
1 

 

 Quantile Serial Dependence in Crude Oil Markets:  

Evidence from Improved Quantilogram Analysis with Quantile Wild Bootstrapping 

Jen-Je Su
a
, Adrian (Wai-Kong) Cheung

b
 and Eduardo Roca

a 

a
 Department of Accounting, Finance and Economics, Griffith University, Nathan, 

Queensland, 4111, Australia 
b
 Department of Finance and Banking, School of Economics and Finance, Curtin 

University, Bentley, Western Australia 6102, Australia 

 

Abstract 

We examine the quantile serial dependence in crude oil prices based on the 

Linton and Whang's (2007) quantile-based portmanteau test which we improved 

by means of quantile wild bootstrapping. Through Monte Carlo simulation, we 

find that the quantile wild bootstrap based portmanteau test performs better 

than the bound testing procedure suggested by Linton and Whang (2007). We 

apply the improved test to examine the efficiency of two crude oil markets – 

WTI and Brent.  We also examine if the dependence is stable via rolling sample 

tests. Our results show that both WTI and Brent are serially dependent in all, 

except the median quantiles. These findings suggest that it may be misleading to 

examine the efficiency of crude oil markets in terms of mean (or median) returns 

only. These crude oil markets are relatively more serially dependent in non-

median ranges. 
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[1] Introduction 

 
          It is well-accepted that the crude oil market is very important as it can significantly 

affect the performance of the economy and financial markets (see, among others, Hamilton, 

2011; Huang, et al, 1996; Park and Ratti, 2008; Lee et al., 2012). Several studies have found 

statistically significant evidences that an increase in oil price is the key contributing factor 

behind recessions (see, for examples, Hamilton, 1983; Barsky and Lutz, 2004). Due to its 

central role in the world economy, it is imperative to understand how the crude oil market 

works. For example, central banks and other economic policy makers view oil price as one of 

the key variables in generating macroeconomic projections and in assessing macroeconomic 

risks.  

Ever since the issue of market efficiency was brought to the forefront by the work of 

Fama in the 1970s, a voluminous amount of studies have been conducted on this issue in 

different financial and economic markets.  The scale of research on this issue in the crude oil 

market is quite large. As a matter of fact, this efficiency issue has been examined through 

various lens or approaches -- including, for examples, variance ratio tests (Charles and 

Darne, 2009), unit root tests (Elder and Serletis, 2008; Maslyuk and Smyth, 2009), time 

varying long-range dependence (Tabak and Cajueiro, 2007), Hurst exponent dynamics from 

detrended fluctuation analysis (Alvarez-Ramirez et al., 2008; Wang and Liu, 2010), and 

neural network (Yu, et al, 2008). However, the focus in the literature has been on the first 

moment (level or conditional mean) or second moment (volatility) of oil prices/returns and 

little is known beyond the first or second moments. In addition, the research on 

predictability in this market has yielded mixed results (Alquist, et al, 2013). Thus, there is a 
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need for further research on market efficiency in the crude oil market with a new 

perspective/approach.  Our paper, therefore, addresses this gap in the literature. 

Our approach is to look at the efficiency issue of the crude oil markets in terms of 

serial dependence through the application of Linton and Whang’s (2007) quantile-based 

Portmanteau test. This approach is special as it can be used to measure serial dependence 

in different quantiles of the crude oil prices distributions. In other words, our concern is 

beyond the oil price dynamics at the middle as other parts (upper and lower tails) of the 

crude oil price distribution are also considered. This is a very important issue since oil prices 

have been shown to exhibit fat tails (Nordhaus, 2007; Trolle and Schwartz, 2010). To the 

best of our knowledge, this paper is the first in the literature to examine the issue by means 

of Linton and Whang’s test.   

In addition, this paper also contributes to the econometrics literature. Instead of 

employing the inference strategy suggested in Linton and Whang (2007), which at times 

lead to inclusive results, we conduct the Linton and Whang’s (2007) test by means of the 

quantile wild bootstrapping of Feng et al (2011). We show, via simulations, that the 

bootstrap-based inference is accurate in size without compromising in testing power and it 

can effectively avoid inconclusive outcomes. 

