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ABSTRACT

Array-based technologies have been used to

detect chromosomal copy number changes

(aneuploidies) in the human genome. Recent

studies identified numerous copy number variants

(CNV ) and some are common polymorphisms

that may contribute to disease susceptibility.

We developed, and experimentally validated, a

novel computational framework (QuantiSNP) for

detecting regions of copy number variation from

BeadArrayTM SNP genotyping data using an

Objective Bayes Hidden-Markov Model (OB-HMM).

Objective Bayes measures are used to set

certain hyperparameters in the priors using a

novel re-sampling framework to calibrate the

model to a fixed Type I (false positive) error rate.

Other parameters are set via maximum marginal

likelihood to prior training data of known structure.

QuantiSNP provides probabilistic quantification

of state classifications and significantly improves

the accuracy of segmental aneuploidy identification

and mapping, relative to existing analytical

tools (Beadstudio, Illumina), as demonstrated by

validation of breakpoint boundaries. QuantiSNP

identified both novel and validated CNVs.

QuantiSNP was developed using BeadArrayTM SNP

data but it can be adapted to other platforms

and we believe that the OB-HMM framework has

widespread applicability in genomic research.

In conclusion, QuantiSNP is a novel algorithm for

high-resolution CNV/aneuploidy detection with

application to clinical genetics, cancer and disease

association studies.

INTRODUCTION

Several human diseases are associated with chromosomal
abnormalities including germline alterations leading
to developmental defects and somatic alterations leading
to cancer. Originally, the diagnosis of such defects
has been carried out by cytogenetic karyotype analysis
using chromosome banding techniques, more recently,
molecular cytogenetic analysis has been developed with
advances in fluorescence in situ hybridization (FISH)
based technology allowing even more refined identifica-
tion of the chromosomal defects underlying the specific
phenotypes. Characterization of the defects at the
molecular level using classic molecular biology
approaches (such as PCR, cloning, sequencing or
Southern blotting hybridization) can be laborious and
time consuming. Recent developments in microarray
technology have allowed the study of some chromosomal
aberrations with a relatively easy and high-throughput
molecular biology hybridization-based approach
(for review see (1)). This new approach has been called
‘molecular karyotyping’, or ‘segmental aneuploidy profil-
ing’, a descriptive term that is in line with the lack of
structural information in the data generated using
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microarray platforms (2). Several oligonucleotide array
platforms originally developed for genotyping have
also been used for copy number analysis (3–9) and
oligonucleotide arrays have been specifically designed
for comparative genome hybridization (CGH) applica-
tions (10,11). More recently, tiling array strategies
have been successfully applied to detect copy number
alterations on chromosome 22 (12). Tiling arrays offer
full regional coverage and very accurate mapping
however, at present multiple arrays are needed to
accommodate the whole genome. There is increasing
interest in the ability of SNP array platforms to detect
copy number variants (CNVs), as this approach allows
simultaneous profiling of copy number polymorphisms
(CNPs) and SNPs, leading to a better characterization
of the genetic alterations under investigation. Some of
the advantages of this approach for the detection of
chromosomal abnormalities have been shown for the
GeneChip� technology (Affymetrix, Santa Clara, CA,
USA), using 10, 100 and 500K platforms, and a variety
of statistical analysis and visualization tools have
been developed for these platforms (3,4,6–9,13–17).
An alternative to GeneChip� is provided by Illumina’s
BeadArrayTM technology for high-throughput SNP
genotyping, where allele-specific hybridization is coupled
with primer extension (Infinium� assay) (18). The
technology was further developed to use allele-specific
single-base extension in a two colour labelling method
(19). This modification allows the generation of more
genotypes from each array, when compared to the
single colour system, as a single-bead type is sufficient
to represent one SNP. Furthermore, this high-
throughput method couples hybridization and primer
extension, thus achieving higher specificity. It has been
recently demonstrated that the bead array platform
using the Infinium� assay is able to detect copy number
alterations (20).
Taken together, GeneChip� and BeadArrayTM provide

the two most widely used SNP chip platforms at the
time of writing. We have developed a highly tailored
Objective Bayes Hidden-Markov Model (OB-HMM) to
automatically infer regions of segmental aneuploidy (copy
number variation) from BeadArrayTM genotyping data
(QuantiSNP). We demonstrate that the Objective
Bayes paradigm provides a powerful framework for
model building as it affords the benefits of Bayesian
marginal probability calculus (information processing)
while allowing calibrated hyperparameters in the priors
which ensure certain long-running (frequentist) coverage
properties (for a general discussion and references on
Objective Bayes, see (21,22)). In the context of our work
we report on the development of a re-sampling data-
driven strategy to automatically set certain prior param-
eters given a user defined, frequentist, false positive rate.
All other parameters are set via maximum marginal
likelihood matched to prior training data with known
structure. In this way the OB-HMM framework
allows for a formal power analysis to be undertaken.
Characterization of the power of the method is vitally
important in experimental design when sample sizes and
end costs are being evaluated. It is also important

a posteriori in qualifying the risks and costs associated
with subsequent validation studies for CNVs detected by
the model.

