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Abstract

We describe the development of a rapid, noncontact imaging method, modulated imaging (MI), for

quantitative, wide-field characterization of optical absorption and scattering properties of turbid

media. MI utilizes principles of frequency-domain sampling and model-based analysis of the spatial

modulation transfer function (s-MTF). We present and compare analytic diffusion and probabilistic

Monte Carlo models of diffuse reflectance in the spatial frequency domain. Next, we perform MI

measurements on tissue-simulating phantoms exhibiting a wide range of l* values (0.5 mm to 3 mm)

and  ratios (8 to 500), reporting an overall accuracy of approximately 6% and 3% in absorption

and reduced scattering parameters, respectively. Sampling of only two spatial frequencies, achieved

with only three camera images, is found to be sufficient for accurate determination of the optical

properties. We then perform MI measurements in an in vivo tissue system, demonstrating spatial

mapping of the absorption and scattering optical contrast in a human forearm and dynamic

measurements of a forearm during venous occlusion. Last, metrics of spatial resolution are assessed

through both simulations and measurements of spatially heterogeneous phantoms.
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1 Introduction

Light transport in tissues is a complex process due to multiple scattering and absorption. Thus,

at the core of every optical technique for quantitative tissue characterization is the ability to

separate optical absorption from optical scattering effects by the detection of a remitted or

transmitted light field. This remission (or transmission) is a function of time and space, yielding

two general classes of quantitative techniques: time-resolved and spatially resolved

measurements, respectively (see Fig. 1). Time-resolved measurements are further broken down

into time-domain and frequency-domain techniques: the first measuring the temporal point-

spread function (t-PSF), or spreading of a propagating pulse in time,1,2 and the latter measuring

the temporal modulation transfer function (t-MTF), or the attenuation and phase delay of a

periodically varying photon density wave.3–5 The time domain and frequency domain share

an exact Fourier transform equivalency, although each has its trade-offs when considering real-

life hardware and model-fitting constraints.

In diffuse optics, spatially resolved measurements have been generally limited to the real spatial

domain. Here, the spatial point-spread function (s-PSF) is typically characterized by

“multidistance” measurements,6,7 tracking the spatial dependence of a reflected or transmitted

light field generated from a point-like illumination. The Fourier transform equivalent to the

real spatial domain is the spatial frequency domain (SFD). While recent work has shown the

use of spatially structured illumination techniques for manipulating diffractive optical systems,
8 little has been reported for its use in characterization of diffusive systems. 9–11

In this paper, we describe a new imaging method, modulated imaging (MI), for quantitation

and wide-field mapping of turbid media in the SFD. The spatial modulation transfer function

(s-MTF) of a turbid medium encodes both depth and optical property information, enabling

both quantitation and tomographic imaging of the spatially varying medium optical properties.
10 In this work, we present a detailed exposition and validation of the ability of MI to

quantitatively recover homogeneous tissue optical properties. We present two homogeneous

forward models of diffuse reflectance in the spatial frequency domain—the first, an analytic

diffusion-based approach, and the second, a transport-based approach using Monte Carlo

simulations. Next, we present reflectance measurements of tissue-simulating liquid phantoms

exhibiting a wide range of absorption and scattering values. The optical properties of these

samples are recovered by analysis with our analytic diffusion model using two inversion

methods—the first, a least-squares multifrequency fitting algorithm, and the second, a rapid

two-frequency lookup table approach. We then apply the technique to an in vivo tissue system,

producing 2-D spatial maps of the absorption and reduced scattering contrast of a human

forearm. Dynamic measurements are also acquired, demonstrating changes in forearm optical

properties during venous occlusion. Last, we investigate metrics of spatial resolution and

optical property contrast through both simulations and measurements of spatially

heterogeneous phantoms.

2 MI Instrumentation

The MI apparatus is shown in Fig. 2. Grayscale illumination patterns are generated using a

light source in combination with a spatial light modulator (SLM). In this study, we used a

simple digital projector (NEC HT1000), based on a digital micromirror-based digital light

processing (DLP) light engine (Texas Instruments) and an ultra high performance (UHP)

mercury lamp. The projector’s color filter wheel was removed, producing a broadband “white

light” illumination of the sample, allowing us to use interference filters for detection of a narrow

wavelength band (Andover Corporation, λ=660 nm, Δλ=10 nm FWHM). To create the

illumination patterns, 8-bit grayscale bitmap images are generated using MATLAB

(Mathworks, Inc.). They are then placed in a PowerPoint (Microsoft, Inc.) presentation file and
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automatically sequenced using the Microsoft Office ActiveX controls through an external

LabVIEW (National Instruments, Inc.) program. The diffusely reflected light is captured by a

16-bit frame-transfer CCD camera (Roper Cascade 512F) capable of imaging up to 30 frames

per second at full 512×512 resolution. Specular reflection is avoided by illuminating at a small

angle to normal incidence. Additionally, crossed linear polarizers can be added to further select

the diffuse reflectance, useful for rough surfaces (such as skin), where specular light can be

reflected at all angles.

The modularity of this system makes it very flexible. First, the field of view is limited only by

the magnification of the illumination and collection optics (with fundamental resolution limits

set by the physics of light transport). Second, the spectral range can be chosen by appropriate

selection of light source, SLM, and imaging sensor. Last, for many applications, an MI system

has the potential to be very low cost, capitalizing on the widespread availability of consumer-

grade digital cameras and projection systems. Here, we use a research-grade 16-bit CCD

system, but the required dynamic range for many applications can be as low as 8 bits, depending

on the required reflectance intensity (and thus optical property) resolution.

