values was made empirically, since there are no
theoretically based or practically accepted guidelines as to how to choose the level of shrinkage. The ratio
of the estimated standard deviations of εi j and ui , when using the normal and the Student’s t distributions,
has been sometimes proposed as reference value for λ.

We also compared the proposed model with the ordinary LMM when the error term distribution was
symmetric (i.e. Normal and t-distribution). When the location model was of interest, comparing the perfor-
mance of the least squares with the least absolute estimators proved to be useful to evaluate the robustness
of our model.

In Table 1, for each estimator’s component β̂k , k = 0, 1, and for each model, we reported the estimated
relative bias averaged over the simulations,

b̂ias(β̂k) = 1

1000

1000∑
r=1

β̂
(r)
k − βk

|βk | ,

where β̂
(r)
k is the estimated quantile for the r th replication and βk is the corresponding true quantile of

the conditional distribution p(y|u). We also reported the estimated relative efficiency, averaged over the

Table 1. Estimated bias (b̂ias) and efficiency (êff ) for different error term distributions and quantile
models: PQR with penalization parameter taking values λ = 0.01, 5, and λ → ∞ (the latter
corresponds to ordinary QR), and QRRE. The LMM estimates are also reported for comparisons with
the location model. The results are based on 1000 Monte Carlo replications for each distribution of the

error term

Model τ = 0.25 τ = 0.5

β̂0 β̂1 β̂0 β̂1

b̂ias êff b̂ias êff b̂ias êff b̂ias êff

ε ∼ N (0, 1)

QRRE 0.0024 1.0000 0.0000 1.0000 0.0082 1.0000 0.0000 1.0000
PQR (λ = 0.01) 2.0910 1.5093 0.0001 1.1710 0.0000 1.3530 0.0000 1.1618
PQR (λ = 5) 1.6162 1.3565 0.0001 1.2448 0.0003 1.2082 0.0001 1.1801
QR −0.8421 1.1237 0.0000 1.6501 0.0032 1.0370 0.0000 1.4967
LMM — — — — 0.0032 0.8798 0.0000 0.7373

ε ∼ t3
QRRE −0.1392 1.0000 0.0001 1.0000 0.0043 1.0000 0.0001 1.0000
PQR (λ = 0.01) 2.8362 1.5503 0.0001 1.1655 −0.0003 1.4170 0.0001 1.1166
PQR (λ = 5) 1.9915 1.3361 0.0001 1.2398 −0.0009 1.3242 0.0002 1.2938
QR −1.3092 1.1212 0.0001 1.4947 −0.0016 1.2037 0.0002 1.7608
LMM — — — — −0.0015 1.1105 0.0001 1.9311

ε ∼ χ3

QRRE 0.0268 1.0000 −0.0001 1.0000 0.0192 1.0000 0.0000 1.0000
PQR (λ = 0.01) 0.3263 1.6483 −0.0001 1.1748 0.0096 1.3437 0.0000 1.1261
PQR (λ = 5) 0.2543 1.3966 −0.0001 1.2430 0.0128 1.2085 0.0001 1.2317
QR −0.0188 1.1545 −0.0001 1.6921 0.0385 1.1077 0.0000 1.2487
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148 M. GERACI AND M. BOTTAI

simulations, using the Monte Carlo variance of the QRRE model in the denominator

êffmodel(β̂k) = S2
model(β̂k)

S2
QRRE(β̂k)

,

where S2(β̂k) = 1
1000

∑1000
r=1 (β̂

(r)
k − β̄k)

2 and β̄k = 1
1000

∑1000
r=1 β̂

(r)
k .

The results show clearly that our method generally performs better than the other across the simu-
lated scenarios. The l1 penalization model performs as well as ours for some values of the penalization
parameter, but poorly for others, which is an undesirable situation in practical applications.

The relevance of the bias in the mean squared error is particularly evident for the estimates of the first
quartile. A poor choice for the penalization parameter may lead to large bias. In fact, in our simulations
the relative bias ranged from −0.01 to 2.83. It can be noted that, as λ increases, the bias of the penalized
regression decreases from large positive to large negative values. This suggests that there might be a
reasonable value of the penalization parameter that ensures no bias. It can be argued that our model
automatically provides a nearly optimal degree of shrinking. When estimating the first quartile, the loss
of efficiency of the penalized regressions, with respect to our model, ranged from 12 to 65% and from 17
to 69% for the intercept and the slope parameters, respectively.

The gap in terms of mean squared error between our model and the penalized regression decreased
when estimating the median. We observed a smaller loss of efficiency and a leveling off of the relative
bias for the symmetric distributions. The bias associated with the random effects QR, except for the case
in which the error was χ2 distributed, turned out to be slightly higher than the others. The reason might
be due to the Monte Carlo error that is less conspicuous when the estimated bias is high as in the case of
the first quartile.