As an overview, first, our results show that by means of wild bootstrapping, we were 

able to improve the finite sample properties of the Linton and Whang’s (2007) quantile-

based Portmanteau test. By applying this improved test to the analysis of the efficiency of 

WTI and Brent in crude oil markets, we have found that both WTI and Brent are serially 

dependent in all but the median quantiles. Interestingly, our rolling sub-period results also 

reveal that the Brent oil market is with higher degree of serial dependence than the WTI 

market in the lower quantiles while the opposite is true in the higher quantiles. These 
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findings suggest that it may be misleading to examine the efficiency issue of crude oil 

markets in terms of mean (or median) oil returns only. The result also implies that these 

crude oil markets may be predictable in non-median ranges. The rest of the paper is 

organised as follows.  Section 2 discusses the methodology and Section 3 presents the 

empirical results.  Section 4 concludes the study. 

 
[2] Methodology 

 
 

In this section, we discuss the quantilogram and the quantile portmanteau test proposed by 

Linton and Whang (2007). Specifically, we explain the strengths and limitations of the 

associated inference of these statistics and how we improve the inference through quantile 

wild bootstrapping introduced in Feng et al (2011). We present the results of the Monte 

Carlo simulation which demonstrate the improvement. 

 
2.1. Quantilogram and quantile portmanteau test 

 

          Suppose that Y1, Y2, … are random variables drawn from a stationary process whose 

marginal distribution has quantiles µq for 0<q<1. Linton and Whang (2007) define the 

quantilogram for any q as 
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where ( ) 1( 0)q x q xψ = − <  denotes the check function. Since the quantilogram ( )q kρ  

considers the dynamic association in terms of the direction of deviation from a given 

quantile, it can be used to measure the quantile serial dependence of the stochastic process
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Since ˆ ( )
q

kρ  is constructed as a sample autocorrelation of the check function (i.e. the 

sample correlation of ˆ( )q t q
Yψ µ− and ˆ( )q t k q

Yψ µ+ − ),  it should lie between 0 and 1 for any k 

and q. To test the null hypothesis of no directional predictability at q up to p lags (i.e. 

( ) 0q kρ =  for k=1,…, p), Linton and Whang (2009) suggest a quantile version of Box-Ljung Q 

test (henceforth, QQ): 

2
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          As the usual portmanteau Q test, the interpretation of the ( )qQQ p  test is 

straightforward, if the null hypothesis cannot be rejected, there exhibits insufficient 

evidence against serial dependence (at q); instead, if the null hypothesis is rejected, the 

underlying series is serially dependent. The inference of ˆ ( )q kρ  and ( )qQQ p  is, however, 
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not straightforward. Specifically, under the null hypothesis, the asymptotic distribution of 

ˆ ˆ[ (1),..., ( )]'q q pρ ρ , as shown by Theorem 2 in Linton and Whang (2007), is 

ˆ (1)
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Here, 
qV  is a p p×  asymptotic variance-covariance matrix which, in general, depends on the 

underlying volatility process of Yt. Since ( )qQQ p  is a function of ˆ (1)qρ ,…, ˆ ( )q pρ , ( )qQQ p  is 

not asymptotically valid. To avoid the necessity of specifying a volatility model, Linton and 

Whang (2007) derive the lower and upper bounds of ,q kkV , the k
th

 diagonal component of 

( )p

qV , ,1 1q kk qV v≤ ≤ + , and the (j, k) off-diagonal component, ,| |q jk qV ν≤ , where 

2[max( ,1 )] / (1 )q q q q qν = − − .  

          Under the null hypothesis, when the upper bound is considered, the (1 )%α−  

confidence interval of ˆ ( )q
kρ  can be constructed as

( )1 /2 /2(1 ) / , (1 ) /q qCI z v T z v Tα α= − + + . We note that, since qv  increases without limit as

0,1q → , the confidence interval can be very wide when extreme quantiles are considered. 

