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Abstract

Quantile regression is an increasingly popular method for estimating the
quantiles of a distribution conditional on the values of covariates. Regression
quantiles are robust against the influence of outliers, and taken several at a time,
they give a more complete picture of the conditional distribution than a single
estimate of the center. The current paper first presents an iterative algorithm
for finding sample quantiles without sorting and then explores a generalization
of the algorithm to nonlinear quantile regression. Our quantile regression al-
gorithm is termed an MM, or Majorize-Minimize, algorithm because it entails
majorizing the objective function by a quadratic function followed by minimiz-
ing that quadratic. The algorithm is conceptually simple and easy to code, and
our numerical tests suggest that it is computationally competitive with a recent
interior point algorithm for most problems.

Key words and phrases: L1 regression, majorization, EM algorithm, Gauss-
Newton method.

1 Introduction

The fact that the median µ1/2 of a random variable Y minimizes the expectation

f(µ) = E (|Y −µ|) is well known among theoretical statisticians (Casella and Berger,

1990). Perhaps less well known is that this characterization of the median forms

the basis of an iteratively reweighted least squares algorithm for finding the sample

median of n numbers y1, . . . , yn without sorting (Borg and Groenen, 1997; Heiser,

1995; Mosteller and Tukey, 1977; Press et al., 1986). If µk
1/2 is the kth iterate of this

classical algorithm, then the next iterate is

µk+1
1/2 =

∑n
i=1 wk

i yi∑n
i=1 wk

i

, (1)

where wk
i = |yi − µk

1/2|
−1.

To generalize this algorithm to an arbitrary sample quantile µq, consider the

following heuristic argument. Assuming that wi = |yi − µq|−1 is well defined for

each i, note that wi(yi − µq) = ±1 depending on whether yi > µq or yi < µq. Since
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nq of the yi should be less than the q quantile µq, it follows that

n∑
i=1

(yi − µq)wi = −nq + n(1− q).

Rearranging, we obtain the algorithm

µk+1
q =

n(2q − 1) +
∑n

i=1 wk
i yi∑n

i=1 wk
i

(2)

analogous to equation (1).

We will not attempt to make this illustrative argument rigorous. A flaw of the

algorithm is that the weight wk
i is undefined whenever yi = µk

q . In mending this flaw,

we will modify and generalize the algorithm so that it applies to the broader prob-

lem of quantile regression as defined by Koenker and Bassett (1978). The general

algorithm we propose depends on a technique called Majorization-Minimization, or

MM, in the rejoinder to the paper of Lange et al. (2000). Section 2 of the current

paper presents a brief overview of the MM principle. In Section 3, we define regres-

sion quantiles and discuss the application of an MM algorithm to the problem of

computing them. Section 4 sketches theory governing the convergence of the algo-

rithm, and Section 5 describes numerical tests of the algorithm. The main body of

the paper ends with a discussion of the comparative merits of the algorithm. All

mathematical proofs appear in the appendix.

2 MM Algorithms

The technique of using majorizing functions to perform minimization is at least

thirty years old (Ortega and Rheinboldt, 1970, p. 253) and has surfaced from time

to time in the statistical literature. The best-known example of an MM algorithm

is the EM algorithm for maximum likelihood estimation in the presence of missing
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data (Dempster et al., 1977). In the case of EM though, MM stands for Minorize-

Maximize instead of Majorize-Minimize because the goal is maximization, not min-

imization. Examples of the MM algorithm not involving missing data can be found,

for example, in de Leeuw (1994), Heiser (1995), Becker et al. (1997), and Lange et

al. (2000). In essence, the MM algorithm replaces a difficult optimization problem

by a sequence of easier optimization problems. In most cases, the solutions of the

substitute problems converge to a solution of the original problem.

To expose the nature of the MM algorithm, suppose we want to minimize the

objective function L(θ) : Rp → R. If θk denotes the current iterate in finding

the minimum point, then as the name suggests, the Majorize-Minimize algorithm

proceeds in two steps. First, we create a surrogate function Q(θ | θk) : Rp×Rp → R

satisfying

Q(θk | θk) = L(θk) (3)

Q(θ | θk) ≥ L(θ) for all θ. (4)

The function Q(θ | θk) is said to majorize L(θ) at θk. In what follows, we always

understand the current iterate θk to be a constant; thus, through a slight abuse

of notation, Q(θ | θk) denotes the function θ 7→ Q(θ | θk) on Rp. In the second

step in the MM algorithm, we choose θk+1 to minimize Q(θ | θk). In general, it is

a challenge to construct a good surrogate function which simultaneously majorizes

L(θ) at θk and is itself easy to minimize. This is exactly what is accomplished by

the E step of a well-conceived EM algorithm, though of course the object of an EM

algorithm is maximization, not minimization.

