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Tumors are formed by aggregates of cells of various origins including malignant, stromal

and immune cells. The number of therapies targeting the microenvironment is increasing

as the tumor microenvironment is more and more recognized as playing an essential

role in tumor control. In the era of precision medicine, it is essential to precisely

estimate the composition, organization and functionality of the individual patient tumor

microenvironment and to find ways to therapeutically modulate it. To quantify the cell

populations present in the tumor microenvironment, many tools are now available

and the most recent approaches will be reviewed herein. We provide an overview

of experimental and computational methodologies used to quantify tumor-associated

cellular populations, including immunohistochemistry, flow and mass cytometry, bulk

and single-cell transcriptomic approaches. We illustrate their respective contribution to

characterize the microenvironment. We also discuss how these methods allow to guide

therapeutic choices, in relation to the predictive value of some characteristics of the

microenvironment.
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INTRODUCTION

Tumors are aggregates of cells, among which are not solely found malignant cells, but also a
vast variety of other cell populations, notably immune cells of all types, blood and lymphatics
vessels and fibroblasts (1). The constant dialogue between the cancer cells and the host cells
composing the tumor microenvironment (TME) is the essence of several hallmarks of cancer
(2). In particular, angiogenesis, tumor-promoting inflammation, and immune escape govern the
composition and functional orientation of the TME. Moreover, a growing body of evidence
links the infiltration of tumors by immune cells to the clinical outcome of the disease (3). With
the growing importance of immunotherapies to treat cancer patients, it has become crucial to
be able to decipher the composition and the functional orientation of the microenvironment.
Many teams have invested efforts on developing tools to quantify the TME populations with a
tremendous variety of technological approaches. Here, we review some of them, both experimental
and computational, and provide insights as to how they can help achieve proper personalized
medicine. Each type of experimental design presents advantages and drawbacks as compared to
other settings. These are summarized in Table 1.
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TABLE 1 | Comparison of the main experimental methodologies that can be used to analyze the TME.

Number of markers Throughput Spatial organization Precise quantification Many public datasets

available

IHC Brightfield Low Low Yes Yes No

Immunofluorescence Low to medium Low Yes In some settings No

Cytometry Flow Cytometry Low to medium Medium No Yes No

Mass Cytometry Medium Medium No Yes No

Transcriptomics RNA-Seq and micro-arrays High High No Yes Yes

Single-cell transcriptomics High High In some settings No Yes

Green, well fitted; yellow, medium; red, poorly fitted.

TME DESCRIPTION BY IN SITU

IMMUNOHISTOCHEMICAL IMAGING

One of the most straightforward ways to analyze the TME is to
use immunohistochemistry (IHC) or immunofluorescence (IF)
to directly quantify various populations. Compared to other
methods, IHC retains the tissue structure and therefore allows
to analyze the anatomical location of cells within the tumor, as
well as the detection of lymphoid-like structures or intratumoral
blood vessels.

Both IHC and IF use a primary antibody to target themolecule
of interest. A secondary antibody conjugated to either a catalytic
agent (IHC) or a fluorophore (IF) is then used to amplify the
signal and to reveal the distribution of the target molecule. These
steps can be repeated to analyze different markers. The staining
can be observed through a microscope or scanned images can be
analyzed by histopathology software to accurately quantify each
marker. Through the combination of different markers and the
shape and size of cells, different cells can be quantified. A nuclear
counterstain can further increase the accuracy of image analysis.

Until recently, this methodology was limited to only a small
number of markers that could be assessed simultaneously, due to
the cross-reactivity between primary and secondary antibodies.
Therefore, the description of the TME of large series of patients
was a long and complex procedure. However, recent efforts have
allowed a larger number of markers that can be stained on the
same slide, notably by using IF and automation, allowing up to
seven colors for the same slide (4, 5). One multiplexing method
is the tyramide signal amplification (TSA) system. In this system,
a fluorophore-conjugated tyramide is catalyzed by horseradish
peroxidase conjugated to the secondary antibody, and binds
covalently around the epitope of interest. This allows both the
primary and secondary antibodies to be stripped from the tissue,
avoiding the risk of antibody cross-reactivity in the next staining
round (6). Overall, the multiplexed analysis of several markers
on the same tissue section allows for a precise estimation of co-
expression ofmarkers by the same cells, or the spatial distribution
of related markers (7).

Besides traditional IHC/IF methods, other studies use metal-
tagged antibodies and mass cytometry to reveal the tissue
staining. These methods allow to read up to 32 markers on
formalin-fixed paraffin-embedded (FFPE) tumor sections (8, 9).
Such emerging systems could dramatically expand the number
of markers that can be assessed simultaneously and have a

huge potential for the future of TME analysis. To also detect
cytokines, which are difficult to measure through traditional
IHC/IF, methods have been developed to detect mRNA on FFPE
slides and couple this with IHC (10–12). Such methods allowed
to show that, in breast cancer, the density of CXCL10 expressing
cells correlated with T cells density (13).

