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Quantitative activation-induced 

manganese-enhanced MRI reveals 

severity of Parkinson’s disease in 

mice
Satomi Kikuta1,2,3, Yukiyo Nakamura4, Yukio Yamamura4, Atsushi Tamura1,2,†, 

Noriyasu Homma1, Yuchio Yanagawa2,5, Hajime Tamura1, Jiro Kasahara4 & Makoto Osanai1,2

We demonstrate that activation-induced manganese-enhanced magnetic resonance imaging with 

quantitative determination of the longitudinal relaxation time (qAIM-MRI) reveals the severity 

of Parkinson’s disease (PD) in mice. We first show that manganese ion-accumulation depends on 
neuronal activity. A highly active region was then observed by qAIM-MRI in the caudate-putamen in 
PD-model mice that was significantly correlated to the severity of PD, suggesting its involvement in 
the expression of PD symptoms.

Manganese-enhanced magnetic resonance imaging (MEMRI) is being increasingly used for investi-
gating neuronal pathways, brain architecture, and neuronal activities in the brain1,2. But quantitative 
comparisons of neuronal activity mapping of diseased vs. healthy animals have not been demonstrated. 
Manganese ions (Mn2+) can pass through opened voltage-dependent calcium channels3,4. �us, in the 
presence of Mn2+ in the extracellular solution, highly active neurons should accumulate larger amounts 
of Mn2+ than weakly active neurons. Mn2+ shortens the longitudinal relaxation time (T1) of H+, making 
it an excellent MRI-detectable contrast agent1,2. Hence, MEMRI can non-invasively measure relative 
levels of neuronal activity and has been termed activation-induced MEMRI (AIM-MRI)5,6. Di�erential 
accumulation of Mn2+ in active and silent brain regions is generally assessed using T1-weighted images 
and quanti�ed by the signal intensity. However, signal intensity is a relative value and can be unreliable 
in interanimal comparisons. Because Mn2+ concentration can be absolutely quanti�ed by measuring the 
absolute T1 (or R1 =  T1

−1) value7, absolute determination of T1 in the entire brain volume may provide 
a powerful method for determining the topography of neuronal activity. However, it is not yet clear 
whether there is a direct relationship between neuronal activity and Mn2+ accumulation in the cell1.

Although the depletion of dopamine (DA) in the striatum is thought to cause changes in neuronal 
activities in the basal ganglia relevant to the symptoms of PD, the pathophysiological role of the stria-
tum in PD is not fully elucidated8–11. Moreover, there is currently no de�nitive diagnostic test for PD, 
except at autopsy12. �erefore, to explore the application of AIM-MRI with quantitative T1 measurement 
(qAIM-MRI) as a useful non-invasive research and diagnostic tool, we used it to localize di�erences in 
neuronal activity in the brains of PD model mice and healthy controls.
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Results
We �rst con�rmed that intracellular Mn2+ accumulation is correlated with neuronal activity in indi-
vidual cells using calcium (Ca2+) imaging in mouse brain slices. By stimulating the corticostriatal �ber 
tract in slices and measuring intracellular Ca2+ concentration ([Ca2+]i) in individual striatal GABAergic 
neurons, we con�rmed that the amplitude of the [Ca2+]i transient elevation (change in Fura-2 LR �uores-
cence emission) changed with di�ering stimulation frequency13,14 and could, thus, be treated as the index 
of neuronal activity (Supplementary Fig. S1). As Mn2+ quenches Fura-2 LR �uorescence emission, the 
amount of �uorescence quench re�ects intracellular Mn2+ accumulation. Mn2+ accumulation in striatal 
GABAergic neurons (Fig. 1a) was determined by comparing [Ca2+]i transients with �uorescence quench 
induced by 20 pulses of 20-Hz or 50-Hz stimulation to the corticostriatal �ber tract before and a�er 
administration of 50 µ M MnCl2 in slice perfusates (Fig.  1b,c). A strong positive linear correlation was 
observed between amplitudes of [Ca2+]i transients and amounts of Mn2+ quench of the �uorescence in 
GABAergic neurons (r =  0.76, P <  0.0001, n =  366; Fig. 1d), indicating that intracellular Mn2+ accumu-
lation is correlated with neuronal activity. �e Mn2+ accumulation was also correlated with stimulus 
evoked Ca2+ elevation in astrocytes (supplementary Fig. S2).