Defining the next iterate θk+1 to minimize Q(θ | θk) implies in particular that

Q(θk+1 | θk) ≤ Q(θk | θk). (5)
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This inequality plus conditions (3) and (4) entail the descent property

L(θk+1) ≤ L(θk). (6)

Equality can hold in inequality (6) only if equality holds in inequality (5). The

descent property lends MM algorithms their remarkable numerical stability.

As an illustration of the MM principle, we return to the quantile-finding algo-

rithm (2). The q quantile of an integrable random variable Y minimizes the function

E [ρq(Y − µ)], where

ρq(r) = |r|
[
q1{r≥0} + (1− q)1{r<0}

]
= qr − r1{r<0}. (7)

Although long known, this fact has “languished in the status of curiosum—appearing

for example as an exercise in Ferguson (1967, p. 51),” as Koenker and Bassett

(1978) put it. Because the statistical literature seems to lack a rigorous proof of this

principle that does not impose unnecessary distributional assumptions on Y such

as the existence of a density, we prove it as Proposition 1 in the appendix. The

empirical version of the principle says that a sample q quantile µq of n numbers

y1, . . . , yn is a minimizer of the function L(µ) =
∑n

i=1 ρq(yi − µ).

For example, if n = 5, q = 1/4, and the sample consists of the points 1, 3, 4, 8,

and 10, then the objective function L(µ) is pictured in Figure 1. Given the value of

the current iterate µk 6∈ {1, 3, 4, 8, 10}, one can construct a majorizing function by

specifying for each i the unique quadratic curve tangent to the graph of ρq(yi − µ)

at the points µ = ±µk, namely

ζq(yi − µ | yi − µk) =
1
4

[
(yi − µ)2

|yi − µk|
+ (4q − 2)(yi − µ) + |yi − µk|

]
. (8)

Summing equation (8) over i gives a surrogate function Q(µ | µk), which when

minimized yields the update (2). As Figure 1 depicts, Q(µ | µk) majorizes L(µ) at
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Figure 1: The lower, piecewise linear function is the objective function for the 1/4
quantile of the points {1, 3, 4, 8, 10}. The upper curve is the majorizing surrogate
function Q(µ | µk) corresponding to µk = 6.

the point µ = µk. Verboon (1994) discusses MM algorithms for robust regression,

among them the algorithm using the majorizer (8) in the case q = 1/2. Heiser

(1995) and Borg and Groenen (1997) also depict this algorithm for q = 1/2.

In closing this section, we reiterate that the algorithm (2) highlighted in the

preceding example suffers from the fact that ρq(yi − µk) = 0 when yi = µk. The

importance of this shortcoming is underscored by the fact that for nq not an integer,

{µk} should converge to one of the yi. In the case q = 1/2, several authors (Mosteller

and Tukey, 1977; Lange and Sinsheimer, 1993; Heiser, 1995) suggest bounding the

terms ρq(yi − µk) away from zero, but of course this changes the weights and the

algorithm, and care must be taken to ensure that the desirable descent property of

the MM algorithm is not destroyed. The vexing problem of zero residuals persists

in the more general setting of quantile regression.
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3 Quantile Regression

Koenker and Bassett (1978) define a regression quantile as any vector θ̂ ∈ Rp mini-

mizing the sum

L(θ) =
n∑

i=1

ρq [yi − fi(θ)] .

To simplify notation, we define the ith residual ri(θ) = yi − fi(θ). Often, we will

simply write ri, omitting the explicit dependence on θ. In the case of linear quantile

regression, xi will denote the ith row of the n × p matrix X of covariates; in this

notation, fi(θ) = xiθ. In general, we will assume that each fi(θ) : Rp → R is con-

tinuously differentiable with differential dfi(θ). Since L(θ) is nonnegative, it must

have an infimum; however, there is no guarantee that the infimum is actually at-

tained. To ensure that a regression quantile actually exists, we impose the technical

condition

lim
‖θ‖→∞

n∑
i=1

fi(θ)2 = ∞. (9)

For q = 1/2, quantile regression is least absolute deviation, or L1, regression.

Many authors have studied L1 regression, particularly in the linear case (Bassett and

Koenker, 1978; Rousseeuw and Leroy, 1987; Schlossmacher, 1973). For arbitrary q,

a regression quantile θ̂ provides an intuitively appealing estimate of the q quantile

of Y through the functions fi(θ). For example, if fi(θ) = f(xi, θ) with the xi as

predictors, then Ŷ = f(x, θ̂) is an estimate of the conditional quantile of Y given

data x.