As expected, the least-squares estimation outperforms the median regression when the error term is
normally distributed, but it yields highly inefficient estimates when the distribution has heavy tails.

A small simulation was also performed on the quantile τ = 0.75, and the results (not shown here)
were equivalent to the ones obtained for the first quartile.

4. LABOR PAIN DATA: COMPARISONS

The labor pain data were reported by Davis (1991) and successively analyzed by Jung (1996). The data
set consists of repeated measurements of self-reported amount of pain on N = 83 women in labor, of
which 43 were randomly assigned to a pain medication group and 40 to a placebo group. The response
was measured every 30 min on a 100-mm line, where 0 means no pain and 100 means extreme pain. A
nearly monotone pattern of missing data was found for the response variable and the maximum number
of measurements for each woman was six. In Figure 1, a boxplot shows the median pain over time for the
placebo and the medication groups. Some degree of distributional dependence on the temporal course of
the quartiles of the response is evident, especially for the placebo group.

Jung (1996) considered the median regression model

yi j = β0 + β1 Ri + β2Ti j + β3 Ri Ti j + εi j , (4.1)

where yi j is the amount of pain for the i th patient at time j , Ri j is the treatment indicator taking 1 for
placebo and 0 for treatment, and Ti j is the measurement time divided by 30 min, and εi j is a zero-median
error term.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/1/140/252234 by guest on 21 August 2022



Quantile regression for longitudinal data 149

Fig. 1. Boxplot of labor pain score for the placebo (solid, thick line) and the pain medication (solid, thin line) groups.

Let

Xi =

⎡⎢⎢⎣
1 Ri Ti1 Ri Ti1

...
...

...
...

1 Ri Tini Ri Tini

⎤⎥⎥⎦ , β = (β0, β1, β2, β3)
T , and yi = (

yi1, . . . , yini

)T
,

where ni (�6) is the last measurement time for the i th woman.
Figure 2 reports the triangular kernel estimates of the marginal density of the response in the entire

sample, in the pain medication, and in the placebo group. As optimal level of smoothing, the bandwidth
of the kernel function was set equal to twice its standard deviation. Other kernel functions (e.g. Gaussian,
rectangular, Epanechnikov, biweight, cosine) and different bandwidths were explored; they all showed
similar pictures. The resulting shapes are clearly far from the symmetric, bell-shaped normal distribution.
The estimated conditional densities for the pain medication and the placebo group appear to be very
different from one another. The former presents a high density peak toward the minimum of the pain
score scale, indicating that the treatment is effective. The estimated mean and median pain score are equal
to 18.87 and 9.00, respectively. The latter is approximately uniform, with estimated mean and median
pain score equal to 49.51 and 45.50, respectively.

Given the longitudinal nature of the observations, we should expect some degree of correlation be-
tween the measurements pertaining to the same subject. The application of random-effects regression
models to such data has a very widespread success. For the case at hand, however, the estimation of a
LMM would drive to misleading, inappropriate inferential results. In fact, the assumption of normality is
clearly unreasonable. Further, and most importantly, the median of the pain score might be more infor-
mative than the mean for such a skewed distribution, for the mean is highly influenced by unusually large
observations, which may occur with substantial probability in skewed populations.
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Fig. 2. The density of the labor pain score, estimated with a triangular kernel estimator, is plotted for the entire sample
(solid line), for the placebo group only (dotted line), and for the pain medication group only (dashed line).

We then estimated the median regression with random effects

Gyi |ui (0.5|Xi , ui ) = Xiβ + ui , i = 1, . . . , 83, (4.2)

where ui is a random intercept and, for (yi , ui ), we assumed the density given in (2.13). According to
the results of the simulation in Section 3, the model in (4.2) and the use of the normal Laplace joint
distribution should be superior to the LMM. The advantage is two-fold:

• the quantile model provides an estimate for the median, which is a more informative measure of central
tendency than the mean for such a skewed distribution;

• the quantile model makes no assumptions about the distribution of the residual error which allows
correct inference about other quantiles.

The Monte Carlo E-step was carried out via the Gibbs sampler with a constant sample size of 10 000,
and a burn-in size of 5000.

We also estimated the corresponding penalized median regression with fixed ui values. Lacking any
practical guidelines as to how to choose the penalizing constant, λ, we set it at two arbitrarily chosen
values, 0.01 and 5.