In another preliminary experiment, we dissolved 2% (wt/vol) agarose gels in arti�cial intracellu-
lar solution containing di�erent amounts of MnCl2, and showed that the longitudinal relaxation rate 
R1 acquired via rapid acquisition with relaxation enhancement (RARE) with variable repetition time 
(TR) pulse sequence (RARE-VTR), was proportional to the concentration of MnCl2 (R1 =  5.35 [Mn2+] 
(mM) +  0.32, P <  0.0001; Supplementary Fig. S3). �e relaxivity of Mn2+ was r1 =  5.35 ±  0.32 mM−1 s−1.

We then applied qAIM-MRI to map the location of neuronal activity changes in PD model mice pro-
duced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) intoxication (20 mg kg−1, 
i.p., four times at 2-h intervals)15, compared with healthy control mice. �ese T1 maps were quantitatively 
assessed by statistical parametric mapping (SPM).

One or two weeks a�er MPTP or saline injection, MnCl2 was injected (0.2 mmol kg−1, i.p.) twice 
at 24-h intervals (Supplementary Fig. S4). To visualize regions with signi�cantly elevated activity in 
PD vs. control mice, the voxels with signi�cant T1-shortening in the MPTP (n =  6) vs. control (n =  6) 
mice were de�ned as those with P-values below 0.025 by SPM analysis (Fig. 2). Within the basal gan-
glia, the caudate-putamen (CPu) showed signi�cant shortening of T1, with a t-value of Student’s t-test 
of 3.21 (P <  0.01) at coordinates medial-lateral (M-L) =  − 1.91, anterior-posterior (A-P) =  0.75, and 
dorsal-ventral (D-V) =  2.93 (mm), indicating that the activity in the CPu increased in PD mice com-
pared with control mice. In the cortex (Ctx) and the thalamus (�), the regions exhibiting signi�cant 
T1 shortening were observed (Fig.  2). �e t-values of Student’s t-test were 3.51 (P <  0.01) at coordi-
nates M-L =  − 1.77, A-P =  0.75 and D-V =  1.1 (mm), and 3.08 (P <  0.02) at coordinates M-L =  − 0.4, 
A-P =  − 2.75 and D-V =  3.76 (mm) in the sensorimotor cortex and the parafascicular nucleus of the 
thalamus, respectively.

Finally, we analyzed the correlation between striatal neuronal activity obtained by qAIM-MRI and 
tyrosine hydroxylase (TH)-immunoreactivity in the striatum, which is correlated to motor performance 
in PD model mice16. Eleven to twenty days a�er MPTP injection, TH-positive �bers in the CPu of 
the MPTP mice were reduced to 89.8 ±  2.2% of those in controls (P <  0.002; Fig.  3a,c). �e number 
of TH-positive cells in the substantia nigra pars compacta (SNc) of the MPTP mice was reduced to 
~72% (control: 254 ±  21 vs. MPTP: 184 ±  25 mm–2; Fig. 3b,d). No signi�cant TH-positive cell loss was 
observed in the ventral tegmental area (VTA) (control: 288 ±  32 vs. MPTP: 274 ±  38 mm–2; Fig.  3b,e). 
�us, our MPTP administration resulted in a degeneration of DA neurons in the SNc resembling that of 
Parkinson’s disease, but the severity was mild17, as the loss of TH-positive neurons, though signi�cant, 
was relatively small.

qAIM-MRI enabled activity mapping throughout the entire brain volume, and revealed abnormal 
brain function associated with pathological conditions. Signi�cant correlations were observed between 
TH-immunoreactivity and R1 in the dorsal CPu (dCPu) at A-P =  0.25 mm and − 0.5 mm (P <  0.05; 
Fig. 4b) and ventral CPu (vCPu) at A-P =  0.25 mm (P <  0.05; Fig. 4c). No signi�cant correlations were 
observed in nucleus accumbens (NAc) (P >  0.05; Fig. 4d), or hippocampus, which has little relation to 
PD (P >  0.05; Fig. 4g). TH-immunoreactivity in the striatum has been correlated to motor-performance 
in MPTP-intoxicated mice16. �erefore, R1 in the CPu re�ects the severity of PD. Region of the cortex 
(Ctx) at A-P =  0.25 mm (P <  0.05; Fig.  4e), and parafascicular nucleus of the thalamus (PF) (P <  0.02; 
Fig. 4f) also showed signi�cant correlations between R1 and TH-immunoreactivity in the striatum.