3 Theory and Measurement in the SFD

3.1 Diffusion Approximation

The concept of a temporally modulated scalar photon density wave in turbid media is well

established—its dispersive, diffractive, and interference properties have been widely studied

and used for both quantitation and image formation.3,4,6,12–15 The notion of spatially

modulated photon density “standing” waves, however, has mainly been considered as a

theoretical construct (i.e., as the Fourier transform representation of spatial point sources and

perturbations), as opposed to a practical measurement modality employing periodic

illumination. Our goal here is to provide a simple conceptual framework to understand the

fluence rate and reflectance properties of spatially modulated photon density plane waves in

the SFD. We formulate this within a diffusion context and then later extend the discussion to

transport-based Monte Carlo simulations in order to extend the applicability of MI to low

albedo and high spatial frequency regimes.

The time-independent form of the diffusion equation for a homogeneous medium is given by

(1)

where φ is the fluence rate, q is the source,  is the transport coefficient, μeff=

(3μaμr)
1/2, μa is the absorption coefficient,  is the reduced scattering coefficient,

and g is the cosine of the average scattering angle. Imposing a semi-infinite geometry, as

depicted in Fig. 3, we introduce a normally incident, periodically varying plane wave source:

(2)

with spatial frequencies (or repetencies) fx=(kx/2π) and fy=(ky/2π), and spatial phases α and β,

extending infinitely in the tangential spatial dimensions, x and y, with some arbitrary

dependence on depth, z.

Assuming a linear medium (i.e., a response proportional to the input intensity), this sinusoidal

source will give rise to a diffuse fluence rate with the same frequency and phase. (From
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symmetry considerations, there should be no lateral phase shift16 for normally incident light

onto a homogeneous medium.)

(3)

Insertion of Eqs. (2) and (3) into Eq. (1) yields a 1-D second-order Helmholtz equation for the

fluence rate as a function of depth, z:

(4)

where

(5)

Here, a plane wave with both x and y modulation gives rise to a wave propagating with a scalar

attenuation coefficient . Although spatial anisotropy may exist in real tissues, we focus on

the characteristics of a 1-D projection to understand simple scalar photon density wave

attenuation in multiply scattering media. Consequently, the subsequent discussion considers a

single nonzero spatial frequency along the x dimension only, k=kx, with constant illumination

along y (ky=0).

At zero spatial frequency (k=0), the effective penetration depth  is equivalent to that of a

planar (constant) illumination source, δeff=(1/μeff). In general, however,  (and ) are

functions of both optical properties and spatial frequency of illumination. The 1-D form of Eq.

(4) implies that the amplitude of the periodic wave, φ0(z), is independent of the tangential

spatial dimensions x and y. As Eq. (4) is identical to the diffusion equation for a planar

illumination, we can use existing planar geometry solutions by simply substituting μeff with

our new  term.

As in the derivation of Svaasand et al.5 for planar photon density wave reflectance, we model

an extended source as

(6)

where P0 is the incident optical power. Conceptually, this represents a spatially distributed but

angularly isotropic source introduced via scattering of a collimated, forward-directed beam.

The solution for the resulting fluence rate is
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(7)

where a′ is the reduced albedo, and C is a constant determined by the choice of a boundary

condition. Using the partial current boundary condition,15 the flux, j, is set proportional to the

fluence at the interface z=0:

(8)

Here, A is the proportionality constant, and Reff is the effective reflection coefficient. C then

becomes

(9)

yielding the diffuse reflectance, Rd(k):

(10)

While the formulation shown is for a pure 1-D sinusoidal illumination pattern, an arbitrary

illumination function can be modeled through linear superposition of sinusoids in both the x

and y directions.

For a given set of optical properties, the function Rd(k) specifies the diffuse spatial modulation

transfer function (MTF) of the medium. The simplicity of Eq. (10) allows some physical

intuition of its properties. First, the frequency dependence of Rd in the SFD is an inverse

polynomial function of a single, positive-valued ratio, , which fully describes the low-

pass spatial filtering properties of homogeneous turbid samples within a steady-state diffusion

context:

(11)

The low- and high-frequency regimes have differential sensitivity to absorption and scattering

properties, respectively. At k=0, Rd is a function only of the reduced albedo. In the additional

limit of zero absorption,  and Rd→1, implying that all incident photons are
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reflected back out of the turbid medium. At low spatial frequencies (k≪μeff), the absorption

has a maximal effect on the reflectance. Approaching the high-frequency regime (k≫μeff), the

denominator μtr (  in the diffusion limit), becomes the only source of optical contrast. Both

limits involve a ratio with respect to the transport coefficient, highlighting the natural length

scale of light transport, l*=(1/μtr), the transport mean free path. In fact, dimensionless forms

of the preceding fluence and reflectance solutions can be written in units of the transport spatial

frequency, μtr, by the two substitutions μ̂a=(μa·l*), k̂=(k·l*), and ẑ=(z/l*), where

 and â′ = (1 − μ ̂a).

The diffusion approximation to the radiative transport equation is valid when

(12)

and due to the anisotropic nature of light scattering, has been observed to be accurate

approximately when

(13)

where ρ describes the distance from collimated sources. Depending on the measurement

technique (modality, geometry, calibration method, etc.) and metric of accuracy chosen, the

practical minimum limit of ρ is approximately in the range of 3l* to 4l* (Refs. 17 and 18). The

spatial frequency analog of the transport length l* is the transport spatial frequency, exactly

equal to the transport spatial frequency (or transport coefficient), μtr=fx,tr=(ktr/2π). If we relate

the inverse of ρ as a metric of spatial frequency, then Eq. (13) can be restated as

(14)

We therefore expect the maximum spatial frequency accurately predicted by diffusion to be in

the range of 1/(3l*) to 1/(4l*), or 0.25μtr to 0.33μtr. Both albedo and source-distance

requirements of the diffusion approximation limit the ratio  to be much less than one.

In the following sections, we will highlight the quantitative power of this SFD diffusion model

through (1) comparison to Monte Carlo simulations and (2) empirical demonstration of

measurement accuracy in turbid phantom systems.