To test the algorithm, our results were compared to the
mapping obtained using other cytogenetics and/or molec-
ular genetics technologies. We showed that our method
is able to produce accurate copy number detection
and high-resolution breakpoint identification. The advan-
tages of our approach are presented and discussed
in comparison to the only other current software,
BeadStudio LOHþ (Illumina). We believe the OB-HMM
method is highly suited to the analysis of high-
throughput genomic data when one of the hidden states
has special status as a ‘null’ or normal state. In this case,
the OB-HMM allows for setting of parameters
which ensure certain frequentist coverage properties for
excursions of the model out of the null state, while
benefiting from Bayesian marginal inference. To
our knowledge, we are the first to consider OB-HMM
for genomic data analysis, and we believe the
framework we have developed is well suited to many
other genomic data types, including other SNP array
platforms and array CGH. In previous work, several
other authors have considered conventional HMM-based
statistical methods to detect copy number changes
using array CGH (23,24) and GeneChip� SNP array
data (15,16,25,26). In addition, we present novel exten-
sions including: the ability to combine data from
several platforms of differing resolution (combining
the Human-1 and HumanHap300 arrays in this case)
and the ability to infer CNVs across several samples,
which allows for increased precision to detect common
regions of CNVs when analysing several individuals.

MATERIALS AND METHODS

Sample validation and whole genome genotyping

Fifteen samples with different cytogenetics alterations
and three normal controls were used (Table 1). All
experiments were performed according to the principle
expressed in the Declaration of Helsinki. See
Supplementary Data, Materials and Methods S1 for a
detailed description of DNA extraction, high-throughput
SNP genotyping using Sentrix� Human-1 Genotyping
and Sentrix� HumanHap300 (Illumina, San Diego, USA)
and a description of experimental validation.

Statistical model

QuantiSNP: an Objective Bayes Hidden-Markov Model

QuantiSNP uses an OB-HMM to infer copy number
variation and in the model the hidden states denote the
(unknown) copy number at each SNP. The states are
inferred using BeadArrayTM genotyping data—in terms of
log R ratios and B allele frequencies—for each SNP
(Figure 1).

Transition probabilities

Table 2 lists the hidden states used in our HMM. Note
that we divide the normal (diploid) state into homozygote
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and heterozygote sub-states to take into account regions
of homozygosity since the frequency of homozygotes in
heterozygous regions (2/3) differs from that in homo-
zygous regions (1/2). We use an exponential function to
define an a priori probability that some genetic event
(hidden state change) occurs between adjacent SNP loci a
distance d apart,

� ¼
1

2
1� exp �

d

2L

� �� �

1

where L is a characteristic length which could either be
inferred directly from the data, or adjusted to calibrate the
model to a given false positive rate in an objective fashion
(see below). The transition matrix of hidden states
between adjacent SNPs i, j is given by:

p ztþ1 ¼ j ztj ¼ ið Þ ¼

�= Ns � 1ð Þ, i 6¼ j

1� �, i ¼ j, j 6¼ 3,4f g

h 1� �ð Þ, i ¼ j, j ¼ 3

8

<

:

2

where h is the rate of heterozygosity which we set as 1/3
(chosen based on the mean AB frequencies given in the
BeadStudio Manual), and Ns is the number of hidden
states.

Table 1. Sample description

Molecular cytogenetics Reference

Sample ID Chromosomal
alterations

Chr. Method Normal
marker (tel)

Del/Dup
marker (tel)

Del/Dup
marker (cen)

Normal
marker (cen)

1 Normal NA NA NA NA NA NA NA
2 Normal NA NA NA NA NA NA NA
3 Normal NA NA NA NA NA NA NA
4 Deletion 6p FISH NA NA 5957 425 6 082 107 (39)
5 Deletion 6p FISH NA NA 6265 901 7 052 829 (36)
6 Deletion 6p FISH NA NA 6429 538 7 672 009 (39)
7 Deletion 6p FISH NA NA 4157 742 6 939 085 (38)
8 Deletion 6p FISH NA NA 9682 865 9 950 880 (39)
9 Deletion 6p FISH NA NA 6739 542 7 304 962 (40)
10 Duplication 6p FISH NA NA 15 111 309 20 066 682 NA
11 Translocation 6p,7q FISH NA NA NA NA (37)
12 Translocation 6p,9p FISH NA NA NA NA (35)
13 Translocation 6p,9q FISH NA NA NA NA (37)

Molecular genetics

14 Deletion Xp Sequencing From 31 589 077 (31 589 080) to 31 743 409 (31 743 412) NA
15 Duplication 17p MLPA 13 445 969 14 051 072 15 148 195 15 548 103 NA
16 Duplication 6p MLPA 41 255 724 43 608 796 47 024 373 51 272 159 NA
17 Deletion 5q PCR Homozygous deletion of exon 7 and 8 of the SMN1 gene NA
18 Deletion 3p MLPA 342 746 10 051 146 10 166 632 10 194 541 NA

Summary of samples and chromosomal alteration as characterized with different classic technologies. (All positions are in bp on Build35; May 2004
Assembly.) NA—not applicable.

Figure 1. Chromosome-wide data. Log R ratio values (top) and B allele
frequencies (bottom) plotted for each SNP from one individual
on chromosome 6. A deletion on the p-arm can be identified by the
shift in the log R downwards and the loss-of-heterozygosity indicated
by the disappearance of heterozygous state (0.5) in the B allele
frequencies (as indicated by the arrows).