Discussion
Our results add further insights into AIM-MRI. First, Mn2+ accumulates in GABAergic neurons of the 
striatum depending on their neuronal activity; a relationship that was previously not analyzed quanti-
tatively1. �ere are many reports that Ca2+ elevation is related to the �ring activity in excitatory neu-
rons13,14. Mn2+ can pass through opened Ca2+ channels including the voltage-dependent Ca2+ channels3,4; 
therefore, Mn2+ should accumulate depending on the activity of neurons regardless of whether they are 
inhibitory or excitatory neurons. �e voltage-dependent Ca2+ channels and ionotropic glutamate recep-
tors, including N-methyl-D-aspartic acid (NMDA) receptors, that are permeated by Mn2+ as well as 
Ca2+, are also expressed in astrocytes. Although these mechanisms have a minor role in astrocyte Ca2+ 
signaling in situ18,19, astrocytes are able to respond to presynaptic transmitter release, and Ca2+ in�ux 
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Figure 1. Intracellular Mn2+ accumulation was correlated with neuronal activity in striatal GABAergic 

neurons. (a) Fluorescence image of a striatal slice from a GAD67-GFP mouse. Striatal GABAergic neurons 
were identi�ed by GFP �uorescence and ROIs were placed on the GFP-positive somata for quanti�cation of 
the �uorescence changes. �e tip of the stimulation electrode is indicated by asterisk (*). Scale bar, 50 µ m. 
(b,c) Typical time course of the [Ca2+]i transient evoked by 20 pulses of 50-Hz stimulation before (b) and 
following 50 µ M MnCl2 administration (c) obtained from the same cell. Dashed arrows indicate amplitude 
of the [Ca2+]i transient (b) or the amount of the Mn2+ quench (c). Stimulation period is indicated by thick 
horizontal line. (d) Comparison of the amplitude of the [Ca2+]i transient and the amount of Mn2+ quench of 
the �uorescence at 360 nm, when 20 pulses at 20 Hz (solid circle) or 50 Hz stimuli (open circle) were applied 
(n =  366 cells). r: Pearson’s correlation coe�cient.
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occurs in response to neuronal activity (Supplementary Fig. S2). �is means that in the presence of Mn2+ 
in the extracellular space, Mn2+ accumulation in astrocytes may correlate with the activity of adjacent 
neurons. Even assuming that not all types of cells accumulate Mn2+ depending on the neuronal activity, 
R1 in a tissue should relate to the neuronal activity in the region of interest (ROI) if some types of cells 
in the ROI accumulate Mn2+ depending on the neuronal activity. �us, AIM-MRI can assess relative 
levels of neuronal activity.

Second, our qAIM-MRI method enables quantitative neural activity mapping of animal disease mod-
els compared with their healthy counterparts. Animal models of brain disease, including those for PD, 
are being increasingly investigated with MEMRI1,20,21, where Mn2+ was injected directly into brain nuclei, 
and alterations in connectivity or axonal transport in PD was examined20,21. We administered MnCl2 
intraperitoneally without breaking the blood-brain barrier, which ensures slow and uniform administra-
tion to the entire extracellular brain space, making it possible to record the history of neuronal activity 
over the entire brain volume in awake, freely moving animals7; whereas, blood-oxygen-level dependent 
(BOLD) functional MRI, which relies on blood hemodynamics, can record the activity only in the MRI 
scanner, and positron-emission tomography (PET) or single-photon emission computed tomography 
(SPECT) can measure metabolic and neurochemical, for example DAergic, changes in the brains22, but 
cannot directly detect neuronal activities. �us, our qAIM-MRI with quantitative T1 measurement ena-
bles the quantitative neuronal activity mapping over the entire brain volume, and can reveal how and 
where activities change in animal disease models, including PD.