In some special circumstances (e.g. conditions that satisfy equation (6) in Linton and Whang 

(2007)), 
qV  is the identity matrix and so the lower bound can be applied, the confidence 

interval shrinks to be ( )2 /2 /21/ , 1/CI z T z Tα α= − . Linton and Whang (2007) call the larger 

band 1CI  conservative and the smaller band 2CI  liberal. Correspondingly, the decision rule 

of applying the ( )qQQ p  test can be either conservative or liberal: according to the 

conservative rule, the null hypothesis is rejected if 
2( ) (1 ) ( )q qQQ p p pαν χ> +  and for the 
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liberal rule if 
2( ) ( )qQQ p pαχ> . Such an inference setup is indeed very novel in 

circumventing the complication of modelling the volatility process. Thus, with this setup, the 

QQ test is valid even in the case where the first or even the second moment is infinite (e.g., 

in the case of α-stable process). However, in practice, the user needs to decide which rule – 

conservative or liberal – should be employed. The test would gain power at the cost of 

potential size distortion when the liberal rule is considered. On the other hand, with the 

conservative rule, the test can be very conservative for even moderate p (specially, when q 

is close 0 or 1) and has no power to reject the null hypothesis even if the tested process is 

indeed serially dependent. On the other hand, if both rules are applied simultaneously, the 

testing result might turn out to be inconclusive if the test statistic locates between the two – 

liberal and conservative – critical values.  

 

2.2. Quantile wild bootstrapping 

 

           In this paper, we suggest approximating the distribution of ˆ ( )q kρ  and ( )qQQ p  via 

quantile wild bootstrapping (QWB). Specifically, we adopt and modify the bootstrapping 

procedure of Feng et al (2011) as follows. 

 

(1) Obtain ˆ ˆ
t t qe Y µ= − . Form a bootstrap sample of T observations * ˆ ˆ| |t q t tY eµ ω= +  

where the weights tω is generated as 
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(2) Compute ˆ ( )q kρ  and ( )qQQ p  based on 
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t t
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*ˆ ( )
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(3) Repeat (1) and (2) B times to form bootstrap distribution of ˆ ( )q kρ  and ( )qQQ p : 

*
, 1

ˆ{ ( )}B
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kρ =  and 

*
, 1{ ( )}B
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          For the individual quantilogram, a 100(1 )%α−  confidence interval for ( )q kρ  can be 
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1 , 2 ,

ˆ ˆ( ) , ( )q k q k
k T c k T cα αρ ρ− − − +   where ( )* *

1 , 2 ,,
k k

c cα α  are from the bootstrap 

distribution of ( ){ }*
,

1
ˆ ˆ( ) ( )

B

q b q
b

k kρ ρ
=

−  such that ( )* 1/2 * *
1 , , 2 ,

ˆ ˆPr( ( ) ( ) )k q b q kc T k k cα αρ ρ≤ − ≤ 1 α= −

. For the test of no directional predictability with the ( )qQQ p  test, a critical value, *
,QQ

c α , for 

a significance level α  is given by ( ){ }* *
, ,inf : Pr ( ) 1QQ q bc c QQ p cα α= < ≥ − , the (1 )100%α−

percentile of 
*
, 1{ ( )}B
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2.3. Monte Carlo simulation results 

 

          The simulation design is modified from Linton and Whang (2009). Specifically, we 

consider three models: (A) I.I.D. Normal: ( )~ ,1 ;0tY N  (B) GARCH: ~t t tY ε σ  with 

2 2 2
1 10.02 0.9 0.05t t tYσ σ − −= + +  where ( );~ 0,1t Nε  (C) Threshold-GARCH: ~t t tY ε σ  with 

2
tσ

2 2 2
1 1 1 10.2 0.9 0.06 0.03 1( 0)t t t tY Y Yσ − − − −= + + + < . Models (B) and (C) are set to reflect the 

estimated GARCH and Threshold-GARCH estimation of the crude oil returns considered in 

the next section. Theoretically, Model (A) is completely under the null hypothesis of no 

directional predictability for all quantiles, while (B) and (C) are under the null for the median 