Table 2. Hidden states, associated copy numbers and biological

interpretation

Hidden
state, z

Copy
number, c(z)

Number of
genotypes, K(z)

Description

1 0 0 Full deletion
2 1 1 Single copy deletion
3 2 3 Normal (heterozygote)
4 2 2 Normal (homozygote)
5 3 4 Single copy duplication
6 4 5 Double copy duplication

We associate each hidden state z with a given copy number c(z)
and genotype number K(z). For each copy number there can be a
number of genotypes, for example, for copy number 3 there can be one
of four genotypes {AAA, AAB, ABB, BBB}. The genotype number
gives the number of components in the mixture distribution of B allele
frequencies for that state. We have split the diploid (copy number 2)
into heterozygous and homozygous sub-states {3,4} to take into
account naturally occurring regions of homozygosity without allelic
loss.

Nucleic Acids Research, 2007, Vol. 35, No. 6 2015
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Emission probabilities

Let r denote the log R ratio and b the B allele frequencies.
These values are assumed to be independent given the
hidden state z and all other model parameters �. The
emission probabilities are defined as a mixture of
Gaussian and uniform distributions,

p r z, �jð Þ ¼ �r=2Rmax þ 1� �rð ÞG r;�r,z, sr,z
� �

3

p b z, �jð Þ ¼ �b þ 1� �bð Þ
X

K zð Þ�1

k¼2

wb,z,kG b;�b,z,k, sb,z,k
� �

þ 1� �bð Þwb,z,1Gþ b;�b,z,1, sb,z,1
� �

þ 1� �bð Þwb,z,K zð ÞGþ b;�b,z,K zð Þ, sb,z,K zð Þ

� �

4

where Rmax¼ 6 is defined by the lowest observed value for
the intensity R. The uniform distribution in each case acts
as a non-informative state for capturing outliers in the
data. As the B allele frequencies are in the range 05b51,
we use half-normal distributions (Gþ) for the homozygous
genotypes with fixed location parameters (0 and 1,
respectively). The EM updating of the variance
parameters is then the same as with the full normal
distribution.

Hierarchical prior specification

We use standard normal-gamma conjugate priors for the
emission model parameters which allows for efficient
analytic integration in posterior calculations,

p �,s �jð Þ / s ��1=2ð Þ exp �
1

2
�s m� �ð Þ2

� �

exp ��s
	 


5

where �,�,�,m are set ‘objectively’ (see below).
A Dirichlet prior is used for the B allele frequency

mixture weights,

p wb,z z, �j
� �

/
Y

K zð Þ

k¼1

w
vw,z,k�1

b,z,k 6

where we set a strong prior on equal weights vw,z,k¼
10 000, since we expect the relative frequencies of each
genotype to be approximately equal although some
departure is allowable if there is strong evidence from
the data. This also prevents mixture component weights
from collapsing to zero which would cause ambiguity, for
example, in the normal state there should be three
components, if one component were to disappear, there
would be no difference in the emission distribution from a
deleted state which has two.
Beta priors are used for the outlier rates,

p �r �jð Þ / ��r�1
r 1� �rð Þ�r�1 7

p �b �jð Þ / �
�b�1
b 1� �bð Þ�b�1 8

where we set �r¼ �b¼ �r¼�b¼ 1 to give a uniform
distribution.

Objective learning, expectation maximization(EM)
and the Viterbi algorithm

Our model will be calibrated to a user-defined specificity
(false positive) rate of excursions out of the normal (copy
number¼ 2) state, however, we wish to restrict the number
of prior parameters which need to be tuned in this
manner. Hence, we choose to estimate most of the
hyperparameters, �¼ {�,�,�,m}, via maximum marginal
likelihood techniques to a reference dataset obtained from
chromosome X multiple copy cell lines (20),

�̂ ¼ argmax
�

p r, b �jð Þ 9

with the remaining (user specified) free parameter L in
Equation (1) to be calibrated against Type I error, as
described below.

Given the setting of the hyperparameters, we then use
an EM algorithm to find maximum marginal a posteriori
estimates for the parameters of the emission distributions.

�̂ ¼ argmax
�

p � r, b, �̂, L̂
�

�

�

� 

10

The Viterbi algorithm can then be used to compute the
sequence of hidden states with highest probability given
the MAP parameter estimates of the emission model
parameters and hyperparameter,

ẑ ¼ argmax
z

p r, b z, �̂, L̂
�

�

�

� 

11

Posterior measures

Aberration events are defined as excursions of the
sequence ẑ out of the normal states. For each aberration
event given by the Viterbi algorithm, which spans a region
from SNP i to j with copy number k, we associate with
that event a Bayes Factor BF given by,

BF ¼
p r,b zi:j ¼ k

�

�

� �

P

zi:j 6¼k p r,b zi:j
�

�

� � 12

This posterior measure compares the evidence for the
region zi:j being in hidden state k in comparison to all
other sequences in which no part of this region is in this
hidden state. The greater the value of BF, the more
confidence we have in the event being of significance.
We ignore all called events whose ratio is below a
user-defined threshold.

Calibration to type I error

In order to provide calibration of our model to a fixed
Type I (frequentist) error rate, we generated 100 pseudo-
normal datasets for both the Human-1 and
HumanHap300 SNP coverage. This was achieved by
randomly sampling log R ratio and B allele frequency
values from an individual assayed using the Human-1 and
HumanHap300 platforms. These normal datasets allow us
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to quantify the false positive rates of the algorithms and
calibrate the method to a user-specified rate.

