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Abstract

Although nonparametric regression has traditionally focused on the estimation of

conditional mean functions, nonparametric estimation of conditional quantile functions is

often of substantial practical interest. We explore a class of quantile smoothing splines,

which are defined as solutions to

.1

min B>,(y/ -*(*/)) + XCj" \s"^)\
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2 e G J
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with p x (u) = (x-I(u < 0))w and p>\. For the particular choices p=\ and p=°° and

g= [geC l

[0,l]'-
(J

\g'\x)\ p dx) 1/p <°o}, we show that solutions, g, are parabolic

splines, i.e. piecewise quadratics, on the mesh [x\, ..., xn ), and may be computed by

standard / j -type linear programming techniques. At X = 0, g interpolates the X
th

quan-

tiles at the distinct design points, and for X sufficiently large g is the linear regression

quantile fit (Koenker and Bassett(1978)) to the observations. In fact, the entire path of

solutions, in the penalty parameter X, may be efficiently computed by parametric linear

programming methods. For a somewhat more general class of quantile smoothing splines

we establish that (Ex(g(X)-go(X))-) =Op
(n (logn) ), is achievable, under mild

conditions on the true conditional quantile function of Y given X. Finally we note that

the approach may be easily adapted to impose monotonicity and/or convexity constraints

on the fitted function.

Some Key Words: Robust Nonparametric Regression, Quantiles, Smoothing Splines,

Penalized Likelihood, Parametric Linear Programming, Sieve Estimators.





1. INTRODUCTION
Several authors have recently proposed methods for nonparametric estimation of

conditional quantile functions: Troung (1989) following the pioneering work of Stone

(1977) on nearest neighbor methods, Chaudhuri(1991), Samanta (1989) and Antoch and

Janssen (1989) using kernel methods, and White (1991) employing neural networks.

Hendricks and Koenker (1992) discuss regression spline models and apply them to elec-

tricity demand data. D.R. Cox and M.C. Jones in the discussion of Cole(1988), reviving

a suggestion of Bloomfield and Steiger (1983), have recently proposed estimating quan-

tile smoothing splines which minimize

TPx(yi-g(Xi)) + X\(g'\x))
2dx

where pT («) = (x - I(u < 0))w is the Czech function of Koenker and Bassett (1978). Here

the parameter xe [0, 1] controls the quantile of interest, while X € R+ controls the

smoothness of the resulting estimate, thus generalizing the extensive literature on li

smoothing splines pioneered by Wahba (1990). This is an intriguing idea, and has also

been mentioned, for example, in Cox(1983), Eubank (1988) and Utreras (1981) in the

median Pi/2(«) = Vi \u\ case. However, the resulting quadratic program poses some
serious computational obstacles. Obviously the computational virtues of the piecewise

linear form of the first term of the objective function are sacrificed by the quadratic form

of the smoothness penalty.

One is thus naturally led to ask: "Why not replace (g"(x)) in the penalty by

\g"{x)\V The median special case of this problem has been studied in a remarkable

paper by Schuette (1978) in the actuarial literature. We will show, expanding on

Schuette's discrete version of the problem using finite differences, that minimizing (1.1)

retains the linear programming form of the parametric version of the quantile regression

problem and yields solutions which are easy to compute.

1.1. TheL! Roughness Penalty

Given observations {(v,-, xf) : / = 1, ..., n } with <X\ < ... <xn < 1 consider the

problem of minimizing

Rz.x[g}=ZPx(yi-g(Xi)) + ^
l

\8"^)\dx (i.i)

over g € g , the space of continuous functions on [0, 1] with continuous first derivative

and absolutely integrable second derivitive.

Definition. A function g : [0, 1] —>R is a parabolic spline with mesh
= xq < x

i
< ... < xn < xn+ \

= 1 if g e g and g (x) is piecewise quadratic in the intervals

[X(, JC/+i), i = 0, ..., n, that is , g has the form

g (X) = OLi(x - Xj)
2 + p;(* - Xi) + Ji Xj<X < xM i = 0, ..., n (1.2)

Theorem 1.1. There exists a parabolic spline g which solves (1.1).