(q=0.5) and the alternative when other quantiles (q≠0.5) are considered. We choose sample 

size T=500, 1000, and 5000 and quantile q=0.1, 0.3, 0.5, 0.7, and 0.9. The Monte Carlo 

simulation is conducted via the warp-speed method of Giacomini et al (2013) with 10000 
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replications and done by GAUSS. We report the simulation results of the 5% nominal level of 

( )qQQ p  in Table 1. For the purpose of comparison (in terms of size control and testing 

power), we report simulation results of ( )qQQ p  via both bootstrapping (QWB) and the 

liberal rule. We do not report results based on the conservative rule as the rule generally is 

with very low power, especially when lager lags are considered.  

          Table 1 shows that in the cases when the null is true (Model (A) and q=0.5 in Models 

(B) and (C)), the bootstrapping inference is corrected sized (i.e. the simulated rejection rate 

is close to the nominal level of significance at 5%) regardless lag (p), sample size (T), and 

quantile (q) (Model (A)). In contrast, the testing result can become rather over-sized when 

the liberal decision rule is applied, particularly when p is large (p=50 or 100) and T is 

moderate (T=500 or 1000). For example, in Model (A), while the rejection rate at q=0.5 for 

the bootstrap test is around 0.05 regardless p and T, the rejection rate for the liberal test 

can range from 0.051 (p=1 and T=1000) to 0.240 (p=100, T=500). Therefore, the 

bootstrapping approach is advantageous over the liberal rule in controlling for the Type I 

error when the sample size is not very large. 

          In the cases under the alternative (Model (B) and (C) with 0.5q ≠ ), Table 1 shows that, 

in most cases, the bootstrap test exhibits competitive power compared with  the liberal test. 

For example, in all cases with p=1 and 5, the power of the two testing strategies is 

indistinguishable. We note that for those cases that the liberal test is significantly more 

powerful than the bootstrap test, the liberal test also suffers considerable size distortion 

while the bootstrap test does not – say, for example, when p=50, 100 and T=500, 1000. 

Overall, our simulation results support the use of QWB. 
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[3] Empirical analysis of crude oil markets 

 

 

          We apply the proposed QWB-based quantilogram in analysing the quantile serial 

dependence in two major crude oil markets: WTI and Brent. We are the first to apply the 

quantilogram analysis in energy markets. 

 

3.1. Data 

 

          For the two crude oil markets, we collect daily spot prices from Energy Information 

Administration website.
1
 Both prices collected end on December 1, 2014 but with different 

starting dates (due to data availability): WTI is from January 2, 1986 with 7,207 observations 

and Brent is from May 20, 1987 with 6,923 observations. We plot the WTI and Brent crude 

oil prices & returns (log-returns) in Figure 1. In general, the two price series move closely to 

each other and both returns are very volatile. We also present descriptive statistics for the 

two oil returns in Table 2. In summary, the two returns are close to zero and both are 

volatile, left-skewed and leptokurtic.   

 

3.2. Empirical results 

 

          We first report the full-sample results of the quantilogram and the corresponding 

quantile portmanteau test for WTI and Brent returns in Figure 2 and Table 3. We consider 

the cases with lags up to 100 trading days at five various quantiles (q=0.1, 0.3, 0.5, 0.7, 0.9). 

We also show the QWB-based 95% confidence intervals (centred to zero) for the 

quantilogram and the QWB-based 5% critical values (Figure 2), and the p-values for the 

quantile-portmanteau test (Table 3). The bootstrapping is performed with 1000 replications. 

                                                           
1 http://www.eia.gov/ 

http://www.eia.gov/
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Both WTI and Brent returns, as shown in Table 3, seem to exhibit  evidence of serial 

dependence except for the case with q=0.5., The null hypothesis of no serial dependence is 

rejected at 5% level in nearly all cases when 0.5q ≠  but not otherwise (i.e., when q=0.5). 