We then applied QuantiSNP to each dataset to detect
chromosomal aberrations. As the data is generated from
samples of a normal individual, any detected aberrations
will be false positive events. For various settings of the
algorithm (different L and Bayes Factor thresholds),
we then counted the number of false positive events.
In this manner we are able to automatically define a
Bayes Factor threshold and prior setting, L̂, which
maximizes power for a given Type I error rate. (Further
details in Figure 2.)

Joint inference on multiple samples

We can extend QuantiSNP to analyse multiple samples,
either the same individual assayed several times or single
samples from multiple individuals, and use the data jointly
to update our transition matrix. If the regions of CNVs
are common across samples, joint inference allows for
borrowing of strength and improved resolution to detect
CNV boundaries.

To allow for joint inference we place a Dirichlet prior on
the transition matrix at each SNP, centred on the expected
values given by Equation (2), and with precision K,

p ztþ1 ¼ j zt ¼ ijð Þ ¼ �i, j, t 13

p �i, j, t

� �

/
Y

Ns

j¼1

�
vi, j, t�1

i, j, t 14

where vi, j, t¼K� and � is given by Equation (2).

To test the effectiveness of joint updating of the
transition matrices we artificially generated data for 1000
assays of a 500 SNP long chromosome containing a single
5 SNP aberrant region. We then applied QuantiSNP
independently to each individual assay and then
QuantiSNP, in its multi-sample analysis mode (we
manually set K¼ 100), to the entire dataset. This
procedure was repeated 100 times. We then assessed the
performance by counting the number of deleted SNPs that
were correctly called by the single- and multi-sample
analysis modes and computing the average over the 100
iterations. Figure 3 shows the improved detection of a
small deletion and duplication region shared by 1000
individuals.

RESULTS

QuantiSNP: anObjective Bayes Hidden-MarkovModel
for copy number variation detection

We have developed an OB-HMM approach for
detecting copy number variation from BeadArrayTM

data (for details see the Materials and Methods section).
In the model, hidden states denote the (unknown) copy
number at each SNP. The states are inferred using the
BeadArrayTM genotyping data which comprises two
signals at each SNP: (1) Log R ratios which are a measure
of the magnitude of the combined fluorescent intensity
signals from both sets of probes and (2) B allele fre-
quencies which represent the relative ratio of the
fluorescent signals from one allelic probe to the other.
Figure 1 shows the log R ratios and B allele frequencies
for one individual across chromosome 6 which includes
a deletion.

Figure 2. (a) and (b) QuantiSNP is able to detect as many as 3–4 SNPs in simulated 5 SNP aberration region but only if we accept false calls rates of
around 10 in 100 000 SNPs. However, in (c) and (d), when the length of the event increases to 10 SNPs, QuantiSNP successfully detects nearly all
affected SNPs in the deletion and duplication events even at very stringent false call rates of less than 1 in 100 000 SNPs. In all cases, the localization
of the true boundary is good, with less than one extra SNP called outside of the true aberrant region.

Nucleic Acids Research, 2007, Vol. 35, No. 6 2017
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The parameters of our model are learnt from the data
using an EM algorithm (27) and, given these parameters,
the maximum likelihood sequence of hidden states are
inferred using the Viterbi algorithm (28). In our analysis,
we apply the EM and Viterbi algorithms to one
chromosome at a time. Identifiability of the states is
maintained via our non-symmetric prior distribution
structure for the B allele frequencies. The number of
mixture components is conditioned on the hidden states
and therefore arbitrary re-labelling is not possible. We
assign a Bayes Factor to each region of copy number
variation detected. This provides a probability measure of
the strength of evidence from the data for the presence of a
copy number variant in a region versus the null hypothesis
that there is no variant. The greater the value of the Bayes
Factor, the stronger the evidence for the existence of a
copy number variant.
In our model, we have used fully conjugate prior

distributions throughout enabling efficient analytical
integration to be performed for posterior calculations.
Estimates for hyperparameters in prior distributions
were obtained by learning from reference datasets of
chromosome X multiple copy cell lines (20), for which the
copy numbers are known, using maximum marginal
likelihood inference. For the remaining model parameters,
we have chosen to set these ‘objectively’ in order to
calibrate our model to user-specified false positive error
rates.
In Bayesian inference, prior probability models are

developed for unknown parameters and these prior beliefs

are then updated in light of new data, using Bayes’ Rule,
to give posterior probability distributions for the param-
eters. In a subjective Bayesian approach, prior distribu-
tions are elicited using expert knowledge or personal
beliefs, and the Bayesian framework provides a powerful
means by which to incorporate such information into an
inference problem. In instances where little or no
substantive prior knowledge is available, the Objective
Bayes approach provides a principled method to set
parameters of the priors; such that the resulting Bayesian
procedures possess good long-run frequency properties
(29) (for general discussion of Objective Bayes see (21,22)).

For our problem, a Bayes procedure with good
frequency properties is particularly attractive. In copy
number variation, we are principally interested in excur-
sions into and out of the normal diploid state (or haploid
for sex chromosomes) and, it is therefore natural to
express interest in a frequentist property, such as the false
positive rate, which tells us the long-run frequency with
which we would make incorrect CNV detections. In our
model, the rate of excursions (and hence our false positive
error rate) is controlled by a characteristic length
parameter L and a threshold value BFthresh. The greater
the characteristic length, the less likely we are to make
excursions into and out of the null state, and hence fewer
copy number variant events will be called. Furthermore,
if an excursion is made, the rate at which we accept
this copy number variant is further determined by the
significance we attribute to it: we only accept a copy
number variant if the Bayes Factor associated with the
event is greater than a threshold value BFthresh.