Our qAIM-MRI results also o�er insights related to PD. Although there are electrophysiological 
studies of the striatum in animal models of PD23–26, its pathophysiological role has been argued9–11. 
Larger Mn2+ accumulations in the dCPu of MPTP than of control mice indicated that striatal activity 
was elevated in PD (Fig.  2), in agreement with previous electrophysiological results23,25,26. Moreover, 
there are good correlations between R1 in the CPu, especially in dCPu, a sensorimotor region27, and 
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Figure 2. �e active regions in PD compared with control mice quanti�ed by qAIM-MRI. Regions with 
signi�cant shortening of T1 in PD mice are indicated by pseudo-colored regions over the T2-enhanced 
brain image template in sagittal (upper) and coronal (lower) planes (ncontrol =  6 mice, nPD =  6 mice). Regions 
were de�ned by brain atlas alignment to MRI image: those regions de�ned in text, plus nucleus accumbens 
(NAc), globus pallidus (GP), and hippocampus (HIP). �e large colored regions were observed in CPu, Ctx, 
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TH-immunoreactivity in the striatum, which is related to the severity of PD in animal models16, sug-
gesting that neuronal activity in the sensorimotor part of the striatum is associated with the severity 
of PD. DA excites striatal direct-pathway neurons via dopamine D1 receptors, and also inhibits striatal 
indirect-pathway neurons via D2 receptors; thus, the net e�ects of DA-loss may be no changes. Indeed, 
the mean �ring rate decreased at direct pathway neurons and increased at indirect pathway neurons 
a�er 6-hydroxydopamine (6-OHDA) lesions24. However, spontaneous �ring rate in the striatum, without 
distinguishing subtypes of neurons, increased a�er 6-OHDA lesions25,26. �ese phenomena may arise 
for the following reasons: (i) �e mean �ring rate of direct-pathway neurons is very low compared with 
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Figure 3. MPTP-induced loss of TH-positive �bers in CPu and of TH-positive neurons in SNc.  
(a) Photomicrographs of TH-immunostained sections from the striatum (CPu) of control (Ctrl, upper) 
and MPTP-treated (MPTP, lower) mice. Scale bar, 1 mm. (b) Immuno�uorescent staining of TH (green) 
and NeuN (red) in slices from SNc (le�) and VTA (right) of control and MPTP mice. Scale bar, 100 µ m. 
(c) Normalized optical densities for TH-immunoreactivity in CPu of control and MPTP mice. �e optical 
density of TH-immunoreactivity was normalized by the average optical density from control mice in each 
batch. ***P <  0.002. (d,e) �e number of neurons expressing TH in SNc (d) and VTA (e) of control and 
MPTP mice. *P <  0.05. (c–e) nctrl =  6 mice, nMPTP =  6 mice.
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Figure 4. R1 in CPu represents the severity of PD. (a) ROIs were de�ned by brain atlas alignments to MRI 
images. �e identifying number in each image indicates the A-P distance from bregma; slice positions are 
illustrated above the images. Scale bar, 1 mm. (b–g) Comparisons of R1 values in dCPu (b) vCPu (c) NAc 
(d) Ctx (e) PF (f) and HIP (g), and normalized optical density for TH in CPu (n =  6 mice). Numbers in the 
color-coordinated bar just above each plot indicate the A-P coordinate.
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indirect-pathway neurons in control rodents, and the increment in the �ring rate in the indirect-pathway 
neurons a�er 6-OHDA lesion is much larger than the decrement in the direct-pathway neurons23,24; 
thus overall activity may increase a�er DA-loss in the striatum. (ii) Direct-pathway neurons express low 
a�nity D1 dopamine receptors, while indirect-pathway neurons express high a�nity D2 receptors28. 
�erefore, loss of DA may more e�ectively in�uence the indirect-pathway neurons. (iii) Medium spiny 
neurons exhibit oscillatory bursting a�er 6-OHDA lesions29. Bursting activity causes larger in�uxes of 
Ca2+ than does sporadic �ring13,14,30. �us, resulting in the increased accumulation of Mn2+ we observed 
in the dorsal striatum of the PD mice. Nonetheless, it would be useful to clarify which types of neurons 
are responsible for increasing R1 values in the striatum.

According to the classical model of the basal ganglia, dopamine depletion leads to increased activity 
in the indirect-pathway and reduced activity in the direct-pathway. �is is thought to result in excessive 
inhibitory output to the thalamus. �us, we also analyzed the region of the substantia nigra pars retic-
ulata (SNr), which is the output nuclei of the basal ganglia, and the globus pallidus pars externa (GPe), 
which receives the input from the indirect-pathway neurons in the striatum (note: we did not analyze 
the region of the globus pallidus pars interna (GPi) or the subthalamic nucleus (STN), because they are 
too small to determine the region precisely on the MR image). SPM analyses revealed no signi�cant 
di�erences between those T1 values in PD mice and control mice (Fig. 2). �ere were signi�cant corre-
lations between R1 values in SNr and GPe using Pearson’s correlation coe�cients; however, no signi�cant 
regression coe�cients were detected in the regions by bootstrap 95% con�dence limits a�er 1,000 ran-
domizations (data not shown). �ese observations may be explained by reports showing no signi�cant 
changes in the mean �ring rates in the GPe25, GPi25, and SNr31.