The autocorrelation at q=0.5 is evidently non-existent for the WTI returns and while there is 

some evidence of positive median autocorrelation for Brent,  the evidence is not strong and 

the QQ test fails to reject the null of no serial correlation up to 100 lags. Therefore, overall, 

there is not much evidence of dependence in the median. This result is consistent with the 

well-documented fact that the conventional autocorrelation of asset/commodity returns is 

often zero (Pagan, 1996), a phenomenon implied by the market efficiency hypothesis. In 

other words, autocorrelation is expected to be zero because it is limited by arbitrage. 

In the lower quantiles, when q=0.1 in particular, there are many cases of individually 

significant positive serial dependence and the dependence appears to be strong and 

persistent. Comparing the two markets, as shown in Figure 2 and Table 3, WTI seems to be 

more dependent than Brent at q=0.1 while Brent is somewhat more dependent than WTI at 

q=0.3. . Thus, in general, when there are large losses in one period, the chance of having 

large losses in the next few periods is high (higher than 10% in the case of q=0.1, 

unconditionally). Similarly, both WTI and Brent are serially dependent for the higher 

quantiles. There are significant long-lasting, positive serial-correlations – implying that when 

there are large gains in one period, the chance of having large gains in the next few periods 

is also high. These results indicate presence of volatility clustering that is, as first noted in 

Mandelbrot (1963), recognized as a stylized property present in many speculative price time 

series. This volatility clustering effect has given rise to the development of stochastic models 

– GARCH models and stochastic volatility models are intended primarily to model this 

phenomenon in oil returns. Economists have identified some economic mechanisms that 
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could lead to volatility clustering effect. They include herd behaviour of market participants 

(Lux and Marchesi, 2000), heterogeneous arrival rates of information (Andersen and 

Bollerslev, 2007), and leverage (Thurner, Farmer and Geanakoplos, 2012), among others.   

          To examine if the dependence is stable across time, we also run rolling quantile 

portmanteau test (  ( )
q

QQ p ) with a four-year window (each with 1,008 daily returns) 

moving up by three months (63 observations). For WTI, there are 95 rolling results and for 

Brent 90 results.  We report the results using  p=50 at the 5% significance level with various 

q’s in Figure 3 and summarize the rejection percentage in Table 4. As shown in Table 4, for 

both oil returns, there are significantly more sub-periods with rejection in the lower and 

upper quantiles than in the middle. Interestingly, in the case of Brent (but not WTI), it 

appears that the market is more dependent in the lower quantiles than in the higher 

quantiles. Specifically, for Brent, at q=0.1 (0.3) there is 71.11% (63.33%) rejection among the 

examined sub-periods; in contrast, the rejection rate is 54.44% (21.22%) at q=0.9 (0.1). This 

implies an asymmetric dependence feature in the Brent market. Thus, large losses are 

somewhat more often coming after large losses than large gains arising after large gains. 

Moreover, Brent appears to be somewhat more dependent than WTI in the lower quantiles 

while it is opposite in the higher quantiles. As is well known in the crude oil literature, there 

are at least two reasons why the WTI and Brent markets and their prices are behave 

differently. First, the inland U.S. WTI and the seaborne Brent crude oil have been traded in 

partly segregated markets (see, for example, Büyükşahin et al, 2013). Second, infrastructure 

constraints in Cushing, Oklahoma, have historically influenced the price differential between 

the WTI crude and the Brent crude oil trades (Fattouh, 2010; Borenstein and Kellogg, 
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2012).
2
 This effectively makes Cushing oil stocks insulate the WTI market from the price pull 

stemming from strong world demand, suggesting that WTI is more sensitive to US 

conditions while Brent is more sensitive to the world conditions.  However, of course, how 

these conditions are actually transmitted into the asymmetric effects that we found at 

lower and higher quantiles across the two markets, is not clear and deserves further 

investigation. 