The selection of appropriate values or prior distribu-
tions for these parameters is very difficult. Although
Jeffreys (30) (a more recent discussion is given by (31))
provides a scale for the interpretation of the Bayes Factor,
this scale merely provides a descriptive statement for
ease of interpretability, rather than facilitating an actual
calibration. In addition, despite recent successes in
mapping copy number variation in humans (8,32), the
high reported false negative rates in these experiments
mean that the true length distribution of copy number
variants remains unknown and prevents us from adopting
semi-Markov type approaches (33,34) which could
exploit such knowledge. By adopting the Objective
Bayes paradigm, we now have an objective by which to
choose appropriate parameter values, in this case,
we select parameter values that calibrate our model to
given false positive error rates.

We perform the calibration using a re-sampling
data-driven strategy to generate pseudo null datasets
(where we know that there is no copy number variation)
on which we can apply our algorithms (details given in the
Materials and Methods section). The rate at which copy
number variant events were detected on these simulated
null datasets then provides an empirical measure of the
false positive rate for different values of L and BFthresh.
In addition, we have similarly estimated the power of our
procedure to detect events of various sizes at different false
positive rates, by re-sampling BeadArrayTM data from
chromosome X multiple copy cell lines with known copy
numbers 1–4.

Figure 3. Multi-sample detection rates. Comparison of single-sample
(red) and multi-sample analysis (blue) performance in (a,c) duplications
and (b,d) deletions. In (a) and (b), the multi-sample analysis has
greatly improved the detection capability of QuantiSNP for a 5 SNP
duplication and deletion event respectively by increasing the number
of SNPs called aberrant. In (c) and (d), the multi-sample analysis
reduces the number of SNPs that are falsely called as aberrant
towards zero.
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This calibration analysis gives us the ability to perform
a formal power analysis of our OB-HMM method
(Figure 2). We believe this to be a fundamental reversal
in the normal practice of developing CNV detection
algorithms, where algorithms are first developed, then
applied to the experimental sample, and false positive and
false negative rates subsequently inferred via independent
experimental validation of detected and non-detected CNV
events. In our strategy, the characteristics of the algorithms
are defined before application to the experimental sample,
via the calibration analysis, offering the experimentalist the
capability of being able to specify the desired false positive
rate suitable for their experiment a priori.

We also adapted our OB-HMM method to perform
analysis on multiple samples simultaneously. If regions of
copy number variation are common across individuals
(perhaps due to a shared disease phenotype), the use of the
data jointly allows for borrowing of strength and
improved detection of copy number variants. For
example, a 5 SNP CNV which is typically undetectable
by QuantiSNP at stringent false positive rates can be
located accurately if the same CNV region is aberrant in
1000 individuals (Figure 3).

Sample collection and characterization

We used 18 samples, including three normal controls, that
were characterized using different cytogenetics and mole-
cular genetics technologies (Table 1). Nine samples have
been previously characterized using FISH (35–40), one
sample containing a duplication was characterized by
FISH (Mirza et al., manuscript in preparation). Five
samples (No. 14–18) were characterized using molecular
genetics analysis (Supplementary Data, Materials and
Methods S1 for details) and for these samples the study
was conducted as a blind experiment.

Infinium genotyping and BeadStudio LOHþ data analysis

We generated high-density genotyping data for the 18
samples using both Sentrix� Human-1 Genotyping
(�1 09 000 SNPs) and Sentrix� Humanhap300
(�3 17 000 SNPs) (Illumina, San Diego, USA). After
scanning, the data were uploaded into BeadStudio and
analysed using the BeadStudio LOHþ module with the
default window size (1.1Mb for Human-1 and 0.46Mb for
HumanHap300), the automatic bookmark system
(Version 1.0) and a p-value cutoff50.005. In BeadStudio
(version 2.3.43), data from the same Infinium� assay can
be combined, but at present this is not applicable to
different types of arrays, such as Infinium� I and II.
Therefore we performed a parallel analysis of the two
array platforms (detailed output in Supplementary
Table S1).

Normal controls

One normal control (No. 1) was run and analysed three
times on both the Human-1 and HumanHap300 plat-
forms: in both cases the genotyping data were highly
concordant (499%). Despite this, the BeadStudio LOHþ
analysis suggested some discordant events among the
three replicates (Supplementary Table S1). With

QuantiSNP, we could combine the Human-1 and
HumanHap300 datasets (which is not currently possible
in BeadStudio). Using a log Bayes Factor of 30 and
a characteristic length of L̂ ¼ 2Mb, we consistently
identified two CNV events (one very small homozygous
deletion on chromosome 1 and one duplication on
chromosome 12) in all the three replicates of sample 1
using the combined dataset (Supplementary Table S2A).
From our calibration study, we found that these settings
corresponded to a false positive rate of less than one false
CNV event call per 100,000 SNPs. This setting was chosen
to be deliberately stringent in order to limit the number of
CNV event calls made since we are unable to indepen-
dently validate the existence or otherwise of large numbers
of putative CNVs.