Alternative methods for estimating conditional quantiles exist (Cole, 1988; Efron,

1991; He, 1997), but the sole focus of this paper is quantile regression. Regression
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quantiles are attractive not only because they are robust against non-Gaussian er-

rors in a way that least squares estimates are not — a well-known feature of L1

regression — but also because several quantiles convey a more complete picture of

the conditional distribution of the dependent variable than the single mean derived

from a traditional least squares approach. Applications of quantile regression, par-

ticularly in econometrics, (Buchinsky, 1995; Eide and Showalter, 1998; Taylor and

Bunn, 1998) have advanced hand in hand with theory (Koenker and Bassett, 1982;

Powell, 1986; Portnoy and Koenker, 1989). These advances, along with the obvious

popularity of quantile regression as a tool for analyzing large data sets, motivate the

search for improved methods of quantile regression (Portnoy and Koenker, 1997).

The objective function L(θ) in (9) is difficult to minimize because it can admit

multiple minima and because the underlying function ρq(r) is nondifferentiable at

r = 0. Our approach to this minimization problem is first to construct a function

that approximates L(θ) very closely and then to use an MM algorithm to minimize

the approximating function. The first stage is hardly new; several authors have

proposed approximations to the objective function L(θ) when q = 1/2 (Merle and

Späth, 1974; El-Attar et al., 1979; and Madsen and Nielsen, 1990). However, even

twice-differentiable approximations tend to be hard to minimize by standard meth-

ods. The novelty of our approach consists of combining a good approximation with

an MM algorithm.

Starting with the function ρq(r) which underlies L(θ), we define for ε > 0 the

perturbation

ρε
q(r) = ρq(r)−

ε

2
ln (ε + |r|) . (10)
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Then the sum

Lε(θ) =
n∑

i=1

ρε
q(ri) (11)

approximates L(θ). It turns out that for a given residual value rk = r(θk) at iteration

k, ρε
q(r) is majorized at rk by the quadratic function

ζε
q(r | rk) =

1
4

[
(r)2

ε + |rk|
+ (4q − 2)r + c

]
, (12)

where c is a constant chosen so that ζε
q(r

k | rk) = ρε
q(r

k). We prove this claim

as Proposition 2 in the appendix. The MM algorithm operates by minimizing the

majorizer

Qε(θ | θk) =
n∑

i=1

ζε
q(ri | rk

i ) (13)

with respect to θ. The minimizer becomes the next iterate θk+1. Figure 2 con-

tinues the example depicted in Figure 1 and displays the objective function L(µ),

the approximant Lε(µ), and the quadratic majorizing function Qε(µ | µk) for the

relatively large choice ε = 1/5.

The fact that Qε(θ | θk) is quadratic in the residuals ri does not imply that it

is quadratic in θ unless the fi(θ) are linear. In the linear case, we can explicitly

solve for θk+1; otherwise, we usually settle for driving Qε(θ | θk) downhill rather

than finding its minimum. This compromise preserves the descent property (6).

Note that we still use the term MM to describe an algorithm in which the second

step consists of merely decreasing the majorizer instead of actually minimizing it.

Although one step of Newton’s method is a natural choice for driving Qε(θ | θk)

downhill, it suffers two drawbacks. First, if the Hessian d2Qε(θ | θk) fails to be

positive definite at θk, then one step of Newton’s method may actually increase
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Figure 2: Continuing the example depicted in Figure 1, L(µ) is a piecewise linear
objective function (a), Lε(µ) is the approximant (b) to the objective function, and
Qε(µ | µk) is the surrogate (c) majorizing the approximant at µk = 6. Here, ε = 1/5.

Qε(θ | θk) as a function of θ. Second, calculation of d2Qε(θ | θk) requires the second

differentials d2fi(θ) of the various regression functions. These second differentials

may be cumbersome and time consuming to evaluate.

Instead, we take a Gauss-Newton approach (Kennedy and Gentle, 1980) and

approximate d2Qε(θ | θk) by

d2Qε(θ | θk) =
1
2

n∑
i=1

[
1

ε + |rk
i |

dri(θ)tdri(θ) +

(
ri

ε + |rk
i |

+ 2q − 1

)
d2ri(θ)

]

≈ 1
2

n∑
i=1

1
ε + |rk

i |
dri(θ)tdri(θ). (14)

Since dri(θ) = −dfi(θ), this approximation is exact when all fi(θ) are linear. We

may write (14) succinctly as

d2Qε(θ | θk) ≈ 1
2
df(θ)tWε(θk)df(θ),
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where df(θ) is the n × p matrix with entry ∂
∂θj

fi(θ) in row i and column j, and

W k
ε (θ) is an n×n diagonal matrix with ith diagonal entry [ε+ |rk

i (θ)|]−1. Given the

first differential

dQε(θ | θk) =
1
2

n∑
i=1

[
ri

ε + |rk
i |

+ 2q − 1

]
dri(θ)

=
1
2
vε(θ)df(θ), (15)

where

vε(θ) =
(

1− 2q − r1(θ)
ε + |r1(θ)|

, · · · , 1− 2q − rn(θ)
ε + |rn(θ)|

)
,

the Gauss-Newton step direction is

∆k
ε = −[df(θk)tWε(θk)df(θk)]−1df(θk)tvε(θk)t. (16)

In the special case of linear regression functions fi(θ) = xiθ, the matrix df(θ) = X,

and θk+1 = θk + ∆k
ε exactly solves the equation dQε(θ | θk) = 0.