3.2 Monte Carlo Simulation in the SFD

Although more computationally intensive, it is desirable to have a forward model in the SFD

that is valid for a greater range of both albedo and spatial frequency. A few transport-based

approaches are available, including both direct numerical solution of the radiative transport

equation19,20 and Monte Carlo simulation.21,22 For this paper, we have used “White” Monte

Carlo (WMC) simulations23,24 of a collimated point-source illumination to generate

predictions of the spatially resolved, steady-state diffuse reflectance, Rd(ρ), for a given set of

optical properties μa, μs, and g. This spatial point-spread function, provides an impulse

response, and spatial frequency domain predictions of diffuse reflectance, Rd(k), are found by

Fourier transformation of Rd(ρ). For a radially symmetric function such as Rd(ρ), the 2-D

Fourier transform in the x-y plane reduces to a 1-D Hankel transform of order zero:

Cuccia et al. Page 6

J Biomed Opt. Author manuscript; available in PMC 2010 May 12.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(15)

where J0(kr) is the zeroth-order Bessel function of the first kind. In our simulations, we bin

ρ in n finite intervals Δρi. We can then calculate Rd(k) as

(16)

In this paper, we generated the WMC data using 107 photons, a detector numerical aperture of

0.22. For all simulations, the index of refraction n and anisotropy factor g were set to 1.33 and

0.71, respectively, for direct comparison with our Liposyn phantom experiments. All radial

bins had a spacing of Δρ=0.09 mm, making the maximum spatial frequency greater than 5

mm−1.

3.3 Simulations

Diffuse reflectance versus spatial frequency (mm−1), predicted by both the standard diffusion

approximation (dashed lines) and Monte Carlo simulations (solid lines), is plotted in Fig. 4

(top) for varying values of l*, at a constant  ratio (constant a′=0.99). Observe that

as l* increases (or as μtr decreases), the diffuse MTF is rescaled toward lower spatial

frequencies, indicating that less high-frequency content is preserved. This scaling with l* is

consistent with our experience that high-scattering samples can retain very sharp (high-

frequency) reflectance features. For example, reflectance from a point illumination is more

localized in a high-scattering medium (like Spectralon, for instance), compared to a lower

scattering medium (like in vivo tissue). Moreover, the frequency scaling of Rd(fx) varies directly

with μtr, or inversely with l*. This scaling of μtr and fx is directly evident in the  ratio

of Eq. (11) (diffusion approximation), and thus all five diffusion curves will coincide perfectly

if plotted versus normalized spatial frequency, (fx/fx,tr)=(fx/μtr)=(fx·l*). This behavior is also

retained in our Monte Carlo predictions to a high degree of accuracy. For instance, when plotted

versus (fx/fx,tr) (not shown), all five transport-based MTF curves fall within approximately 1%

of each other, and this difference decreases further as the albedo is lowered. For all following

simulations, therefore, we will plot the reflectance versus normalized spatial frequency, (fx/

fx,tr). Conveniently, μtr=1 mm−1 (l*=1 mm) is a good approximate transport coefficient for

many biological tissues, so for the high-albedo curves, fx,tr can be interpreted as ~1 mm−1

spatial frequency (1-mm-spaced sinusoids).

Visual comparison of diffusion and Monte Carlo reflectance curves reveals that the diffusion

solution slightly overestimates low-frequency components and underestimates the high-

frequency components of the reflectance. This is partially due to our choice of a simple, mono-

exponential extended source function [Eq. (6)]. Analytical solutions that preserve higher order

spatial moments of the source are available25–27 and will be examined in future work. Defining

diffusion error as the percent difference of the diffusion prediction from Monte Carlo, we

observe (for the case of ) a diffusion error of ±12% for fx≤(2l*)−1=0.5μtr.

In Fig. 4(b), we further examine our transport and diffusion models when the albedo is

decreased, ranging the  ratio from 30 (light gray lines) to 3 (black lines). Here, we plot

the diffuse reflectance (top) and the diffusion error (middle) versus normalized spatial

frequency, fx,tr. Again, diffusion overestimates reflectance at low spatial frequencies and

Cuccia et al. Page 7

J Biomed Opt. Author manuscript; available in PMC 2010 May 12.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



underestimates reflectance at high frequencies. Furthermore, all diffusion lines seem to

converge at high frequency (fx/fx,tr≈1), while an absolute offset between curves remains in the

transport prediction.

For low frequencies (below ~0.5·μtr), the diffusion error remains less than ±16% at

 (a′=0.97). For the lower albedo curves, we see that the absolute diffusion

predictions are inaccurate, positively and negatively biased at low and high frequencies,

respectively. In a real measurement, however, we always use a reference calibration sample

(with known optical properties) to correct for these types of offsets. (See Sec. 3.4 for a detailed

description of our calibration method.) We simulated this calibration procedure by generating

forward Monte Carlo measurement data for both sample and calibration. The resulting

diffusion error (not shown) using calibrated measurements of samples within ±25% of the

reference phantom  exhibits a dramatic improvement in the shape and accuracy of

measured data, reducing and flattening the diffusion error compared to the original “absolute”

offsets. Specifically, we observe <10% error down to  for all frequencies. This result

suggests that one can still achieve quantitatively accurate results through measurement

calibration with a reference phantom of similar albedo.

3.4 Illumination, Imaging, and Calibration

The diffuse MTF of a turbid system can be measured in a transmission or reflection geometry.