Clinical samples

Using BeadStudio LOHþ and HumanHap300 data, we
identified 7/9 known deletions and 3/3 known duplications
in either one or both of the array platforms in samples
4–18. As the study was conducted in a blind fashion after
the analysis we realized that the sample 17 deletion
(mapped by PCR) could not be identified, as there are no
SNPs on the arrays that map to the deleted region on
chromosome 5. In all samples, using HumanHap300
arrays, BeadStudio LOHþ discovered the validated
event together with one or more unvalidated CNV
events (Supplementary Table S1). Many of the additional
events were mapped to chromosome X (52/105). At
present, the sample sheet for the BeadStudio LOHþ
module (version 2.3.41; Autobookmarking version 1.0)
does not include a column to give information of the
gender of the samples and therefore some of the X
chromosome events may be solely due to differing copy
numbers of X between genders. No new events around the
translocation breakpoints were identified in cases 11,12
and 13.
QuantiSNP analysis was applied to each Human-1 and

HumanHap300 datasets, and the combined dataset.
Figure 4 shows two examples of the QuantiSNP analysis
results output (for data visualization see Supplementary
Figure S1). QuantiSNP identified 8/9 deletions
(no SNP mapping on the deletion on chromosome 5 for
sample 17) and 3/3 duplications in either one (1 case) or
both (9 cases) array platforms, and always in the
combined dataset (11 cases). In 7/11 of identified cases,
(combined data analysis) the validated event was
identified together with one or more unvalidated CNV
events. Several of these additional events were found in
more than one sample. A detailed analysis compared the
additional CNVs with the Database of Genomic Variants
(http://projects.tcag.ca/variation/—12th October 2006
Release) and 11/15 of these mapped to previously
discovered CNV events (sample No.10 was excluded due
to unusually high noise in the sample data). In Figure 5,
we have plotted the average number of unvalidated CNV
events detected in samples No. 2–9, 11–18 by QuantiSNP
at different Bayes Factor thresholds (L̂ ¼ 2Mb).
This is not a true false call rate, as some of these
events may be real CNVs, however, it is nonetheless

Nucleic Acids Research, 2007, Vol. 35, No. 6 2019

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
5
/6

/2
0
1
3
/1

0
3
4
7
8
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



a useful approximation. When compared to the false
call rates derived from our simulation studies, we can see
that there is good matching between the two boundaries
for the Human-1 dataset. The comparison using the
HumanHap300 data is less favourable, however, this
is likely to be due to the different versions of the
HumanHap300 used in the experiments (see Supplemen-
tary Data, Materials and Methods S1 for details).
No new events around the translocation breakpoints
were identified in cases 11, 12 and 13 in agreement with
the BeadStudio LOHþ analysis described above. All
QuantiSNP analysis was performed on a 3GHz Pentium
IV PC with 512Mb.

Accurate mapping of breakpoints

Using QuantiSNP on the combined datasets
(�400,000 SNPs) all breakpoints were mapped with
high-resolution (Supplementary Table S2A). In Figure 6,
we compare the performance of BeadStudio LOHþ and
QuantiSNP in mapping the breakpoint using the
HumanHap300 data to the data collected with other
technologies (FISH, sequencing, PCR and MLPA).
QuantiSNP accurately mapped 12/15 breakpoints ana-
lysed, while BeadStudio LOHþ mapping was accurate
only in 6 instances. Some of the deletion/duplication
events were detected and mapped in multiple segments.
While this never happened (0/11) for QuantiSNP,
BeadStudio LOHþ broke the deletion/duplication events
in 3/11 cases analysed. Using QuantiSNP on sample
No.14 (previously characterized by exon-specific PCR to
harbour deletion of exons 46–50 of the DMD gene), we
were able to design primers for an amplicon of predicted
maximum size 7428 bp. The long-range PCR resulted in a
4627 bp fragment, that was subsequently analysed by
restriction enzyme mapping allowing the sequencing
across the breakpoint of a smaller PCR amplicon
(Figure 7). BeadStudio LOHþ did not detect the deletion
on chromosome 3p in sample No.18, while this was

detected, and correctly mapped, in the combined dataset
QuantiSNP analysis.

Analysis of copy number variant coverage

To evaluate the possible use of the current Infinium�-
based assays for copy number variation detection and
the possible effect of CNV on our own analysis, we
mapped the SNPs present in the Human-1 and/or the

Figure 4. QuantiSNP Output. An example of output from QuantiSNP, shown are log R Ratio, B allele frequency, HMM copy number estimate and
associated log Bayes Factor. (a) Sample No. 4 chromosome 6 deletion case; (b) Sample No.15 duplication on chromosome 17. In Supplementary
Figure S1, the same data were visualized as a custom track in the UCSC Genome browser.