Although the matrix df(θk)tWε(θk)df(θk) seen in (16) is positive definite when-

ever the differential df(θk) has full rank, there is no guarantee that θk + ∆k
ε will

reduce the value of the surrogate function Qε(θ | θk) as required. However, if we

take an appropriate fractional step size αk ∈ (0, 1], then the iterate

θk+1 = θk + αk∆k
ε (17)

is guaranteed to decrease the value of the surrogate function. For instance, the

tactic of step halving dictates that

αk = max {2−ν : Qε(θk + 2−ν∆k
ε | θk) < Qε(θk | θk), ν ∈ N}, (18)

where N denotes the set of nonnegative integers. When ∆k
ε = 0, the algorithm is

at a stationary point, and we interpret αk = 1.

Actual implementation of the MM algorithm, then, involves the following steps:
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1. Select a starting value θ0 and small constant ε. Set k = 0.

2. Define θk+1 as in equation (17), where αk and ∆k
ε are given in equations (18)

and (16).

3. Replace k by k + 1; if convergence criterion is not met, return to step 2.

We defer further discussion of the selection of θ0, ε, and the convergence criterion

until Section 5.

4 Convergence Results

For theoretical purposes, it is helpful to confine attention to a compact subset Ω

of parameter space. The next proposition, proved in the appendix, shows how this

goal can be achieved.

Proposition 3 Let θ0 be an arbitrary point of Rp. The compact set

Ω = {θ ∈ Rp : L1(θ) ≤ L(θ0) + n} (19)

contains all θ satisfying L(θ) ≤ L(θ0) or Lε(θ) ≤ Lε(θ0) for any ε ∈ (0, 1]. In

particular, Ω contains all iterates of any MM algorithm beginning at θ0 and all

minimizers of L(θ) and Lε(θ) for all ε ∈ (0, 1].

In light of the proposition, we make the harmless assumption that ε is restricted to

the interval (0, 1].

We now consider the two theoretical issues of whether the algorithm (17) is

guaranteed to minimize the function Lε(θ) and how close a minimum of Lε(θ) is to

a minimum of the original objective function L(θ). The answer to the first question

is, in general, no. However, for linear quantile regression the following proposition

holds.
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Proposition 4 For linear quantile regression with a full-rank covariate matrix X,

the algorithm (17) converges to the unique minimizer of Lε(θ).

Several factors complicate the theoretical analysis of nonlinear quantile regres-

sion. First, the objective function Lε(θ) need not be strictly convex and conse-

quently may not possess a unique stationary point. In practice, many different

starting values θ0 could be used to determine the global minimum. Second, step

halving comes into play in the definition (18) of αk. This spoils the continuity of

the map θk 7→ θk+1, which is used in a fundamental way in the proof of Proposition

4.

If we are willing to assume that Qε(θ | θk) is strictly convex in θ, then we may

follow Lange (1995) and define

αk = arg min
α∈[0,1]

Qε(θk + α∆k
ε | θk).

This preserves continuity of the θk 7→ θk+1 map, and it follows by the same argument

used in the proof of Proposition 4 that all limit points of the modified algorithm

are stationary points of Lε(θ). If Lε(θ) is also strictly convex, then it has at most

a single stationary point, and this minimum point is the limit of the algorithm. Of

course, in many nonlinear problems there is no reason to assume that either the

surrogate function or the objective function is strictly convex. However, we have

yet to see a practical example in which the algorithm fails to converge properly.

We now comment on the price paid for replacing the objective function by a

differentiable approximation. The following proposition explicitly bounds the dif-

ference between the minimum of L(θ) and its value at a minimizer of Lε(θ).
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Proposition 5 Let d = 1 + sup{|ri(θ)| : θ ∈ Ω, 1 ≤ i ≤ n}. If εd < 1, then

|L(θ)− Lε(θ)| ≤ −εn

2
ln ε (20)

for all θ ∈ Ω. If θ̂ and θ̂ε minimize L(θ) and Lε(θ), respectively, then

L(θ̂ε)− L(θ̂) ≤ −εn ln ε. (21)

Putting a bound on ‖θ̂ε− θ̂‖ proves more difficult because the objective function

L(θ) may be nearly flat in the neighborhood of a minimum. However, we prove in

the appendix the following proposition.