The estimates of the parameter β are reported in Table 2, along with the results of the quasi-likelihood
approach showed by Jung (1996) and the least-squares estimates of the random intercept model. The
significance of the parameter estimates was obtained by using a likelihood ratio statistic. According to
our fitted model, the baseline pain does not differ significantly between the two groups, while time and
its interaction with treatment affect the amount of pain. We also evaluated approximated 95% confidence
intervals by using a bootstrap technique with a sample of size 499, and no differences were observed.
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Table 2. Parameter estimates for the labor pain data

Method β0 β1 β2 β3

Median regression with random effects 14.66∗ 0.08 1.14∗ 10.15∗
Quasi-likelihood 4.36 −9.85 1.37 15.48∗
PQR (λ = 0.01) 6.50 2.17 0.50 10.17∗
PQR (λ = 5) 6.75 −0.15 0.25 11.45∗
Random-effects regression 12.98∗ 1.41 2.28∗ 9.74∗

*significant at 5% level.

Fig. 3. Boxplot of labor pain score. The lines represent the estimate of the quartile functions for the placebo group
(solid) and the pain medication group (dashed).

The median regression with random effects and the random-effects regression tally in terms of the
magnitude and the significance of the estimate of β. To some extent, this result supports the use of random
effects. Moreover, the rest of the QRs detected the significance of β3 only, which might be due to small
power.

By examining the plot in Figure 1, it is evident that a first-degree polynomial model does not ade-
quately describe the median pain score over time. We added square and cubic terms for both the time,
T , and the interaction between time and treatment, RT , to model (4.1). We also estimated the first and
the third quartiles and we used the Akaike information criterion (AIC) to evaluate the fit of each model.
The possibility to describe more generally the conditional distribution of the response through the esti-
mation of its quantiles, while accounting for the dependence among the observations, represents a great
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advantage of our models with respect to normal mixed regressions. The latter, in fact, cannot realistically
approximate the quantiles of a skewed or heavy-tailed distributions.

Figure 3 presents a summary of the QR results. The magnitude and the sign of the skewness of the
pain score distribution for the placebo group change over time. In fact, the skewness remains positive in
the interval between 30 and 90 min, circa, and it turns negative after 90 min. This result suggests that there
is a modest fraction of women that is more sensitive to pain or that is not influenced by the placebo in the
first halftime of the treatment, and a modest fraction of women that are less sensitive to pain or influenced
by the placebo in the second half. The skewness for the pain medication group is always positive and its
magnitude increases over time, suggesting that the medication is effective constantly over time for at least
half of the group. A more detailed analysis of the distributional composition of the two groups could be
extended to other quantiles. In general, however, the study of the tails of the distribution requires a suitable
number of observations to ensure stability of the estimates.

For the labor pain data, the lowest AIC value was obtained when adding the terms T 2, RT 2, and RT 3

for both the first quartile and the median. For the third quartile, the AIC was minimized when adding
the terms T 2, RT 2, and T 3. On one hand, the level of pain for the most sensitive women of the placebo
group seems to increase rapidly over time and then to stabilize at the median value, suggesting that they
did not experience a placebo effect or they did it to a lesser extent. On the other hand, the third quartile
of the medication group seems still on a rise at the end of the observational time. The estimate and
the significance of the coefficients (not shown here) of a polynomial of degree higher than one must be
interpreted with caution in this case. The value of the self-measured pain is, in fact, constrained to be less
than or equal to 100 and the curvature of the upper quartile for the placebo group might be unnatural.
These results, therefore, are purely an indication of the inadequacy of the model in (4.1).

We monitored convergence of the Gibbs sampler through the diagnostic techniques suggested by
Cowles and Carlin (1996) and we did not observe any lack of convergence. Lag-1 autocorrelation was
always within ±0.05 for the first and the third quartiles and within ±0.07 for the median model.

5. FINAL REMARKS

Extending the QR methods to include random effects is currently an active and promising area of re-
search. We proposed a novel linear QR model with a subject-specific random intercept that accounts for
within-group correlation. In order to estimate the model parameter, we applied an iterative procedure. At
each step, a sample from the conditional density of the random effects was drawn via a Gibbs sampler
with an adaptive rejection metropolis sampling algorithm. Then, the predicted random effects were sub-
tracted from the response variable and a simple linear programming algorithm was applied to estimate the
regression quantiles. Finally, we used the likelihood ratio statistic to test the null hypotheses that the fixed
effects are equal to zero. Alternatively, a bootstrap technique can be used to estimate the variance of the
β’s estimator.

In our experience, the ALD seems to be very promising within the regression quantile models, since
it clearly represents a suitable error law for the least absolutes estimator. Also, the regression median with
random effects is seen to be more efficient than the least-squares estimator in the LMM for any distribution
for which the median is more efficient than the mean in the location model.

Further studies should be aimed at alleviating the computational burden related to the presence of
the multiple integral with respect to the random effects. The combined use of generalized directional
derivatives and numerical integration techniques (e.g. the Clark derivative and the adaptive quadrature)
represents a possible solution to the maximization of the marginal likelihood, which could be easily im-
plemented with standard statistical languages such as R. The extensions to conditional quantile functions
with more than a single random effect and to the use of different link functions also represent interesting
areas of development.
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