We also observe from Figure 3 that the dependent sub-periods at q=0.1 and q=0.9 

for both oil markets (WTI, especially) tend to concentrate on the first 13/14 sampling years 

(around 1986 to 1999) and the last 10/11 years (roughly, 2003/2004 to 2014). A closer look 

at Figure 1, especially the return series of WTI and Brent, reveals that there were many large 

(positive or negative) returns during the two periods. In addition, these large returns tend to 

cluster with each other, confirming the volatility clustering effect depicted in Table 3. By 

browsing the chronology of economic or political events in the world crude oil market, it is 

not difficult to understand why there were so many large positive and negative returns in 

these two periods.
3
  

 

 

[4] Conclusion  

 

We examined the quantile serial dependence of crude oil prices based on an improved 

version of the Linton and Whang's (2007) quantile-based portmanteau test. We improved 

the test by means of quantile wild bootstrapping. Through Monte Carlo simulation, we 

                                                           
2
 Several new crude transportation projects came online in early 2013, including pipelines and crude-by-rail 

terminals. This new infrastructure helped clear transportation bottlenecks in U.S. Midcontinent, particularly 

around Cushing, Oklahoma. 
3
 The chronology is available at the links below: 

https://en.wikipedia.org/wiki/Chronology_of_world_oil_market_events; 

https://en.wikipedia.org/wiki/2001_world_oil_market_chronology; 

https://en.wikipedia.org/wiki/World_oil_market_chronology_from_2003. 

 

https://en.wikipedia.org/wiki/Chronology_of_world_oil_market_events
https://en.wikipedia.org/wiki/2001_world_oil_market_chronology
https://en.wikipedia.org/wiki/World_oil_market_chronology_from_2003
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found that the quantile wild bootstrap based portmanteau test corrects the over-sizing 

problem of the standard portmanteau test. We applied the improved test to examine the 

efficiency of two crude oil markets – WTI and Brent.  Our results showed that both WTI and 

Brent are dependent in all, except the median quantiles. Interestingly, our rolling subsample 

results showed that the Brent oil market tends to be more dependent than the WTI market 

in the lower quantiles while the opposite is true in the higher quantiles. These findings 

suggest that it may be misleading to examine the efficiency of crude oil markets in terms of 

mean (or medium) returns only. These crude oil markets are relatively more dependent in 

non-median ranges. 
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Table 1. (Simulation) Shows empirical rejection frequency of the quantile portmanteau test 
(Equation (3)) based on quantile wild bootstrapped (QWB) and liberal critical values at the 
5% level against lags p=1, 5, 50 and 100.  Design Model (A): IID-N(0,1), Model (B) 
GARCH and Model (C): Threshold-GARCH (described in Section 2.3) with sample size 
T=500, 1000 and 5000. 
 
(A) IID-N(0,1)  
 

   T=500   T=1000   T=5000   

Quantile (q) Lag(p) QWB Liberal QWB Liberal QWB Liberal 

0.1 1 0.051 0.039 0.048 0.046 0.049 0.048 

  5 0.051 0.046 0.047 0.047 0.050 0.050 

  50 0.053 0.094 0.051 0.070 0.048 0.054 

  100 0.054 0.205 0.051 0.119 0.048 0.061 

0.3 1 0.049 0.055 0.051 0.050 0.051 0.051 

  5 0.053 0.055 0.052 0.052 0.046 0.050 

  50 0.049 0.105 0.051 0.076 0.050 0.054 

  100 0.049 0.228 0.052 0.126 0.048 0.061 

0.5 1 0.048 0.048 0.044 0.051 0.053 0.053 

  5 0.052 0.054 0.048 0.052 0.052 0.052 

  50 0.050 0.111 0.050 0.077 0.053 0.057 

  100 0.051 0.240 0.048 0.122 0.051 0.064 

0.7 1 0.048 0.054 0.052 0.053 0.051 0.049 

  5 0.051 0.052 0.049 0.052 0.054 0.051 

  50 0.049 0.106 0.052 0.077 0.051 0.056 

  100 0.050 0.227 0.049 0.122 0.050 0.062 

0.9 1 0.049 0.047 0.050 0.054 0.053 0.050 

  5 0.052 0.047 0.050 0.049 0.048 0.049 

  50 0.052 0.094 0.051 0.070 0.054 0.056 

  100 0.050 0.209 0.055 0.116 0.051 0.061 

 
 