Figure 5. Calibration of false call rates. Our false call rates obtained by
simulation (red) fall within the bounds of the empirical false call
rate derived from the experimental sample analysis (black).
We chose L̂¼ 2Mb for the analysis of the (a) Human-1 and (b)
HumanHap300 datasets. Sample 10 was excluded from the analysis as
this dataset shown unusually high levels of noise. Errors were derived
from bootstrap simulations using the empirical and simulated datasets.
There appears to be a good matching between the two boundaries for
the Human-1 dataset. The comparison using the HumanHap300 data
is less favourable, possibly due to the change in number of probes
per SNP in versions of the HumanHap300 used in the experiments
(see Supplementary Data, Materials and Methods S1 for details).
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HumanHap300 to known copy number variants from the
database of genomic variants (http://projects.tcag.ca/
variation/—12th October 2006 Release). To further
evaluate the assays we also mapped the SNP content for
the HumanHap550, which is the combination of the
HumanHap240S and HumanHap300. As expected,
known copy number variation regions are underrepre-
sented in these arrays, this is possibly due to the
SNP selection process that is in favour of polymorphisms
showing clear Mendelian inheritance and thus will
tend to exclude SNP’s mapping to CNP regions.
Overall 46.47% of unique copy number variation

loci (excluding inversions) do not have any SNP
mapping to them in the combined data (55.65%
Human-1; 47.86% HumanHap300). In the combined
data from both arrays, 39.79% of the copy number
variants are covered by at least five SNP on the array
(25.63% Human-1; 37.34% HumanHap300) and thus it
should be possible to detect them using QuantiSNP
(details in Supplementary Table 3A). We also performed
a detailed analysis mapping the SNPs on the arrays to all
events (redundant) in the same database and this shows
a similar coverage of every single event (Supplementary
Table S3B).

Figure 6. Breakpoint mapping. Comparison of breakpoint mapping using BeadStudio (orange arrows) and QuantiSNP (blue arrows) on
HumanHap300 data shown in context with previous data (full data in Supplementary Table S1B and S2C and Table 1, respectively). A star indicates
the detection of the event in multiple fragments. The schematic image of the chromosome is not to scale: other technology defined deletion/
duplication boundary is indicated in black, the deleted/duplicated area is in grey (see Table 1 for details). (a) Samples characterized by FISH
(boundary mapped with a �1 00 000 bp confidence). (b) Samples characterized by molecular genetics; sample No. 18 breakpoint was successfully
identified above significance (log Bayes Factor¼ 37.5) in the combined data only (light blue arrows).
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Figure 7. DMD deletion mapping in Sample 14. (a) QuantiSNP output for sample 14, the chromosome X deletion is identified; (b) Sequence results
across the deletion; (c) Mapping of the sequence to the genome location on chromosome X; (d) Blat results for the sequence (in panel c) and the
visualization in the UCSC browser. Orange custom QuantiSNP (QS) log Bayes Factor track and in red (deletions)/green(duplications) QuantiSNP
(QS) copy number (0 correspond to the normal state). RefSeq genes and SNPs present in different array platforms (including HumanHap300 labelled
as ‘Illumina_300K’) are also shown in the example.
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Mapping of newly identified events to known copy number
variants

As experimental validation of all the CNV events detected
by QuantiSNP would be far too time consuming and
costly to perform, we attempted to verify these events
instead using the database for genomic variants.
To perform a reliable comparison and to avoid counting
an event multiple times we consolidated the additional
unvalidated events, 42 deletions and 56 duplications
with at least two SNPs to a non-redundant set of 68 loci
(QS copy number summary custom track are
available at http://www.well.ox.ac.uk/QuantiSNP) and
then compared our findings to the unique loci in the
database. Despite the low coverage of the platform(s)
(Supplementary Table S3) and the small sample size
for this kind of study, many novel events had a partial
or complete overlap with events in the database.
The different levels of agreement for the boundaries of
the CNVs can be due to real sample-related differences
and/or the genome coverage of the platform used.
In summary, 37/68 loci were mapped to the database
and among those 20 were nested within database loci
(Supplementary Table S4A). When we analysed the
additional loci found with the combined dataset and
log Bayes Factor over 30 (Supplementary Table S2A),
11/15 events were found to overlap to database loci and
9 of these were nested within database loci. Several of the
CNVs identified were present in more than one sample
providing further support for the additional events
detected. An interesting example is the duplication event
on chromosome 10 found in both samples No. 2 and 8,
a mother a and daughter respectively; the same CNV was
not present in the father (sample No. 3) (Supplementary
Figure S2 shows examples of the browser view of the CNV
data). We extended the analysis to the BeadStudio LOHþ
detected loci (Supplementary Table S4B and S4C).
Using the HumanHap300 data, 53 unique events were
identified on autosomes (another 52 events mapped on
chromosome X), 48 of these novel loci mapped to the
database, but only three were nested in known events.
The QuantiSNP loci have a median overlap of 27.5% with
database loci, meaning that in general they map to partial
events, either nested within or overlapping with the
variants in the database. On the contrary, the median
overlaps for the Human-1 and HumanHap300
BeadStudio LOHþ analyses are 882 and 1361% respec-
tively, showing that these events are much larger than the
database loci. In fact the median size of loci identified with
the combined data analysis in QuantiSNP was 294 kb,
while the median size for the events identified by
BeadStudio LOHþ on HumanHap300 data was 906 kb.