Proof. Suppose g solves (1.1). We will show that there exists a parabolic spline g such

that R[g]= R[g]. Suppose, provisionally, that sgn(#"(jt)) is constant on the intervals



[Xj, Xj+i), i = 0, ..., n, so we may write

J

1

\g"(x)\dx = '/2£ |£'(x<+i)-*'C*/)l (1.3)
/=0

Note that we may set a,- = (g'fo+i) - g'(Xi))/(xi+l -x,) for i = 1, ..., n-1 and determine

the remaining coefficients of g from the conditions

iC*/+) = Yi =g(*i+) i = U .... »-l

and

£'(*;+) = P/=s'(x/+) ' = 1, .... i-l

The parabolic spline g thus constructed is in C l

[0, 1], since g was, and clearly achieves

the same value of R. Finally, note that if g" changes sign on an interval between knots,

say [xi, jc(+ i), the same construction and the fact that j\f |
> J/ implies that the resulting

g satisfies R [g] < R[g] which contradicts our hypothesis that g" could change sign.

Having established the form of the solution to (1.1), it is straightforward to develop

an algorithm to compute g. Using (1.2) the penalty becomes

i

\g"(x)\dx = 2

n

Zh i
\a

i \.1
;=i

where h
x =jc,+i -

x

x
, i = 1, ..., n-\. This enables us to express the problem (1.1) as a

/ 1 -type linear program. A number of important features of the solution are immediately

apparent from the fact that the problem is a linear program. See Koenker and Ng(1992)

for algorithmic details. Since we have (n+\) free parameters and (2n - 1) pseudo-

observations; solutions must have n+\ residuals which are zero (by complementary

slackness) and in our case tfiese zero residuals correspond to either (i) exact interpolation

of an observation, so yt
= y(

- or (ii) linearity of g in a particular subinterval of the design

mesh, so a, = for some i. Obviously, the parameter X controls the comparative "advan-

tage" of these two alternatives. When X is sufficiently large all the a, will be zero and the

solution will correspond to the bivariate linear regression quantile fit. When X is

sufficiently small all n observations will be interpolated, and all but one of the a,'s can

be non-zero.

As in any smoothing problem, choice of "bandwidth", here represented by the

parameter X, is critical. For quantile smoothing splines, this problem is ameliorated by

the fact that the whole family of solutions to (1.1) for X e [0, °°) may be easily found by

parametric linear programming. An important implication of this fact is that we may ini-

tially solve the simpler linear quantile regression problem corresponding to X = °° and

gradually relax the roughness penalty with a sequence of simplex pivots, thus avoiding a

direct solution of the potentially rather large problem. Each transition to a new solution

involves a single simplex pivot of an extremely sparse constraint matrix, and hence solv-

ing (1.1) for a broad range of A. quite efficient. An interesting aspect of the way that solu-

tions g(X) depend upon the penalty parameter X involves the number of interpolated

points. In the classical smoothing spline literature much has been made of the "effective

dimensionality" or "degrees of freedom" of the estimated curves corresponding to various

X. Such measures of dimensionality are usually based on the trace of various quasi-

projection matrices in the least-squares theory. See e.g. Buja, Hastie and Tibshirani



(1989) for an extensive discussion. For the quantile smoothing spline the connection is

more direct in the sense that there is an explicit trade-off between the number of interpo-

lated points and the number of linear segments. Since "reasonable" smoothing suggests

that the number of interpolated points is small relative to n, it is probably sensible to start

the parametric programming at the linear quantile regression solution rather than at X = 0.

If the design is in "general position" so no two observations share the same design point,

there must be at least 2 and at most n interpolated y/'s. Call this number p\. Clearly, p\
is a plausible measure of the effective dimension of the fitted model with penalty param-

eter X, and n —p\ + 1, which corresponds to the number of linear segments in the fitted

function, is a plausible measure of the degrees of freedom of the fit. Such decomposi-

tions might be used in conjunction with the function R [g] itself to implement data-driven

bandwidth choice, for example, along the lines of Schwarz (1978).

1.2. The Loo Penalty

If we replace the L\ roughness penalty with the L M penalty, we have the objective

function

n

RxX[g]= IPtC^/
- g(x

t )) + Xs\iy\g"(x)\ (1.4)
1=1 x

which we would like to minimize over gs Q. Again we can characterize the solution as a

quadratic spline.

Theorem 1.2. There exists a parabolic spline which solves (1.4).

Proof. Suppose g solves (1.4). Let g be of the form (1.2) with (cc/,P;,Y/)'s defined

exacdy as in the proof of Theorem 2.1. Clearly, geC 1 and has the same "fidelity to the

data" as g. That g isn't rougher than g in IHU follows immediately from

sup \g'\x)\h, >
J
\g"(x)\dx >

|
\g"{x)dx

|
= sup \g"(x)\hh

for Ai = [jc,-,jc/+1 ), 1=1, • • • ,/j-1.