Proposition 6 If θ̂ε minimizes Lε(θ), then any limit point of {θ̂ε} as ε tends to 0

minimizes L(θ). If L(θ) has a unique minimizer θ̂, then limε→0 θ̂ε = θ̂.

5 Numerical Results

This section summarizes the results of several numerical tests of the MM algorithm.

As a benchmark for comparison, we also test the interior point algorithm of Koenker

and Park (1996). Their method is a primal-dual algorithm, with a dual loop nested

within the main primal loop. As recommended by Koenker and Park, we take

two dual iterations for each primal iteration and declare convergence whenever the

change |L(θk) − L(θk+1)| in the value of the objective function between successive

primal iterations is less than a specified tolerance τ . Additionally, each primal

iteration calls for a line search along a specified direction. We use the MATLAB

function fmin with a range of (−1, 1) for this purpose. Koenker and Park do not

specify how large a range to use; larger ranges seem to lead to more convergence

failures of the type seen in the Rosenbrock problem of Table 1.
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Problem Starting θ Thousands of FLOPs (final value of L̂)
[p, n] q = 0.05 q = 0.25 q = 0.5

Bard (1, 1, 1)t 65.0 (0.035253) 26.4 (0.083237) 13.7 (0.062171)
[3, 15] 38.1 (0.035251) 38.5 (0.083095) 45.3 (0.062169)
Beale (1, 0)t 17.8 (4.4× 10−6) 3.9 (3.4× 10−7) 1.1 (0)
[2, 3] 9.6 (2.6× 10−14) 9.6 (1.3× 10−13) 9.7 (7.7× 10−13)

Biggs (b) (1, 8, 2, 272.6 (4.5× 10−6) 56.6 (4.3× 10−7) 39.6 (7.8× 10−16)
[6, 13] 2, 2, 2)t 114.6 (2.5× 10−12) 99.9 (3.4× 10−12) 115.8 (1.2× 10−14)
Brown (25, 5, 453.5 (45.1617) 263.8 (2.25809) 231.7 (451.617)
[4, 20] −5,−1)t 2169.4 (45.1972) 1795.8 (2.25818) 1276.6 (451.627)

El-Attar 1 (1, 2)t 12.6 (0.050003) 2.3 (0.2500005) 3.3 (0.235212)
[2, 3] 7.0 (0.0500000) 6.9 (0.2500000) 8.8 (0.235212)

El-Attar 2 (1, 1, 1)t 73.5 (0.447807) 14.5 (2.23900) 7.0 (4.17724)
[3, 6] 27.6 (0.447803) 12.0 (2.25773) 24.0 (3.96668)

Madsen (3, 1)t 33.3 (0.0500091) 9.2 (0.250001) 5.5 (0.500000)
[2, 3] 17.8 (0.0500002) 19.4 (0.250000) 19.7 (0.500000)

Osborne 1 (.5, 1.5,−1, 235.4 (0.0023885) 145.3 (0.010336) 445.1 (0.014696)
[5, 33] .01, .02)t 107.3 (0.0023876) 136.8 (0.010247) 167.2 (0.014696)

Osborne 2 (1.3,.65,.65,.7,.6, 1307.4 (0.104347) 1476.0 (0.402505) 922.4 (0.577625)
[11, 65] 3,5,7,2,4.5,5.5)t 1165.9 (0.099585) 1281.3 (0.402503) 1464.3 (0.577624)
Powell (3,−1, 0, 1)t 61.0 (4.1× 10−6) 14.2 (3.7× 10−7) 6.6 (1.0× 10−7)
[4, 4] 32.9 (1.6× 10−7) 35.9 (2.0× 10−7) 38.9 (1.0× 10−7)

Rosenbrock (−1.2, 1)t 17.2 (4.1× 10−6) 3.3 (4.9× 10−7) 1.4 (0)
[2, 2] Failed to converge 14.3 (6.7× 10−15) Failed to converge

Watson (1, 1, 1, 1)t 345.2 (0.286020) 172.1 (0.399931) 99.0 (0.300928)
[4, 31] 741.2 (0.286496) 735.1 (0.399962) 260.6 (0.301057)
Wood (0, 0, 0, 0)t 75.1 (4.1× 10−6) 24.4 (4.4× 10−7) 13.2 (0)
[4, 6] 16.1 (3.6× 10−14) 25.1 (2.7× 10−14) 33.1 (4.5× 10−15)

Wormersley (0, 0)t 316.3 (0.602977) 62.9 (1.82720) 27.5 (1.51627)
[2, 40] 132.1 (0.598418) 151.3 (1.68123) 64.8 (1.51627)

Table 1: Thousands of FLOPs required until convergence and final objective function
values L̂ for test problems of Koenker and Park (1996). In each cell, the MM results
are on the first line and the interior point results are on the second line.