Regions exhibiting signi�cantly reduced T1 values were observed in the cortex and thalamus (Fig. 2), 
and signi�cant correlations between TH-immunoreactivity and R1 values were observed in the senso-
rimotor area of cortex (Ctx) and the parafascicular nucleus of the thalamus (PF) (Fig. 4). DA depletion 
increases burst-�ring in primary motor cortex, as well as the percentage of time spent in burst activity28, 
which may also help to explain our results. Systemic administration of either MPTP or 6-OHDA induces 
the selective degeneration of PF; however, the activity increases in the remaining PF neurons32, which 
may account for the reduced T1 value we observed in PF. �e striatum receives glutamatergic input 
from areas of Ctx and PF; therefore, increased activity in Ctx and PF may lead to increased activity in 
the striatum. However, those �ndings are not consistent among studies; thus, further investigations are 
needed for clarifying the activity changes we observed in the cortex and the thalamus in PD animals.

Although, in general, TH expression in the striatum is decreased in PD model animals16,17,33 and PD 
patients34,35, the quantitative relationship between the expression of TH and the symptoms of PD had not 
been fully established. �erefore, we should more fully investigate the relationship between the R1 values 
in the striatum and PD symptoms like motor and gait performances in our PD model mice.

Mn2+ itself may alter neuronal activity by a variety of mechanisms, but these alterations are caused by 
concentrations of Mn2+ >  200 µ M36–38. �e R1 values we obtained a�er MnCl2 administration were less 
than 0.35 in the ventricular region (Supplementary Fig. S5) and less than 0.68 in the brain parenchyma 
(Fig. 4). �ese R1 values corresponded to less than 80 µ M Mn2+ (Supplementary Fig. S3). �is range of 
Mn2+ does not alter the neuronal activities. Indeed, there were no alterations in the condition of mice 
a�er MnCl2 administration compared with before administration. Moreover, in this study, R1 values in 
PD model mice were compared with those of their healthy counterparts administered the same amount 
of MnCl2. �us, the di�erences in R1 values between the control and the PD mice were not caused by 
the e�ects of Mn2+ on neuronal activities.

�ere is currently no de�nitive diagnostic test for PD; patients are currently diagnosed based on 
clinical criteria scaled by psychomotor symptoms such as the Uni�ed Parkinson’s Disease Rating Scale 
(UPDRS)12,39. However, these motor and non-motor symptoms are insu�cient for distinguishing PD 
from other diseases12. A conclusive method of early diagnosis would be of great value for appropriate 
treatment. qAIM-MRI quanti�cation of R1 in dCPu enables a diagnosis of the severity of PD to ensure 
appropriate treatment, as long as Mn2+ toxicity is avoided with a manganese chelator1.

�is work establishes a foundation for the extension of MEMRI techniques to studying animal models 
of brain disease. Because qAIM-MRI can be used for non-invasive investigation of whole brain activity 
that does not depend on blood hemodynamics but directly on neuronal activity1,7, our �ndings pave 
the way for signi�cant progress in research on PD pathophysiology, and suggest that qAIM-MRI can 
be utilized not only for diagnosing PD, but also potentially for the study and diagnosis of various other 
neurological disorders.

Methods
Mice. For the Ca2+ imaging study to discriminate striatal GABAergic neurons, we used heterozygous 
GAD67-GFP knock-in mice (GAD67-GFP mice), in which enhanced-GFP is selectively expressed under 
the control of the endogenous GAD67 gene promoter40. �e colony was maintained by crossing male 
GAD67-GFP mice with female C57BL/6 mice (Clea Japan). For the MRI and immunohistochemical 
study, we used male C57BL/6 mice. All mice were housed and maintained at 22–24 °C on a 12-h light/
dark cycle and permitted ad libitum access to food and water. �e Tohoku University Committee for 
Animal Experiments approved all animal experiments, and the experiments were performed in accord-
ance with the Guidelines for Animal Experiments and Related Activities of Tohoku University, as well as 
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the guiding principles of the Physiological Society of Japan and the National Institutes of Health (NIH), 
USA.

Quantification of intracellular Ca2+ elevation and Mn2+ accumulation. To discriminate 
GABAergic neurons, we used corticostriatal slices prepared from GAD67-GFP mice, which express 
the GFP in GABAergic neurons including the projection neurons and the interneurons40, as previously 
described41,42. Brie�y, postnatal day 21 (P21) to P23 GAD67-GFP mice of either sex were anesthetized 
with iso�urane (Mylan) and decapitated. �e brain was rapidly isolated and placed in ice-cold arti�-
cial cerebrospinal �uid (ACSF) bubbled with 95% O2–5% CO2. �e composition of ACSF was as fol-
lows (in mM): 137 NaCl, 2.5 KCl, 0.58 NaH2PO4, 1.2 MgCl2, 2.5 CaCl2, 21 NaHCO3, and 10 glucose. 
Corticostriatal sagittal slices (300 µ m thick) were prepared using a vibratome tissue slicer (VT-1200S, 
Leica Microsystems) and incubated at room temperature in a submerged chamber containing gassed 
ACSF for at least 60 min prior to the experiments.