In practice, the illumination must be a superposition of AC (spatially modulated) and DC

(planar) reflectance terms (i.e., we cannot illuminate with a negative scalar intensity). We

therefore illuminate the sample with a spatial pattern of the form:

(17)

where S0, M0, fx, and a are the illumination source intensity, modulation depth, spatial

frequency, and spatial phase, respectively. In this simple case, the pattern is constant in the

orthogonal y direction. In reflection mode, the diffusely reflected intensity, I, is a sum of AC

and DC components:

(18)

where the measured AC component of the reflected intensity, IAC, can be modeled as:

(19)

Here, MAC(x, fx) represents the amplitude envelope of the reflected photon density standing

wave at frequency fx. Note first that an MAC can be a function of position, x, as shown in Fig.

5 (top). Additionally, multiple MAC(x, fx) curves can be sampled in parallel at each y pixel row

using a 2-D camera, allowing spatial sampling of millions of reflectance values simultaneously.

A host of signal processing schemes can be used to obtain MAC(x, fx). Here, we employ a simple

time-domain amplitude demodulation method,8,28 illuminating a sinusoid pattern three times

at the same spatial frequency, with phase offsets a=0, 2/3π, and 4/3π radians. MAC(x, fx) can

then be calculated algebraically at each spatial location, xi, by:
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(20)

where I1, I2, and I3 represent the IAC image values at each location with shifted spatial phases.

This differencing approach is convenient, as (1) it automatically removes features common to

all three images, including the average image noise and digitization offset, and (2) it does not

require knowledge of the spatial frequency, removing potential spatial calibration errors. Built

in to this operation is an automatic subtraction of any constant ambient light present in each

acquired image. The spatially varying DC amplitude, MDC(x), can be calculated as earlier with

fx=0, or at any frequency of illumination using:

(21)

In Fig. 5, we show a schematic of a spatially varying modulated reflectance (top) and its

demodulated AC and DC amplitude (bottom) components.

In the frequency domain, a measurement MAC(fx) is the product of (1) the source intensity,

I0; (2) the MTF of the illumination and imaging optical system, MTFsystem; and (3) the true

turbid system MTF, Rd:

(22)

Therefore, we can simultaneously calibrate for the absolute intensity of the source and the MTF

of the imaging system by performing a reference measurement, MAC,ref(x, fx), on a turbid

phantom of known optical properties. Using a model prediction for the phantom diffuse

reflectance, Rd,ref,pred(fx), we can write the diffuse reflectance at each spatial location as:

(23)

This direct division-based correction for the system frequency response is an advantage of SFD

measurement over other spatially resolved measurements, avoiding system PSF deconvolution

in the real spatial domain, which can amplify measurement noise and uncertainties. Ideally,

the surface contours of the sample and the phantom should be identical or be compensated

numerically using surface profilometry.29

Last, for a given modulation frequency, there are two unknowns in Eq. (10): μa and . We

show here how measurements at as few as two spatial frequencies can be used to separate

absorption and scattering. This is best visualized in a lookup table such as the one shown in

Fig. 6, where Rd(DC) and Rd(AC) correspond to diffuse reflectance measurements at zero and

nonzero spatial frequencies f1 and f2, respectively. Gray and black contours correspond to

constant absorption and reduced scattering, respectively. As a visual example, the dotted lines

in Fig. 6 show that if Rd(0 mm−1)=0.55 and Rd(0.5 mm−1)=0.06, then μa≈0.03 and

, respectively. Notice the strongly orthogonal relationship between the

absorption and scattering contour lines, indicating the ability to separate absorption and

scattering values with maximal sensitivity. This is due to the large frequency range spanned

by 0 mm−1 and 0.5 mm−1 (DC and AC) frequencies. Correspondingly, as the x- and y-axis
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frequencies become closer to one another, these lines will become less orthogonal, and

inversion coupling between absorption and scattering will increase. Last, both AC and DC

measurements can be easily obtained with only three phase projections of a single illumination

frequency [through Eqs. (20) and (21)], allowing rapid, high-resolution imaging of absorption

and scattering contrast.

3.5 Inversion Methods

We use two inversion methods to calculate the absorption and reduced scattering from

measurements of diffuse reflectance. First we use a “sweep” in spatial frequency space,

analogous to the broadband frequency domain photon migration (FDPM) approach,30

producing an overdetermined set of measurements that can be fit to Eq. (10) via least-squares

minimization. Second, we use a rapid two-frequency lookup table method, introduced in the

previous paragraph, which uses cubic spline interpolation (the “griddata” method in

MATLAB) of forward-model data at two spatial frequencies. On typical personal computers,

this method is capable of millions of lookup calculations per second. In this initial work, we

invert MTF measurements at each spatial location independently with our spatially

homogeneous planar model. We acknowledge that while accurate for homogeneous media,

this approach ignores any transverse or depth-resolved transport phenomena. We therefore

expect significant partial volume effects in the recovered data in regions where the optical

properties are spatially varying. For the remainder of this paper, we discuss optical property

maps in terms of qualitative optical property contrast, in comparison to quantitative optical

properties when measuring large spatially homogenous regions. In Sec. 5.4, we investigate

further the resolution limits and partial volume effects of absorption and scattering contrast in

the axial and transverse directions. For lateral step-function changes in optical properties, we

find that measurements transition spatially between two quantitatively accurate values with a

sigmoidal-like transition region.

Figure 7 visually depicts the entire data-mining process using the in vivo forearm data described

in Sec. 4.2. Intensity data at each frequency (three phase images per frequency) are

demodulated, calibrated, and fit using Eqs. (20), (23), and (10), respectively. Data are processed

separately for each pixel, generating spatial maps of absorption and scattering optical

properties.

Compared to other spatially resolved methods, MI acquires coincident, axial “projection”

measurements of optical contrast to quantify the optical properties at each x–y spatial position,

allowing a robust measurement of the average properties. Compared to “point” illumination

measurements, MI samples only the low spatial frequency moments of the transfer function.

These low frequencies (< 1 mm−1) are sufficient for separating the absorption from the

scattering optical properties, reducing sensitivity to uncertainty inherent in measuring high-

frequency spatial moments (i.e., reflectance close to the source).