This characterization of the solution allows us to rewrite the penalty as

|irCx)|L=2max|a,|.

We can now parametrize the g as in the previous case and formulate (1.4) as a linear pro-

gram, but the penalty is now relegated to role of linear inequality constraints. With the

L
i

penalty, as we have seen, a direct tradeoff between the number of interpolated

responses and the number of linear segments between design observations existed. With

the Loo penalty this tradeoff is altered. Active constraints now correspond not to (X/=0

but to |oc; |=A, the upper bound for g"\ thus the tradeoff is between segments that attain

the prescribed bound, and observations which are interpolated. Of course, in the limiting

case A=0 the solution is, as with the L
{
penalty with A.=°°, the linear xth regression quan-

tile estimate. Clearly, the L
i
penalty favors a piecewise linear form for g with a few

sharp elbows where g" can be very large. The Loo penalty enforces a uniform bound on



g" and thus straightens the elbows and introduces a modest curvature in the longer seg-

ments to compensate.

1.3. Extensions

In many practical applications there is an immediate question of extending these

methods to multivariate settings. The additive spline models of Buja, Hastie and

Tibshirani (1989) and others naturally suggest themselves. Clearly the nonlinear charac-

ter of the present smoothers vitiate the attractive iterative "backfitting" algorithms avail-

able in the /2-case. But feasible estimators may still be possible using a limited number
of simplex pivots from an initial linear (in covariates) quantile function estimate.

There are a number of intriguing extensions incorporating further constraints.

Monotonicity and convexity of the fitted function g may be readily imposed by simply

imposing further linear inequality constraints on the parameters of the problem. The final

section includes examples of montonically constrained estimates. While adding such

inequality constraints to the corresponding 1 2 problem results in a significant increase in

complexity adding linear inequality constraints to the quantile smoothing spline prob-

lems does not alter the fundamental nature of the optimization problem to be solved.

In situations in which the derivitives of go need to be estimated it may be

worthwhile to consider higher order derivitive penalties as is sometimes done in the clas-

sical smoothing spline literature. This might be the case in the growth curve analysis of

Cole(1988) for example.

2. ASYMPTOTICS
To explore the asymptotic behavior of quantile smoothing splines we will assume

that the observations on (Y;,Xi) pairs are independent and identically distributed. We
would like to estimate the xth conditional quantile function of Y \X which we will denote

go(x) = F-Y\x (x\X=x)

We will assume further that goe g= [geC l

[0,\] |sup|g"| <<»} and that the conditional

density exists and is strictly bounded away from and °° when evaluated at go(x), that is,

there exists m > and M < «> such that for all x in [0, 1] we have

m <fY
\
X(go(x))^M.

The lower bound is an identifiability condition insuring the uniqueness of go, while the

upper bound is required to exclude pathologically rapid convergence. We will consider a

somewhat more general class of estimators which solve

min£pT (y/-g(*/))

where

gn = {geg\g(x)=£l
c
j
Bj(x), j|£"|<A„},

and the functions [Bj(x)\ i=\,...,pn }
constitute a B-spline basis for the parabolic splines

on the uniform mesh (0,0,0, hn ,2hn ,
••• ,1,1,1}, where hn =p~

l

, see e.g. deBoor(1978).



The choice of the restricted B-spline definition of gn is partly for theoretical conveni-

ence, but it also has an important practical rationale. The B-spline formulation of (1.1)

is considerably easier to compute than the full smoothing spline formulation when n is

very large. It represents a compromise between the classical smoothing spline and the

more restrictive regression splines, see Wahba(1990). Note that there is a direct connec-

tion between the choice of A„ in the definition of Qn and the X parameter in the previous

section. Our objective will be to explore conditions on pn , and A„ which insure con-

sistency of g„ in theZo-norm,

\\gn-g0\\2^(Ex(gn(X)-g (X))
2
)
V\

Theorem 2. If pn =0(n
l/5

/\ogn) and A = 0(\ogn), then under the conditions of the

preceeding paragraph,

\\gn -go\\2 = Op
(n-

2/5
(\ogn)

2
).

Proof. We will sketch the proof which relies heavily on recent work of Shen and

Wong(1992) on convergence rates for sieve estimators. In Shen and Wong's notation the

contribution of the /th observation to the pseudo-likelihood (negative fidelity) in our case

is

Hg(x),y) = -px(y-g(x)).