(B) GARCH  

 
  T=500   T=1000   T=5000   

Quantile (q) Lag(p) QWB Liberal QWB Liberal QWB Liberal 

0.1 1 0.119 0.114 0.150 0.147 0.452 0.441 

  5 0.190 0.187 0.282 0.285 0.808 0.818 

  50 0.262 0.310 0.415 0.440 0.953 0.955 

  100 0.224 0.387 0.354 0.438 0.911 0.920 

0.3 1 0.056 0.056 0.057 0.055 0.076 0.082 

  5 0.059 0.063 0.073 0.070 0.118 0.127 

  50 0.079 0.112 0.075 0.101 0.166 0.177 

  100 0.089 0.239 0.079 0.151 0.142 0.162 

0.5 1 0.047 0.047 0.045 0.051 0.051 0.051 

  5 0.052 0.055 0.055 0.053 0.051 0.051 

  50 0.062 0.102 0.055 0.074 0.058 0.058 

  100 0.079 0.231 0.068 0.137 0.057 0.064 

0.7 1 0.048 0.059 0.057 0.057 0.076 0.086 

  5 0.053 0.056 0.060 0.063 0.111 0.122 

  50 0.074 0.120 0.074 0.100 0.161 0.173 

  100 0.089 0.243 0.075 0.146 0.140 0.166 

0.9 1 0.091 0.090 0.162 0.176 0.468 0.473 

  5 0.181 0.179 0.271 0.277 0.812 0.823 

  50 0.263 0.311 0.404 0.434 0.948 0.951 

  100 0.231 0.388 0.356 0.438 0.915 0.921 
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(C) Threshold-GARCH 

 
   T=500   T=1000   T=5000   

Quantile (q) k QWB Liberal QWB Liberal QWB Liberal 

0.1 1 0.198 0.195 0.286 0.286 0.832 0.831 

  5 0.342 0.333 0.552 0.550 0.994 0.994 

  50 0.367 0.439 0.626 0.660 0.998 0.999 

  100 0.280 0.494 0.530 0.628 0.996 0.997 

0.3 1 0.065 0.068 0.079 0.079 0.177 0.178 

  5 0.079 0.084 0.105 0.107 0.350 0.335 

  50 0.084 0.145 0.120 0.156 0.443 0.450 

  100 0.073 0.268 0.091 0.190 0.345 0.373 

0.5 1 0.051 0.051 0.049 0.049 0.049 0.052 

  5 0.053 0.055 0.050 0.052 0.052 0.053 

  50 0.048 0.103 0.050 0.076 0.048 0.055 

  100 0.050 0.231 0.050 0.126 0.049 0.061 

0.7 1 0.055 0.063 0.064 0.066 0.106 0.107 

  5 0.067 0.069 0.078 0.076 0.154 0.158 

  50 0.065 0.120 0.081 0.106 0.187 0.199 

  100 0.057 0.242 0.067 0.151 0.147 0.170 

0.9 1 0.125 0.120 0.248 0.250 0.683 0.692 

  5 0.265 0.259 0.421 0.422 0.961 0.962 

  50 0.293 0.366 0.489 0.529 0.989 0.990 

  100 0.222 0.431 0.400 0.512 0.975 0.978 
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Table 2. Descriptive statistics of daily crude oil returns.  
 