4 Methods

4.1 Phantom Experiments

We performed a set of experiments to characterize the precision and accuracy of MI for

measuring the homogeneous absorption and reduced scattering optical properties. Sixteen

turbid phantoms were constructed using a single batch of Liposyn lipid emulsion and water-

soluble nigrosin dye stock solutions for the scattering and absorbing properties, respectively.

In the first eight phantoms, we varied the absorption coefficient, μa, over two orders of

magnitude (logarithmically spaced between 0.002 mm−1≤μa≤0.12 mm−1), with a constant

scattering coefficient constant at . In the second set, we linearly varied
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, while holding the absorption coefficient constant at

μa=0.0046 mm−1. These values were calculated based on infinite-geometry, multifrequency

(50 to 500 MHz), multidistance (10 to 25 mm) frequency-domain photon migration

measurements15 of one of the Liposyn/nigrosin phantoms.

MI measurements were performed on each sample. Thirty spatial frequencies of illumination

were chosen between 0 mm−1 and 0.13 mm−1, corresponding to a total of 90 images per

phantom (three spatial phases per frequency). The interfrequency spacing was chosen to

accurately capture the MTF curvature of all phantoms, with finer spacing at low frequencies

and coarser spacing at high frequencies, accordingly. All measurements were taken at 660 nm

with an approximate 75×75 mm illumination area, a 50×50 mm camera field of view, and an

integration time of 100 ms. The individual phantoms were measured in a randomized order,

and measurements were repeated three times to allow for statistical averaging.

Modulation images of the AC reflectance were obtained at each frequency using Eq. (20). At

full CCD resolution, the pixel-by-pixel demodulation approach results in approximately

250,000 separate measurements of reflectance per spatial frequency, highlighting the statistical

power of the technique. As the lipid solutions were expected to be highly homogeneous, 20×20

pixel binning was performed on each image to speed computation, resulting in low-resolution,

15×15 pixel modulation images. The resulting 30 images provide a quantitative AC amplitude

measurement at each of 100 spatial locations within the field of view. For calibration, a single

phantom from the entire set of 16 was chosen as the reference (second-lowest absorption

phantom). Using the reference’s known optical properties (determined from infinite-geometry

FDPM measurements), we calculate a model-based prediction for the reflectance,

Rd,ref,pred(fx). Then, for each spatial frequency and each spatial location, we use Eq. (23) to

calculate Rd(fx) of the sample. Having retained some low-resolution spatial data, we can

calculate a standard deviation of recovered values within an image as an indicator of

measurement precision.

The diffusion model of Eq. (10) was used to solve for μa and  using both least-squares

minimization by a simplex search algorithm (in “fminsearch” MATLAB) and via the two-

frequency lookup table approach using the lowest (0 mm−1) and highest (0.13 mm−1) spatial

frequencies. For each phantom, each spatial sampling point was separately analyzed,

generating images of recovered absorption and scattering values. As these were homogeneous

samples, a mean and a standard deviation were calculated to represent each optical property

image result, characterizing the accuracy and precision of MI, respectively.

4.2 In Vivo Human Forearm Experiments

MI data were collected on a normal human forearm over a 72×48 mm field of view. Four evenly

spaced spatial frequencies between 0 and 0.15 mm−1 were collected and analyzed. The imaging

system was identical to that described earlier, except for the inclusion of a 640±10 nm bandpass

detection filter and crossed linear polarizers, which reject specular reflection from rough

surfaces and maximize our sensitivity to the diffuse component of the light. In idealized liquid

phantom experiments, we have performed measurements with and without crossed polarizers

and found the difference in recovered optical properties to be typically less than 2 to 3%.

In order to demonstrate the sensitivity of our system to physiological perturbations, we

performed a standard venous occlusion study on a 29×40 mm region of the volar forearm.

Measurements were performed at a wavelength of 800±10 nm, near the hemoglobin isosbestic

point of 805 nm. Measured changes in absorption at this wavelength are insensitive to

oxygenation and therefore reflect only that of total hemoglobin. Multifrequency reflectance

data at 0 and 0.135 mm−1 were acquired every 4 s for a period of 13 min. After 2.5 min of
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baseline acquisition, an arm cuff was pressurized to 100 mm Hg for 6.5 min and subsequently

released at minute 9.

5 Results and Discussion

5.1 Phantom Experiment Results

The average measured diffuse reflectance versus spatial frequency is plotted in Fig. 8, showing

the absorption variation and scattering variation measurement sets in Figs. 8(a) and 8(b),

respectively. In solid black lines, we show the corresponding fits using the diffusion-based

reflectance model [Eq. (10)].

The absorption experiment data demonstrate that increasing absorption causes a decrease in

reflectance, with absorption contrast residing primarily in the low-frequency regime. (Notice

that all absorption curves converge at high frequency.) Conversely, the scattering data indicate

that increasing scattering causes an increase in reflectance amplitude and a res-caling to higher

spatial frequencies (i.e., a decrease in l*), with contrast apparent at all spatial frequencies.

All model-based fits of Fig. 8 (solid lines) demonstrate excellent visual agreement with the

data, with typical errors less than 0.02. This is particularly satisfying, as all measurements were

calibrated with a single reference phantom (second-lowest absorption phantom). The largest

model-data deviation appears in the high-frequency range of the lowest scattering phantom

. This seems consistent with the l* plots of Fig. 4, where we would

expect model breakdown at or before fx=1/(2l*), or 0.16 mm−1.

In Fig. 9, we plot on the left and right the recovered optical properties for absorption and

scattering variation measurements, respectively. Multifrequency and two-frequency lookup

table interpolation results are shown in black and gray, respectively. For each set, the varied

value is plotted versus the expected value on the horizontal axis, and the corresponding value

held constant is shown below on a separate axis. Error bars indicate the corresponding standard

deviations of the recovered 15×15 pixel optical property maps (not shown). Thin black lines

are drawn to indicate the expected values in each experiment.