As in Bassett and Koenker(1986), for g (x)>go(x), we have

EY\xlPx(Y-g)-px<r-go)]= I FY\x(y)-*)dy
go(x)

while for g(x)<go(x), the sign and limits of integration are reversed. Thus, using the den-

sity bound, there exists a 8>0 such that for any y satisfying |.y-goCO I
- 8,

and therefore

and

\FY]X (y)-x\ >V2m\y-g (x)\,

Ey \xi?x(Y-g) - ? x (X-g )] >m\g-g \

2
,

inf EY lx [p x (Y-g) - p x (Y-go)] > me2 ,

This verifies Condition CI of Shen and Wong with oc=l. Their Condition C2 is trivially

satisfied with (5=1 since

\px(Y-g)-Px(Y-go)\<\g-go\-

Let H(e,A) = \ogK(z,A), denote the e-entropy of the set A where A"(e,,4), denotes

the number of IHU balls of radius e required to cover A. To verify Condition C3 of Shen

and Wong we must compute H{z, n̂ ) where

7n = ipx(y~g) ~ Px(y-go)'-ge Qn)-

Since the set gn is isomorphic to the finite dimension parameter space 0„ with elements

= (y1
,a

1 ,
• • • ,aPn ) where Yi=g(0) and a, = g"(x) for xe((i-\)hjh], we have



H(e,fn ) <H(e,gn)< H(e,Qn ), and since

1 Pn

JU"(jc)|^=p-
1 X|a,|<A„
i=l

Theorems IX and X of Kolmogorov and Tihomirov (1959) imply,

//(£,£,) <2p„log(p,A)iog(l/e).

Thus, choosing p„ = n
v5

/logn, and A„ = log/i, Condition C3 is satisfied with A 3
= 2/5,

r = 1/10 and r = +
, observing Shen and Wong's convention that e~° = log (1/e).

Theorem 1 of Shen and Wong(1992) now implies that

\\gn -goh =Op
(max{n-X)

, ||jc„g -goh . ^farfo^o))).

where 7i„£ denotes an element of Qn , K(gi,g ) = E[px (Y-g {
)- pT (Y-g ) and

u = 2/5-loglogn/(21ogfl).

Expanding K(g i,go) around g we obtain

K(g
l ,go)<EfY

\
X (go(X))\g l

(X)-g (X)\
2 <M\\g

l
(X)-g (X)\\l

For n sufficiently large, Powell(1981, Theorem 20.3) establishes that,

l|rc„go-£olU^3/2p~
2
||go"ll~

Thus, given our choices of pn and A„, the second and third terms in the max expression

are Opin'^5
(logn)

2
). Noting that n~v = n~2j5

^\ogn completes the proof.

An essentially identical argument would yield the same rate of convergence for the

Loo roughness penalty estimator.

3. PICTURES

In Figure 3.1 we illustrate three different quantile smoothing splines estimated using

the L 1 roughness penalty. The data is the well known motorcycle data described for

example in Hardle(1990). In Figure 3.2 we illustrate three comparable estimates using

the Loo penalty for the same problem. The piecewise linearity of the Lj estimates is

already apparent in these figures. Since there are knots at each design point, apparent

kinks, "elbows", in the fitted curve correspond to large values of the (piecewise constant)

second derivitive on short intervals between adjacent design points. In Koenker, Ng, and

Portnoy(1992) we contrast these estimates with those from a kernel estimate of the con-

ditional quantile functions and conclude that the splines perform considerably better.

Note that in the Loo picture the three estimated quantile functions cross at the penultimate

point; this is apparently due to the wide separation of the last design point from the oth-

ers, a fact that has prompted other investigators to omit it from their plots.

In Figures 3.3 and 3.4 we illustrate two quantile smoothing spline estimates for the

data appearing in Scheutte(1978) which is a typical example of actuarial "graduation" of

mortality tables. In this example it may be reasonable to impose monotonicity on the

fitted curves, so we contrast estimates based on both L\ and Loo penalties with their

monotonically constrained counterparts. Note that since the first derivitive of g is piece-

wise linear, it suffices to constrain the first derivitive at each of the knots to be positive,

which requires n additional linear inequality constraints. Here the estimates are
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Figure 3.3 Median Smoothing Splines

for Schuette Example: L\ penalty
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probably somewhat "undersmoothed" and the piecewise linearity of the L
t
penalty esti-

mate is somewhat less apparent.

All of the computing was carried in the S language of Becker, Chambers, and

Wilks(1988). The underlying algorithms are based on modifications of Bartels and

Conn(1980) algorithm for constrained l\ regression.
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