[Ca2+]i elevation and Mn2+ accumulation were measured in striatal cells loaded, as previously 
described41,42, with the ratiometric Ca2+ sensitive dye Fura-2 LR/AM (Calbiochem). To identify astrocytes, 
1 µ M sulforhodamine 101 (SR101, Sigma) was dissolved in dye-loading solution43. A�er dye-loading, the 
slice was transferred to a continuously superfused (2–2.5 ml/min) chamber, and the �uorescence was 
observed by an epi�uorescence upright microscope (BX51WI, Olympus) equipped with a 20× , NA 1.0 
water-immersion objective (Olympus). �e Fura-2 LR-loaded slices were excited at wavelengths of 360 
or 380 nm using a �lter changer (Lambda DG-4, Sutter Instruments), and �uorescent signals at 510 nm 
were captured (F360 and F380) with an EM-CCD camera (DU-885 or DU-897, Andor Technology). 
�e [Ca2+]i transients or Mn2+ accumulations were evoked by stimulation with 200-µ s, 200-µ A biphasic 
current pulses at various frequencies from a glass microelectrode (tip diameter, ~30 µ m) placed on the 
corticostriatal �ber tract. All equipment was controlled by iQ so�ware (Andor Technology). �e exper-
iments were performed under temperature control (30 ±  1 °C).

�e analysis of the imaging data was performed with ImageJ so�ware44 and custom-made programs 
written in MATLAB (MathWorks). We identi�ed GFP-positive cells (i.e. GABAergic neurons), and meas-
ured the average �uorescence (F360 and F380) within the region of interest (ROI) of these cells as a 
function of time. [Ca2+]i transients in a striatal cell were estimated by the �uorescence ratio (R =  F360/
F380) from each imaged cell. �e frame rate was 8–10 frames per second (fps). �e baseline was set to 
the mean R-value in 10 frames just before stimulation, and the change in the R-value from the baseline 
was de�ned as ∆ R. To compare the Ca2+ transients among the stimulus frequencies (Supplementary 
Fig. S1), fast imaging was needed. �e frame rate was 17–20 fps. �e relative changes in [Ca2+ ]i were 
quanti�ed as − ∆ F/F at 380 nm, instead of ∆ R, where F indicates the mean �uorescence intensity in 10 
frames before stimulation, and ∆ F is the change in �uorescence intensity from F. �e peak value of ∆ R 
or − ∆ F/F a�er the stimulation was used for the amplitude of the [Ca2+]i transient.

Mn2+ quenches the Fura-2 LR �uorescence emission45. �us, for quanti�cation of intracellular Mn2+ 
accumulation, the amount of the quench was quanti�ed as − ∆ F/F at 360 nm. �e mean value of − ∆ F/F 
within 10 frames beginning 4 s a�er the stimulation was used for the amount of the quench.

MPTP treatment. For the MRI study preceding immunohistochemistry, batches of 3–6 mice were 
used to ensure reproducibility. �e mice in each batch were randomly assigned to two groups. �ose in 
the �rst group were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP, 
Sigma; 20 mg kg–1 in saline, i.p.) four times at 2-h intervals15 (MPTP group, n =  7). �ose in the second 
group were treated simultaneously and identically with saline only instead of MPTP (control group, 
n =  7). One mouse that succumbed to the MPTP injection was excluded from the MPTP group. MRI 
and immunohistochemical experiments were performed blindly (the experimenters did not know which 
mice were injected with MPTP or saline).

Activation-induced, manganese-enhanced magnetic resonance imaging (AIM-MRI). One or 
two weeks a�er MPTP treatment, mice in both the MPTP and control groups were injected with MnCl2 
solutions (0.2 mmol kg–1 in saline, i.p.) twice at 24-h intervals7. None of the mice succumbed to the 
MnCl2 administration. Because excess extracellular Mn2+ would shorten T1 and mask the alteration of 
T1 due to intracellular Mn2+ accumulation, MRI acquisition must be conducted a�er clearance of Mn2+ 
from the extracellular space. �us, we analyzed the time course of R1 (= T1