To test the performance of the MM algorithm on numerical data, several details

must be clarified. First, how is convergence declared? Second, how is ε chosen?

Third, how is the initial parameter vector θ0 chosen? Once these issues are ad-

dressed, then the algorithm set forth at the end of Section 3 can proceed.

By analogy to the convergence criterion of the interior point algorithm given by

Koenker and Park (1996), we declare convergence for the MM algorithm whenever

Qε(θk | θk)−Qε(θk+1 | θk) < τ. (22)

Alternatively, one might adopt a scale-invariant convergence criterion which stops
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the algorithm when ∣∣∣∣∣Qε(θk | θk)−Qε(θk+1 | θk)
Qε(θk | θk)

∣∣∣∣∣ < τ.

Because several of our examples involve an objective function which converges in

value to zero, we use criterion (22) for our examples. We also let τ guide the selection

of ε; in light of Proposition 5, we choose ε to satisfy εn| ln ε| = τ . Finally, we start

the MM algorithm near an ordinary least squares solution unless otherwise specified.

This is easy to do since a least squares solution may be approximated by replacing

Wε(θk) by the identity matrix and vε(θ)t by the residual vector y − f(θ) in the

update (16) for several iterations at the start of the algorithm. In the linear case, a

single iteration suffices. We caution the reader that the least-squares starting value

is essentially arbitrary, chosen for convenience only, and is not guaranteed to be

close to the global minimum. If one suspects that there are multiple local minima,

then one can start the algorithm from several different randomly chosen points in

an attempt to find the global minimum.

Comparisons between the MM algorithm and the interior point algorithm cannot

safely be made on the basis of iteration counts alone. MM algorithms tend to trade

fewer arithmetic operations per iteration for more total iterations. Neither is CPU

time an adequate measure of performance since different systems and even different

compilers on the same system will run the same code at different speeds. Therefore,

we opt for the number of FLOPs, or floating point operations, as the basis for

comparison and code all examples in MATLAB, which counts FLOPs automatically.

This is not a perfect solution; for example, MATLAB fails to count certain operations

such as taking the maximum of n numbers, an operation used extensively by the

interior point method. However, in our opinion, FLOPs provide the fairest basis for
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comparison.

For both the MM algorithm and the interior point method, we use a value of

τ = 10−6. Because most MM algorithms typically show very slow convergence in

the neighborhood of an optimum point, this value represents a compromise between

the competing desires for precise answers and quick convergence.
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Figure 3: log10 of mean FLOP count for 10 runs of both methods on a linear problem
for various values of q, p, and n. Solid dots represent MM runs; open circles represent
interior point runs.

Table 1 displays the results of numerical tests of the two algorithms on the 14

nonlinear problems listed by Koenker and Park (1996). Most of these problems are

fairly small, but together they represent a wide range of nonlinear objective func-

tions. Overall, neither algorithm is clearly faster. Similarly, the quality of solutions

seems comparable based on the values of the objective functions at convergence.

Note that exact solutions are known whenever all residuals may be simultaneously

zero, as is the case in the Beale, Biggs, Powell, Rosenbrock, and Wood problems. In
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such cases, we consider solutions such as 4 × 10−6 correct because they are on the

order of the choice τ = 10−6 used to declare convergence.

Although neither of the two algorithms consistently outpaces the other or pro-

duces more accurate solutions in the problems of Table 1, the MM algorithm is

the more stable of the two. The interior point method fails to converge for the

Rosenbrock problem for q = 0.05 and q = 0.5.
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Figure 4: Ratio of L(θ̂) found by the MM algorithm to L(θ̂) found by the interior
point method for various values of q, averaged over 100 repetitions. The problem
used here is linear with n = 100 and p = 5.

Because most of the problems of Table 1 are quite small, we consider two addi-

tional problems which can be scaled up to any desired size. Let X be an n× p pre-

dictor matrix, each of whose entries is independently uniformly distributed in (0,1).

The response vector Y consists of entries yi = fi(xi, θ) + εi, where θ = (1, . . . , 1)t

and the εi are independent and normally distributed with zero mean and variance

0.01. For each problem, we use the zero vector as the starting value of θ0.
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The first problem is linear; that is, yi = xiθ + εi. Figure 3 displays the log-

arithm base 10 of the mean FLOP counts for 10 repetitions of each problem for

q ∈ {0.05, 0.25, 0.5}, p ∈ {5, 20}, and n ∈ {200, 400, 600, . . . , 2000}. The graph

shows a small but consistent gap indicating that the interior point method usually

requires fewer FLOPs. However, Figure 4 suggests that the interior point solutions

may be slightly inferior to the MM solutions for extreme values of q near 0 or 1 for

the particular choices p = 5 and n = 100.
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Figure 5: log10 of mean FLOP count for 10 runs of both methods on a nonlinear
problem for various values of q, p, and n. Solid dots represent MM runs; open circles
represent interior point runs.