DISCUSSION

The development and validation of novel approaches to
accurately and quickly map copy number changes in
the human genome is important for the implementation
of novel diagnostic strategies. Oligonucleotide array
platforms originally developed for SNP genotyping have
been successfully used for segmental aneuploidy profiling

(4,5,7). Here we present a novel statistical algorithm that
uses Objective Bayes inference for a HMM with calibrated
prior parameter settings. We validated the technique using
Illumina BeadArrayTM SNP genotyping technology on
well-characterized clinical samples. OB-HMMs resulted in
the confident identification with high probability of
known copy number alterations, as verified with other
molecular cytogenetics and/or molecular biology techni-
ques. Our results show the power of the QuantiSNP
approach in accurately mapping breakpoints (12/15 versus
only 6 for BeadStudio) (Figure 6) and demonstrate an
instance where only the QuantiSNP mapping allowed the
direct sequencing and subsequent definition of the break-
point at the base-pair level (sample No.14) (Figure 7).
As for the minimum size in base pairs of copy number
changes that can be identified, this is limited only by the
resolution and coverage of the SNPs on the arrays.
Overall, the SNP array-based approach performed well in
the identification of segmental aneuploidy events which
makes these platforms a viable and efficient complemen-
tary technology to classic karyotyping for molecular
characterization of patient samples.
Following the completion of the human genome

sequence, the emphasis has shifted towards the character-
ization of human genetic variation and in the last few
years, thanks to novel technologies, more and more
structural variation events in the genome have been
identified (for review see (41)). The possibility of also
using a high-throughput platform for SNP typing to
reliably and accurately screen for copy number variants
(CNVs) in the genome is appealing. As the resolution of
these approaches improves, previously uncharacterized
CNV events will become easier to detect and may hinder
the optimization of CNV analytical tools, in particular
with regard to the control of false positive rates. Several
unknown copy number changes were identified in our
analysis and 11/15 mapped to CNVs identified in other
studies (http://projects.tcag.ca/variation/). Even though
the further validation of all novel events was beyond the
scope of this study, this overlap with other studies
provides circumstantial evidence of a real event which is
further strengthened by the frequency with which novel
events mapped within (nested) events (9/11) from other
studies. Taken together this suggests that our method can
accurately identify novel CNVs if SNPs map to the region
of interest.
To evaluate the potential of the BeadArrayTM platform

for CNV mapping, we determined the coverage for
different BeadArrayTM platforms with regard to CNV
events currently present in the public CNV database
(Supplementary Table S3). It is clear that the current
Infinium�-based array platforms are not offering extensive
coverage of known CNVs, both in terms of the number of
SNPs that map to each event and the number of events
with SNPs. Despite this, a QuantiSNP analysis of the data
is robust in the detection of CNV to as few as 5 SNPs per
event, thus increasing the utility of these platforms for
detection of up to 40% of previously identified events
(Supplementary Table S3). Thanks to the potential for
customization of the Infinium�-based BeadArraysTM,
future platforms or custom design arrays could be
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complemented for CNV detection by interrogating SNPs
(or invariant nucleotide positions) mapping in the
genomic region of interest. It is conceivable that the
same approach could be used to generate BeadArraysTM

with a biased distribution of oligonucleotides for CNV
discovery, as well as other mapping applications (ChIP on
Chip, DNAse protection assays on arrays, global methyl-
ation analysis). The great advantage of such custom
design is the possibility to detect both potential CNV
events and SNPs on the same high-throughput genotyping
platform, thus saving both time and biological reagents.
Although we have not applied the multi-sample analysis

mode of QuantiSNP to any real datasets, we believe that
there is a great scope for use and development of such a
technique in population and case-control studies involving
large numbers of individuals. Shared copy number variant
regions have already been identified in a recent study using
the HapMap population (8) and a joint analysis could
reveal even more common copy number polymorphisms.
As the high-throughput genotyping platform market
matures it is now possible to profile larger sized cohorts
at ever increasing resolutions. In this environment,
analytical tools for the detection of genetic variation
need to accommodate increasing volumes of data while
moving towards precision that is appropriate for diag-
nostic and clinical applications. We are also currently
working on extending QuantiSNP to integrate informa-
tion from multiple array platforms (Affymetrix
Genechip�, BeadArrayTM and oligonucleotides/BAC
array CGH) to improve resolution and precision.
In addition, the Bayesian framework of QuantiSNP

provides considerable flexibility for extending the model
to specific applications. In cancer studies, heterogeneous
samples are a common problem in which tumour samples
maybe contaminated by the presence of normal gDNA. In
such instances, the observed log R ratios and B allele
frequencies will be a mixture of the signals due to the two
sample components:

robserved ¼ �rtumour þ ð1� �Þrnormal

bobserved ¼
�ytumour þ ð1� �Þynormal

�xtumour þ ð1� �Þxnormal

15

where (x, y) are the intensities due to each allele and � is
the mixing proportion. It is then necessary to deconvolve
the mixture by estimating the mixing proportion,
which may be assumed to be constant for the whole
sample, from the observed data. A strength of our method
is that not only is this type of inference possible, via an
extension of the observation model for the HMM, it is
also possible to generate artificial heterogeneous datasets
with pre-specified mixing proportions (such as in (20)) in
order to estimate our false positive characteristics for
different mixtures. A further feature relevant for cancer
studies would be the joint analysis, which should increase
the ability to identify common genomic alterations in a set
of cancer samples.
We believe our approach is the first application of

OB-HMM to high-throughput genomic datasets. In
genomic data analysis using HMMs it is often the case
that one of the hidden states carries special status as a

‘null’ or normal state. In this scenario, we believe the
OB framework provides a powerful approach which
allows for calibrated Type I error rates of excursions out
of the null state, while affording the benefits of marginal
probability calculus that defines the Bayesian approach.

A highly accurate statistical algorithm, such as
QuantiSNP, for the detection of CNV events is vital for
the meaningful identification of relevant copy number
polymorphisms (CNPs) both in genome-wide and region-
specific association studies of complex disease and to fully
exploit the potential of whole genome genotyping
platforms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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