–1) in the ventricle of control 
mice a�er MnCl2 injection (Supplementary Fig. S5). R1 values 5 h and 24 h a�er the last MnCl2 injection 
(0.343 ±  0.012 s−1, n =  12, P <  0.001 at 5 h; 0.324 ±  0.009 s−1, n =  14, P <  0.05 at 24 h) were signi�cantly 
higher than that before injection (0.288 ±  0.006 s−1, n =  10), and gradually returned to the pre-injection 
level; there was no signi�cant di�erence between the R1 before MnCl2 injection and that more than 
48 h a�er injection (0.315 ±  0.007 s−1, n =  15 at 48 h, P >  0.05). R1 in the striatal parenchyma 48 h a�er 
the last MnCl2 injection (0.544 ±  0.011 s−1, n =  6) was signi�cantly di�erent from that before injection 
(0.436 ±  0.007 s−1, n =  6, P <  0.05; data not shown). In consideration of these factors, the time point 
for qAIM-MRI acquisition was chosen to be 48 h a�er MnCl2 administration. One control mouse that 
exhibited a T1 value less than 3 s in the ventricle before the MnCl2 administration was excluded from 
further analysis.
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Before and 48 h a�er MnCl2 administration, MRIs were acquired (Supplementary Fig. S3) using an AV 
400 WB 9.4-T, 89 mm spectrometer equipped with a 45 G/cm gradient insert (Bruker BioSpin). A 38-mm 
1H volume coil (Bruker BioSpin) was used for transmission and signal detection. A�er pre-anesthesia 
in a pre-anesthesia box with a mixture of air and O2 (air:O2 =  8:2) containing 2–3% iso�urane (Mylan), 
mice were positioned into the MRI scanner and maintained at 1–2% iso�urane using a nose cone dur-
ing the scanning. Body temperature was maintained by a circulation of heated water. For T1 measure-
ment of the brain, rapid acquisition with relaxation enhancement (RARE) with variable repetition time 
(RARE-VTR) pulse sequence with 7 TR values (450, 600, 900, 1,500, 2,500, 4,500, and 7,500 ms) was used 
with e�ective echo time (TEe�) =  8.1 ms, matrix size =  128 ×  128, �eld-of-view (FOV) =  1.6 ×  1.6 cm2, 
slice thickness =  0.5 mm, and number of slice =  20. Multislice, fast spin-echo T2-weighted images (RARE, 
TEe� =  22 ms, TR =  2,500 ms) were acquired and used to co-register images to the mouse brain template. 
Total time in the MRI scanner for mice was about 30 min, and they were then returned to their home 
cage.

For con�rmation of the correlation between Mn2+ concentrations ([Mn2+]) and longitudinal relaxa-
tion rates (R1), phantoms of 2% (wt/vol) agarose gel (NuSieve 3:1, Lonza) dissolved in arti�cial intracellu-
lar solution (140 mM K-methanesulfonate, 2 mM NaN3, and 20 mM HEPES-Na (pH ~7.2)) with di�erent 
amounts of MnCl2 (0, 20, 40, 60, 80 and 100 µ M) were imaged by the sequence for T1 measurement 
described above.

MR image analysis. Parametric T1 maps were calculated pixel-by-pixel by �tting using ParaVision 
5.1 so�ware (Bruker BioSpin). A�er spatial �ltering, the theoretical expression of the signal intensity 
(SI) in each pixel:

( ) = − (− / ) ( )SI TR A B TR Texp 11

was �tted to experimental data. Pixels in which T1 values were longer than 4,000 ms or shorter than 
500 ms were excluded from the analysis. Co-registration of T1 maps to the Allen Reference Mouse Brain 
Atlas46 (2014 Allen Institute for Brain Science. Allen Mouse Brain Atlas, http://mouse.brain-map.org/) 
was performed as follows: 1) A T2-weighted mouse brain template image was acquired by 3D-RARE 
sequence with TEe� =  45 ms, matrix size =  256 ×  256 ×  256, �eld-of-view (FOV) =  2.2 ×  2.2 ×  2.2 cm3. 2)  
�e T2-weighted images were registered to the T2-weighted template image, and the T1 maps were 
co-registered simultaneously using SPM8 so�ware (Wellcome Trust Centre for Neuroimaging, University 
College London). 3) �e mouse brain atlas was registered to the T2-weighted template image manu-
ally using pMod so�ware (PMOD Technologies). We could then determine the regions of interest by 
querying structures from the brain atlas. �e origin coordinate was determined at the midline in the 
medial-lateral (M-L) direction, the vertex of the cerebral cortex in the dorsal-ventral (D-V) direction, 
and bregma in anterior-posterior (A-P) direction.

�e co-registered T1 maps were smoothed with a Gaussian kernel with FWHM 0.25 mm in the x-y 
plane and 0.5 mm in the z-axis, and an unpaired Student’s t-test was used to determine which voxels 
decreased or increased in T1 in the MPTP group compared with the control group using SPM8. A par-
ametric map of voxels with statistically signi�cant changes in T1 was created and was overlaid on the 
T2-weighted template image.