In the absorption variation experiment, recovered versus expected absorption shows excellent

linearity over two orders of magnitude, ranging from high to low albedo

. When absorption is very small, a slight overestimation trend is

observed independent of calibration choice. This trend is discussed further in Sec. 5.2. The

experiment’s recovered scattering values show less than 10% deviation from the expected value

in all cases. Similar linearity is observed in the scattering variation experiment, albeit with

slightly more fluctuation. Absorption values in this case demonstrate less than 15% deviation

from the expected value, except in the lowest scattering (largest l*) case. Standard deviations

of the recovered 15×15 pixel optical property maps are mostly less than 1% (maps not shown),

indicating both high precision and spatial uniformity over the field of view.

In Table 1, we summarize the accuracy of all recovered values by showing the average percent

deviation for multifrequency and two-frequency lookup table inverse models. On average, we

have 6% and 3% deviation in absorption and reduced scattering, respectively. The two-

frequency lookup table errors are generally comparable to those of the multifrequency method.

In real-world measurements of spatially heterogeneous systems, we expect that multifrequency

fits will provide a more stable measure of the average optical properties. Nevertheless, in

situations where speed and/or resolution is desired, this method shows promise to provide rapid

feedback while retaining quantitative accuracy.
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5.2 Separation of Absorption and Scattering

In our inverse fitting results, the largest errors were observed for the lowest values of absorption

and scattering. As a planar imaging modality, MI samples relatively superficial volumes and

therefore short photon paths losing sensitivity to low absorption and low scattering contrast

where the length scales of photon interaction are very long. Furthermore, the finite size of

projection and illumination set a physical limit on the low-frequency MTF sampling. For

instance, in the absorption experiment, we observed an overestimation of the absorption when

absorption was very low (0.002 mm−1). In this regime, both diffusion and Monte Carlo models

predict the diffuse reflectance to have a steep, decreasing slope at low frequency. However,

the lowest four experimental illumination frequencies (including fx=0) correspond to spatial

periods larger than the projector’s illumination area (fx<0.013 mm−1). As sampling theory in

this domain enforces a frequency bandwidth greater than the fundamental illumination

frequency, we expect inaccuracy in these lowest frequency measures. Specifically, based on

the low-pass MTF shape of Rd, we expect amplitude underestimation, and therefore absorption

overestimation, due to the high sensitivity of absorption at low frequencies. One strategy to

systematically account for this effect is to equivalently model an illumination with a finite

spatial extent.

5.3 In Vivo Human Forearm Results

In Fig. 7 (middle), we showed diffuse reflectance images (Rd) versus spatial frequency (fx) for

the in vivo human forearm experiment. Notice the differential contrast in diffuse reflectance

as illumination frequency increases, forming the basis for separation of absorption and

scattering. In addition, high frequencies will sample a more superficial region of the tissue,

which is expected to have a lower contribution from deeper vascular features. In Fig. 10, we

further show the recovered optical property maps after multifrequency MTF fitting at each

pixel. In Fig. 10(a), we show the calibrated diffuse reflectance at fx=0 mm−1, and in Fig. 10

(d), the average multifrequency diffuse reflectance data (black squares) and fit (gray line). In

Figs. 10(b) and 10(c), we show spatial maps of the absorption and reduced scattering data,

respectively, and in Figs. 10(e) and 10(f), we show the corresponding pixel histograms,

respectively. Absorption contrast from the underlying veins is the dominant feature in the

optical property maps. A vertical feature of lowered scattering appears in the middle of the

image. This feature is coincident with a large superficial tendon, which may be acting

effectively as a light guide due to its generally higher index compared to tissue matrix.31,32

Based on a diffusion-based sensitivity analysis, we predict for this experiment 1/e sampling

depths ranging from 2 mm to 3.3 mm for low (0 mm−1) and high (0.15 mm−1) spatial

frequencies, respectively.

In the absorption map, we identify with dotted lines a region of interest containing a prominent

vein. In this region, we observe 100% contrast in the recovered absorption values over the vein

(0.46 mm−1) compared to the background (0.23 mm−1); in the same region, optical scattering

showed little contrast, with ~10% spatial variation. While these data show clear separation of

absorption and scattering optical contrast, the values derived from a homogeneous model

exhibit partial volume effects that diminish the actual absorption contrast of the vein beneath

the surface. Our current homogeneous model of reflectance prevents absolute quantitation in

the presence of lateral and depth-dependent optical properties. In the next section, however,

we attempt to empirically assess these partial volume effects through edge-response

experiments in gelatin phantoms.

Venous occlusion measurements on the volar forearm are shown in Fig. 11 and demonstrate

the accumulation and dissipation of blood volume via the absorption coefficient at 800 nm.

Figure 11(a) shows the diffuse reflectance map (left) and optical absorption map (right)

measured at the baseline. Two regions of interest were chosen to show both global changes

Cuccia et al. Page 13

J Biomed Opt. Author manuscript; available in PMC 2010 May 12.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



over the entire image (gray lines) and changes in region absent of any obvious large vessels

(black lines), presumably containing only microvasculature. Region-wise average changes in

optical properties from the baseline are shown in Fig. 11(b). Absorption (top) and reduced

scattering (bottom) are respectively plotted within 40% and 10% of the corresponding

measured baseline values. As expected, the absorption in either region begins to increase

steadily after arm cuff pressurization at minute 2.5. After release of the cuff at 9 min, absorption

decreases to the baseline over the course of approximately 2 min. Maximal increases in

absorption were observed to be approximately 0.012 mm−1 globally and 0.017 mm−1 in the

microvascular region, corresponding to approximate 15% and 28% increases from the baseline.