 WTI Brent 

Mean  0.008642  0.017231 

Median  0.056101  0.021148 

Maximum  19.15065  18.12974 

Minimum -40.63958 -36.12144 

Std. Dev.  2.505625  2.262667 

Skewness -0.794085 -0.678947 

Kurtosis  18.42884  18.61910 

Jarque-Bera  

(p-value) 

 72241.62 

(0.000) 

 70903.07 

(0.000) 

Sample Jan 2, 1986 - Dec 1, 2014 May 20, 1987 - Dec 1, 2014 

Observations  7207  6923 

 

 

Table 3. Test for no quantile serial correlation of daily crude oil returns based on the quantile 
portmanteau test (Equation (3)) against lags=1, 10, 50 and 100 with quantiles q=0.1, 0.3, 0.5, 
0.7 and 0.9. Quantile wild bootstrapped p-values reported in the parentheses. 
  

WTI 

Lag/Quantile q=0.1 q=0.3 q=0.5 q=0.7 q=0.9 

P=1 59.24 6.743 1.570 0.338 12.36 

 (0.000) (0.007) (0.213) (0.555) (0.001) 

P=10 291.4 25.42 9.272 40.67 194.0 

 (0.000) (0.004) (0.501) (0.000) (0.000) 

P=50 962.2 104.0 47.18 239.0 911.4 

 (0.000) (0.000) (0.599) (0.000) (0.000) 

P=100 1444 160.2 88.38 384.7 1379 

 (0.000) (0.000) (0.801) (0.000) (0.000) 

 

Brent 

Lag/Quantile q=0.1 q=0.3 q=0.5 q=0.7 q=0.9 

P=1 48.27 22.42 3.994 2.343 13.87 

 (0.000) (0.000) (0.050) (0.126) (0.001) 

P=10 214.4 64.75 11.43 64.61 128.7 

 (0.000) (0.000) (0.338) (0.000) (0.000) 

P=50 566.7 158.4 54.7 237.7 687.7 

 (0.000) (0.000) (0.306) (0.000) (0.000) 

P=100 841.6 236.0 117.5 407.4 1223 

 (0.000) (0.000) (0.125) (0.000) (0.000) 
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Table 4. (Rolling subsample) Rejection frequency of no quantile serial correlation (up to 50 
lags) for daily crude oil returns based on the quantile portmanteau test (Equation (3)) at the 
5% significance level (bootstrapped) of 5-year rolling subsamples with 3-month shifts at 
quantiles q=0.1, 0.3, 0.5, 0.7 and 0.9. 
 

Quantile  WTI Brent 

q=0.1 67.36% 71.11% 

q=0.3 22.10% 63.33% 

q=0.5 7.37% 20.00% 

q=0.7 35.79% 21.11% 

q=0.9 63.16% 54.44% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

Figure 1: Daily WTI and Brent crude oil prices (left column) and returns (right column)  
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Figure 2. Quantilogram and quantile portmanteau test of daily crude oil returns at quantiles 

q=0.1, 0.3, 0.5, 0.7 and 0.9 for lags=1, …, 100. 

(A) WTI: (Left column) Red dots shown the values of quantilogram, blue dash lines 
represent the 95% confidence intervals cantered at zero. (Right column) Red dots shown the 
values of the QQ test, blue dash lines give the bootstrapped 5% critical values. 
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(B) Brent: (Left column) Red dots shown the values of quantilogram, blue dash lines 

represent the 95% confidence intervals cantered at zero. (Right column) Red dots shown the 

values of the QQ test, blue dash lines give the bootstrapped 5% critical values. 
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Figure 3. Rolling quantile portmanteau test of daily crude oil returns at quantiles q=0.1, 0.3, 

0.5, 0.7 and 0.9 for lag=50.  

WTI: Blue lines show the p-value of the quantile portmanteau test of 95 overlapped 5-year 

rolling subsamples with 3-month shifts. Red dashed lines give the 5% significance level. 

Shade areas cover subsample periods with rejection of zero quantilogram (i.e. p<0.05). 
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Brent: Blue lines show the p-value of the quantile portmanteau test of 90 overlapped 5-year 

rolling subsamples with 3-month shifts. Red dashed lines give the 5% significance level. 

Shade areas cover subsample periods with rejection of zero quantilogram (i.e. p<0.05). 
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