For ROI analysis, brain structures of interest were extracted from the atlas and superimposed over 
the T1 maps of each mouse. �e region of the CPu was divided into two subregions, somatosensory 
region (dCPu) and associative/limbic region (vCPu)27. �e mean T1 values in the ROIs were used then 
for analysis.

Immunohistochemistry. A�er T1 measurement (11 to 20 d a�er MPTP administration; Supplementary 
Fig. S3), mice were sacri�ced by cervical dislocation and transcardially perfused with ~30 ml of saline 
followed by ~30 ml of 4% (wt/vol) paraformaldehyde in phosphate bu�ered saline (PBS, pH 7.4). Brains 
were then �xed overnight in the same solution at 4 °C, and then re-suspended in 10% (wt/vol) sucrose in 
PBS followed by 20 and 30% (wt/vol) sucrose for cryo-sectioning. Cryosections were cut at a thickness 
of 20 µ m and stored in PBS containing 0.05% (wt/vol) NaN3 until use. Immunostaining was carried out 
with free-�oating brain sections47.

For the histological detection of tyrosine hydroxylase (TH)-positive �bers in striatum, the sections 
were immunohistochemically stained with anti-TH antibody (MILLIPORE, 1:10,000) using the ABC 
method (Vectastain elite ABC kit, Vector Laboratories), according to the supplier’s recommendations. 
Brie�y, the sections were incubated in PBS containing 0.3% (vol/vol) H2O2 for 15 min to inhibit endog-
enous peroxidase activity, pre-incubated with 3% (wt/vol) BSA in PBS containing 0.3% (vol/vol) Triton 
X-100 for 1 h, and incubated with anti-TH antibody in PBS containing 3% (wt/vol) BSA and 0.3% (vol/
vol) Triton X-100 overnight at room temperature. �e sections were then incubated with biotinylated 
secondary antibody for 1 h, followed by avidin-biotin-peroxidase complex for 30 min at room tempera-
ture. Finally, the sections were reacted with 3,3′ -diamino benzidine (DAB) using a Vector DAB substrate 
kit (Vector Laboratories) for color development. For detection and observation, a microscope (BX51, 
Olympus) was used at a magni�cation of 12.5× .

http://mouse.brain-map.org/
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For the histological detection of TH-positive neurons in the substantia nigra pars compacta (SNc) 
and ventral tegmental area (VTA), we used double immuno�uorescence staining with anti-TH (1:10,000) 
and anti-neuronal nuclei (NeuN) antibodies (MILLIPORE, 1:5,000). �e sections were pre-incubated 
with 3% (wt/vol) BSA in PBS containing 0.3% (vol/vol) Triton X-100 for 1 h. �ey were then incubated 
with primary antibodies in PBS containing 3% (wt/vol) BSA and 0.3% (vol/vol) Triton X-100 over-
night at room temperature. �e sections were then incubated with secondary antibodies (anti-mouse 
or anti-rabbit IgG conjugated with Alexa Fluor 488 or 546, Invitrogen, Carlsbad, CA, 1:200) for 1 h at 
room temperature. For detection and observation, a �uorescent microscope (BH2, Olympus) was used 
at a magni�cation of 200× . Analysis of the images was performed using computer-associated image 
analyzing so�ware (WinRoof Version 5, Mitani Corporation), as described previously48–50.

Statistical analysis. Statistical analyses were performed using JMP Pro 11 (SAS Institute), MATLAB, 
and SPM8 so�ware. Statistically signi�cant di�erences (P <  0.05) were assessed by the Mann-Whitney 
U test, Wilcoxon signed rank test, Kruskal-Wallis test with Tukey-Kramer post-hoc test, or Friedman 
test with Tukey-Kramer post-hoc test for comparisons between the mean values of two unpaired groups 
or paired groups and multiple comparisons with unpaired values or paired values, respectively. For the 
statistical parametric mapping (SPM) analysis, the statistical signi�cance (P <  0.025) was assessed based 
on unpaired Student’s t-test using SPM8 so�ware. To ascertain the correlation between two variables, we 
employed the Pearson’s correlation coe�cient, and if a signi�cant correlation (P <  0.05) was detected, we 
con�rmed the signi�cance of the regression coe�cient by bootstrap 95% con�dence limits a�er 1,000 
randomizations. P-values are two-sided. All data are presented as mean ±  s.e.m., unless stated otherwise.
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