The second problem we test is a nonlinear problem in which

Yi =
p∑

j=1

[
e−xijθ2

j + xijθp−j+1

]
+ εi.

Because these nonlinear problems may involve multiple local minima, we do not

consider the ratio displayed in Figure 4. Figure 5 summarizes the comparison of
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computational speed for the two methods for the same values of q, p, and n consid-

ered in Figure 3. The gap seen in Figure 3 is still evident but smaller. In several

examples of this nonlinear problem not shown in the graph, the interior point method

failed to converge at all. As in Figure 3, the gap between the two algorithms is larger

for p = 20 than p = 5. This undoubtedly reflects the fact that each MM iteration

enjoys less of a computational advantage compared to each interior point iteration

as p grows because each algorithm inverts a p× p matrix at each iteration.

6 Discussion

The major strengths of the MM algorithm presented in this paper are its conceptual

simplicity, ease of implementation, and numerical stability, qualities it shares with

most other MM algorithms. Our numerical tests indicate that the MM algorithm is

computationally competitive with Koenker and Park’s (1996) interior point method,

the current state of the art, on many nonlinear quantile regression problems. How-

ever, as the number of parameters increases, it appears that when the interior point

method converges, it converges faster on average than the MM algorithm. We feel

this will likely be the case for any MM algorithm which requires the inversion at

each iteration of a p × p matrix, as ours does. However, given the success of other

MM algorithms in circumventing the need for large matrix inversions (Lange et al.,

2000; Erdoğan and Fessler, 1999), we are hopeful that the ideas in this paper will

lead to a very fast algorithm for performing quantile regression in high-dimensional

parameter space.

Portnoy and Koenker (1997) have recently shown how preprocessing the data

points in quantile regression problems can significantly reduce the ensuing compu-

tational complexity, particularly when the number of observations is large. This
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useful suggestion may be applied in the context of the MM algorithm as well.

7 Appendix: Proofs

Proposition 1 Any q quantile µq of an integrable random variable Y minimizes

the expectation E [ρq(Y − µ)], with ρq(r) defined in equation (7).

Proof: The inequalities Pr(Y ≤ µq) ≥ q and Pr(Y ≥ µq) ≥ 1 − q define a q

quantile µq of a random variable Y . Suppose that µ ≤ µq. Taking expectations in

the equality

ρq(Y − µ)− ρq(Y − µq) = (1− q)(µ− µq)1{Y <µq} + q(µq − µ)1{Y≥µq}

+ (Y − µ)1{µ<Y <µq}

yields

E [ρq(Y − µ)]− E [ρq(Y − µq)] = (µq − µ) [q Pr(Y ≥ µq)− (1− q) Pr(Y < µq)]

+ E [(Y − µ)1{µ<Y <µq}]. (23)

In view of the fact that q Pr(Y ≥ µq) ≥ (1−q) Pr(Y < µq), this representation makes

it clear that E {ρq(Y − µ)} is a decreasing function of µ on the interval (−∞, µq].

From the corresponding representation

E [ρq(Y − µ)]− E [ρq(Y − µq)] = (µ− µq) [(1− q) Pr(Y ≤ µq)− q Pr(Y > µq)]

+ E [(µ− Y )1{µq<Y <µ}]. (24)

for µ ≥ µq, we now conclude that E [ρq(Y − µ)] attains its minimum at µ = µq.

Conversely, suppose that µq provides the minimum of E {ρq(Y − µ)}. Then

inserting the limits

lim
µ→µq−

1
µq − µ

E
[
(Y − µ)1{µ<Y <µq}

]
= 0
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lim
µ→µq+

1
µ− µq

E
[
(µ− Y )1{µq<Y <µ}

]
= 0

derived from the bounded convergence theorem into equations (23) and (24) requires

that

q Pr(Y ≥ µq)− (1− q) Pr(Y < µq) ≥ 0

(1− q) Pr(Y ≤ µq)− q Pr(Y > µq) ≥ 0.

These last two inequalities imply that µq is a q quantile of Y .

Proposition 2 The function ζε
q(r | rk) of equation (12) majorizes ρε

q(r) of equation

(10) at the point r = rk.