The larger increase in absorption observed in the microvascular region may be explained by

the fact that the microvasculature is more susceptible to pooling, while the larger vessels are

less reactive. Small fluctuations in the measured reduced scattering were observed to be <5%

globally and <2% for the microvascular region.

5.4 Sensitivity, Contrast, and Resolution

Detecting changes in μa and  requires the corresponding change in reflectance to be above

the measurement noise floor. We examined how a homogeneous perturbation in optical

properties gives rise to reflectance contrast at each spatial frequency using our Monte Carlo

forward model. This was done by taking a numerical derivative of reflectance with respect to

a change in a given optical property, generated for normalized frequencies between 0 and 1.

In Fig. 12, we show the change in diffuse reflectance (ΔRd) versus normalized spatial frequency

resulting from a 1% change in absorption or scattering, for sample  ratios of 100 (black

lines) and 3 (gray lines). The solid and dashed lines denote the sensitivity to absorption and

reduced scattering, respectively. (Note: We use a negative absorption perturbation and a

positive scattering perturbation in order to produce reflectance contrast of the same polarity.)

The sensitivity profiles in Fig. 12 reveal how changes in absorption and scattering change the

reflected light at each modulation frequency, indicating that absorption contrast is attenuated

more rapidly with frequency compared to scattering. This difference is intuitive physically, as

high-frequency illumination should sample only short path-length phenomena, losing

sensitivity to long length-scale processes such as absorption. From the graph, we observe that

1% change in absorption or scattering produces at most an approximate 0.3% change in Rd.

We have added dotted lines to Fig. 12 to show the approximate corresponding camera detection

limits with 12- and 14-bit intensity resolution (i.e., the detection limit for the physical contrast

—actual detection limits will depend on the noise characteristics of the particular camera/

imaging system). The figure illustrates, for example, that with  at fx/fx,tr=0.1, a 12-

bit measurement can resolve (in intensity) a 1% change in scattering but not absorption, while

a 14-bit camera can resolve both. For , where optical properties are closer in

magnitude, this 12-bit absorption detection criterion occurs at a higher frequency of fx/fx,tr=0.3.

The intensity resolution of the measurement can be further improved through either spatial

binning or averaging multiple acquisitions. Imaging with a high-resolution camera, therefore,

allows flexibility between spatial resolution and intensity (optical property) resolution. Sources

of noise that may limit measurement precision and accuracy include light-source fluctuation

(jitter), long-time source intensity stability, and spatial nonuniformity of the projection. In our

measurements, we approximate a source fluctuation of approximately 0.1% for 1-s integration

times. Both intensity stability (~10% decrease over 4h) and spatial nonuniformity (20%) were

also present but were corrected to first order by using periodic reflectance standard

measurements and phantom calibration (see Sec. 3.4). In the case of our human forearm
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measurements, the background  ratio was approximately 100. In the vein region, we

observed absorption contrast that is clearly resolved by our CCD camera.

In order to further understand the lateral and depth-dependent partial volume effects, such as

those observed in the arm mapping experiments, we performed an exploratory contrast-

resolution study using heterogeneous optical phantoms. Eight homogeneous gelatin phantoms

were fabricated using nigrosin as the absorber and Liposyn as the scattering agent.

Heterogeneous phantoms, shown in Fig. 13(a), were assembled by placing two gelatin slabs

of differing optical properties adjacent to one another. Gelatin phantoms with a 300% step in

either absorption [Fig. 13(a), left; μa,left=0.01 mm−1, μa,right=0.03 mm−1; [ ]

or scattering [Fig. 13(a), right; μa,both=0.02 mm−1; , ] were

measured at 660 nm both directly [Fig. 13(a), top] and through a 2-mm homogeneous layer

[Fig. 13(a), bottom] with optical properties μa=0.01 mm−1, . Both were calibrated

by a homogeneous phantom with optical properties μa=0.02 mm−1, . Nine spatial

frequencies between 0 mm−1 and 0.11 mm−1 were measured and used to calculate optical

property maps using least-squares regression to our diffusion reflectance model.

Recovered optical property spatial profiles were averaged over the vertical direction, shown

in Fig. 13(b) for absorption (top) and scattering (bottom) media. The results reveal a diffuse

edge-response function that is both depth and optical property dependent. For both absorption

and scattering experiments, we observe a degradation of spatial resolution and quantitative

contrast through the homogeneous layer (gray lines) compared to that at the surface (black

lines). Specifically, the measured contrast values through the homogeneous layer are

approximately 15% and 5% of those at the surface, for absorption and scattering, respectively.

This level of absorption contrast is comparable with the measured arm vein absorption in Fig.

10 (approximately 0.06 mm−1), which corresponds to approximately 18% of whole blood

absorption (assuming 70% tissue oxygen saturation). We further observe that the spatial

resolution of the recovered scattering maps is consistently better than that for absorption. Put

differently, scattering profiles appear to preserve higher spatial frequencies than those of

absorption. This property of the measured heterogeneous media is consistent with the

homogeneous phantom MTF results shown in Fig. 8, where we noted that absorption contrast

appeared mainly at low frequencies, while scattering contrast appeared at all measured

frequencies.

Defining spatial resolution as the distance at which the edge-response contrast is reduced by a

90% (all reflectance contrast remained well above our system’s minimum intensity resolution),

we determined the resolution of absorption and scattering contrast to be 0.3 mm and 0.05 mm,

respectively, for surface perturbations, and 0.5 mm and 0.25 mm, respectively, for

perturbations 2 mm beneath the surface. Although these changes exhibit characteristics that

suggest the capability to resolve optical contrast on small spatial scales, actual performance

will also be dependent on illumination spatial frequency and system noise. In future work, we

aim to perform more rigorous contrast-resolution analyses using heterogeneous computational

models and phantoms to determine quantitative resolution limits as a function of depth. In

general, at a given depth, we expect the depth resolution to scale with the measurement

precision and number of frequencies (# of sources), and x-y resolution to scale with the number

of spatial sampling points (# of detectors).33

6 Conclusion

We have presented a theoretical framework and instrumental platform for SFD measurement

in turbid media, compared analytic diffusion and Monte Carlo–based transport forward models,
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and performed quantitative measurements of phantom systems and an in vivo human forearm.