Proof: We must verify conditions (3) and (4). The first is satisfied by the definition

of ζε
q(r | rk), so it suffices to demonstrate that the difference ζε

q(r | r(k)) − ρε
q(r)

attains its minimum at r = ±r(k). The straightforward calculation

ζε
q(r | r(k))− ζε

q(−r | r(k)) = ρε
q(r)− ρε

q(−r)

= (2q − 1)r

shows that ζε
q(r | r(k))− ρε

q(r) is symmetric around 0. This fact allows us to restrict

our attention to the interval r ≥ 0. Next, note that the derivatives

d

dr
ρε

q(r) =

{
q − ε

2(ε+r) r ≥ 0
q − 1 + ε

2(ε−r) r < 0 (25)

and

d

dr
ζε
q(r | r(k)) =

r

2(ε + |r(k)|)
+ q − 1

2

can be combined to give

d

dr

[
ζε
q(r | r(k))− ρε

q(r)
]

=
r(r − |r(k)|)

2(ε + |r(k)|)(ε + |r|)
.
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Therefore, for r ≥ 0, the difference ζε
q(r | r(k)) − ρε

q(r) is decreasing to the left of

r(k), equals 0 at r(k), and is increasing to the right of r(k). This qualitative behavior

validates condition (4).

Proof of Proposition 3: The set Ω must be compact because condition (9)

implies that {θ : Lε(θ) ≤ c} is a compact subset of Rp. For any ε ∈ (0, 1] and r ∈ R,

the elementary observation

−2 < ε ln(ε + |r|) ≤ ln(1 + |r|) (26)

along with definition (11) implies that

L1(θ) ≤ Lε(θ) ≤ L(θ) + n. (27)

Defining L0(θ) = L(θ) for convenience of notation, the bounds (27) hold even for

ε = 0. Therefore, for any ε ∈ [0, 1] and any θ satisfying Lε(θ) ≤ Lε(θ0),

L1(θ) ≤ Lε(θ) ≤ Lε(θ0) ≤ L(θ0) + n.

This implies that θ ∈ Ω.

Proof of Proposition 4: Because the step-size constant αk must equal 1 for

linear regression functions, we rewrite algorithm (17) as

θk+1 = θk + ∆k
ε .

Examination of equation (16) shows that ∆k
ε is continuous in θk and therefore that

the iteration map M(θk) : θk 7→ θk + ∆k
ε is continuous.

Differentiating equation (25) gives

d2Lε(θ) =
n∑

i=1

ε

2(ε + |ri|)2
xt

ixi

=
ε

2
XtWε(θ)2X
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and reveals that Lε(θ) is strictly convex when the covariate matrix X is of full rank.

Since Qε(θ | θk) is tangent to the strictly convex function Lε(θ) at the point θ = θk,

the condition dQε(θk | θk) = dLε(θk) holds, and the MM algorithm has exactly

one fixed point, namely the unique minimizer θ̂ε of Lε(θ). Given a convergent

subsequence {θkn}n≥1 with limit θ∗, rewriting inequality (6) as

Lε[M(θkn)] ≤ Lε(θkn),

taking limits as n tends to ∞, and invoking the continuity of M(θ) and Lε(θ)

demonstrate that

Lε[M(θ∗)] = Lε(θ∗). (28)

If we can show that any θ∗ satisfying equation (28) is a fixed point of the MM

algorithm, then this forces θ∗ = θε and proves the proposition. Because equation

(28) entails

Qε[M(θ∗) | θ∗] = Qε(θ∗ | θ∗),

the desired equality M(θ∗) = θ∗ follows directly from the definition of M(θ∗) as the

unique minimizer of the strictly convex function Qε(θ | θ∗).

Proof of Proposition 5: By the compactness of Ω and the continuity of the

fi(θ), the upper bound d is finite. Clearly |ln(ε + |r|)| ≤ − ln ε if ε + |r| ≤ 1. On the

other hand, if ε + |r| > 1, then setting ε < d−1 implies |ln(ε + |r|)| < ln d < − ln ε in

view of the definition of d. Thus,

|L(θ)− Lε(θ)| =
ε

2

∣∣∣∣∣
n∑

i=1

ln(ε + |ri|)
∣∣∣∣∣

≤ ε

2

n∑
i=1

|ln(ε + |ri|)|

≤ −εn

2
ln ε.
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Inequality (21) follows from

L(θ̂ε)− L(θ̂) ≤ L(θ̂ε)− Lε(θ̂ε) + Lε(θ̂)− L(θ̂)

≤
∣∣∣L(θ̂ε)− Lε(θ̂ε)

∣∣∣+ ∣∣∣Lε(θ̂)− L(θ̂)
∣∣∣

≤ −εn ln ε.

Proof of Proposition 6: Let εk be a sequence tending to 0 with limk→∞ θ̂εk
= θ∗.

Definitions (10) and (11) imply that limk Lεk
(θ) = L(θ) for all θ. Therefore, taking

limits in the inequality Lεk
(θεk

) ≤ Lεk
(θ) yields L(θ∗) ≤ L(θ).
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