In the phantom validation measurements, we demonstrate excellent accuracy in optical

properties (approximately 6% and 3% in absorption and reduced scattering, respectively) over

a wide range of l* values (0.5 mm to 3 mm) and  ratios (8 to 500). In the in vivo forearm

spatial mapping, we report both imaging of optical absorption and scattering contrast with

millimeter-scale resolution and dynamic imaging of physiological perturbations in blood

volume due to venous occlusion.

A modulated imaging (MI) system can obtain quantitative optical properties in turbid

homogeneous systems and maps of optical property contrast in tissues with a noncontact

reflectance measurement. This combination of advantages make it particularly suited to

imaging of static and dynamic processes in in vivo biological tissues, particularly for the field

medical diagnostics. In ongoing studies, we are extending the method to multispectral imaging

for quantitative functional mapping of both intrinsic and extrinsic tissue chromophores and

evaluating depth-resolved imaging models, including both multilayer and tomographic

approaches.
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Fig. 1.

Four measurement domains of turbid media characterization: time domain (top left), time

frequency domain (bottom left), real spatial domain (top right), and spatial frequency domain

(bottom right).
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Fig. 2.

Modulated imaging instrument platform.
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Fig. 3.

Schematic of modulated illumination source (in the x direction only) and the resulting

modulated internal fluence rate with the same frequency and phase.
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Fig. 4.

(a) Diffuse reflectance versus spatial frequency (mm−1) for varying values of l*, using both

Monte Carlo simulations (solid lines) and the diffusion approximation (dashed lines),

demonstrating accuracy of the diffusion approximation within 12% for fx≤(2l*)−1=0.5μtr. (b)

Diffuse reflectance versus normalized spatial frequency (fx/fx,tr=fx·l*) for varying albedo

, using both Monte Carlo simulations (solid lines) and the diffusion approximation

(dashed lines), demonstrating degrading accuracy of diffusion with decreasing albedo. (Color

online only.)
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Fig. 5.

(a) Schematic of modulated reflectance and (b) demodulated AC and DC amplitudes.
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Fig. 6.

Two-frequency (DC versus AC) lookup table for rapid calculation of optical properties,

generated from diffusion model forward predictions. Gray contours indicate constant

absorption, black contours indicate constant reduced scattering. Dotted lines demonstrate the

lookup method, translating DC and AC values into μa and  parameters.
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Fig. 7.

Flow chart of MI data processing. Intensity data at each frequency (three phase images per

frequency) are demodulated, calibrated, and fit using Eqs. (20), (23), and (10), respectively.

Data are processed separately for each pixel, generating spatial maps of optical properties.

Images are plotted within three standard deviations of the individual image mean in order to

make them visually comparable. Notice the differential contrast in diffuse reflectance (Rd)

versus spatial frequency (fx), the basis for separation absorption and scattering.
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Fig. 8.

Liposyn experiment data (black circles) fit to the SFD diffusion model of Eq. (10) (gray lines).

(a) As absorption increases, reflectance at low spatial frequencies decreases dramatically, while

high-frequency data shows little sensitivity to absorption contrast. (b) Increasing scattering

gives rise to an increase in reflectance, with scattering contrast observed at all frequencies. All

results show excellent visual agreement between measurement data and diffusion fits.
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Fig. 9.

(a) Recovered versus expected optical properties for (a) absorption variation and (b) scattering

variation experiments, using both multifrequency (black lines) and 2-frequency lookup table

(gray lines) fitting methods. (c) and (d) The corresponding recovered “constant” values for

reduced scattering and absorption are shown respectively. Error bars indicate the corresponding

standard deviations of 15×15 pixel optical property maps (generally <1%), indicating both high

precision and spatial uniformity over the field of view. Thin black lines indicate the expected

values in each experiment. Circles indicate the phantom used for calibration.
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Fig. 10.

(a) Planar diffuse reflectance, (b) optical absorption, and (c) reduced scattering maps. (d)

Average multifrequency diffuse reflectance data and least-squares fit to Eq. (10) and pixel

histograms of (e) absorption and (f) scattering maps, respectively.
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Fig. 11.

Venous occlusion data of the volar forearm measurement at 800 nm. (a) Diffuse reflectance

map (left) and optical absorption map (right) measured at the baseline. Dotted lines in the

reflectance map indicate the regions of interest for time-course analysis. (b) Region-wise

average changes in optical absorption (top) and reduced scattering (bottom) are shown for the

whole image field (gray lines) and a region absent of any obvious large vessels (black lines).

The larger increase in absorption observed in the microvascular region may be explained by

the fact that the microvasculature is more susceptible to pooling, while the larger vessels are

less reactive. (Color online only.)
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Fig. 12.

Sensitivity of reflectance to 1% change in optical properties for absorption (solid lines) and

reduced scattering (dashed lines) optical properties versus normalized spatial frequency.

Results indicate that scattering contrast is retained at higher frequencies than absorption

contrast. Dotted lines indicate detection thresholds for 12- and 14-bit dynamic range

measurements.
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Fig. 13.

Preliminary contrast-resolution study. (a) Gelatin phantoms with a 3× step in either absorption

(left) or scattering (right) were measured directly (top) and through a 2-mm homogeneous layer

(bottom). (b) Edge-response profiles for absorption (top) and scattering (bottom) media reveal

loss of both resolution and quantitative contrast through the homogeneous layer (gray lines)

compared to that at the surface (black lines).
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