Several IHC-based studies reported characterizations of the
TME with prognostic impact. In particular, in colorectal cancer
(CRC), the Immunoscore, an aggregate measure of CD3+ and
CD8+ T cells in the tumor core and the invasive margin, that
yields higher significance than each region separately (14), was
shown to be a stronger prognostic factor than microsatellite
instability (15) and TNM staging system (14). An international
consortium has recently validated this approach on a very large
series of tumors (16). IHC has also been used to assess the
prognostic impact of various immune cell types in virtually all
non-hematologic malignancies reporting a widespread positive
impact of CD8+ T cells on clinical outcome (3). However, there
are some exceptions to this rule. For instance, the poor prognostic
impact of CD8+ T cells in clear cell renal cell carcinoma (ccRCC)
or prostate cancer was shown using IHC (17, 18). IHC is
currently one of the mainmethods used to study and characterize
tertiary lymphoid structures, local lymph node-like immune cell
aggregates composed of a T cell zone with mature dendritic cells
and a B cell zone (19). They can be identified by the presence of a
CD20+ B cell aggregate surrounded by a CD3+ T cells aggregate
containing DC-Lamp+ mature dendritic cells (19). They were
shown to be associated to a better prognosis in a large array
of cancers (19) including lung squamous cell carcinoma (20).
In colorectal cancer, their prognostic impact was found to be
dependent on their maturation level (21).

IHC can also help to guide therapies by identifying patients
which are more likely to respond to specific treatments. In
metastatic renal cell cancer, IHC-based measures of several
biomarkers can help clinicians select between sunitinib or
sorafenib (22). They showed that patients with high expression
of CAIX, HIF-2α, and CD31 responded better to sunitinib
than sorafenib, while patients with higher VEGFR1 or PDGFRB
expression benefited more from sorafenib than sunitinib. The
expression of PD-L1 in tumors has also been highly scrutinized
to identify patients likely to respond to blockade of the PD-
1/PD-L1 axis (23). In some cases, detection of PD-L1 by IHC is
even a companion diagnostic assay with strong discrepancies in
the methodology used (24). The use of PD-L1 as a theranostic
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biomarker is not as clear as expected: around 15% of patients
with PD-L1-negative tumors respond to PD-1 blockade (25), and
some patients with tumors with a high expression of PD-L1 fail
to respond to similar treatments (23). Therefore, more complex
approaches are being tested to refine the specificity and sensitivity
of these tests, notably thanks to multiplexing to include T cell
markers (24).

The progress ofmachine learning has allowed large progress to
be made on automated analysis of histopathological images (26).
By training complex mathematical models, often neural network
on large sets of tumor slides, such approaches can identify tumor
cells or asses pathological stage (27, 28), and a method directly
predict patients’ survival probability (29). Several such machine
learning methods aim at quantifying the TME, especially
lymphocytes, with performance comparable to pathologists
(30). This could allow fast and reproducible analysis of TME
composition on large series as well as routine quantification of
tumor-infiltrating lymphocytes for many patients.

ANALYSIS OF THE TME COMPOSITION
AND FUNCTIONAL ORIENTATION USING
CYTOMETRY

To have a more precise view of the functionality of cells
composing the TME, other methodologies can be used.
Cytometry is one of these methods, which enables a single-
cell description on several markers. To be analyzed by flow
cytometry, the tissue is first dissociated to a single-cell
suspension. Cells are then marked with fluorophore-conjugated
antibodies for target molecules. Each cell’s markers will be read
with a laser, a method that can analyze thousands of events
per second. Each population of interest can subsequently be
analyzed by the multiparametric expression of various markers
(“gating”). Cytometry presents several advantages compared to
other methods: it can quantify single-cell data for large numbers
of cells (usually millions) in a relatively short time frame and
can identify various populations simultaneously, including rare
populations. This allows to access not only the proportions of
populations but also their functional orientation.

Flow cytometry has been extensively used to study tumor-
infiltrating immune cells, with early description of the presence
of dendritic cells for instance (31). It has notably been used
to describe and characterize myeloid-derived suppressor cells
(MDSC) in mouse models (32) and in human tumors (33).
MDSC form a heterogeneous population of myeloid-originated
cells with immuno-suppressive properties whose role in cancer
raises a growing interest (34).

The relatively recent development of mass cytometry has
allowed several dozens of markers to be assessed simultaneously,
with cells marked by metal-tagged antibodies subsequently
quantified by time-of-flight mass spectrometry (35). It has
allowed detailed description of tumor-infiltrating immune cells
(36). In particular, in ccRCC, mass cytometry has unveiled a
wide diversity of tumor-associated macrophages and T cells
(37), including 16 subsets of macrophages and 21 subsets of
T cells, which allows a much more precise description of the

functionality of these cells and their association with prognosis.
Another study (38) focused on early lung adenocarcinoma
and used mass cytometry coupled with single-cell RNA-Seq
to extensively describe T cells, NK cells and myeloid cells
compartments.

Flow cytometry has also been used to assess the profiles of
tumor-infiltrating T cells and their correlation with prognosis
or patients’ response to therapy, in the primary tumor or in
metastatic disease. In primary ccRCC, it was shown that tumors
could be classified into three groups based on the profile of their
tumor-infiltrating lymphocytes (TILs) (39). Notably, patients
bearing tumors with exhausted TILs phenotypes and regulatory
T cells were reported to experience early relapse. Another study
showed that metastatic melanoma patients with increased PD-
1 and CTLA-4 expression on tumor-infiltrating CD8+ T cells
were more likely to respond to anti-PD-1 therapies (40). Finally,
another team showed using flow cytometry that in amousemodel
of lung adenocarcinoma, acquired resistance to PD-1 blockade
was associated to an increased expression of other inhibitory
molecules, especially TIM-3 (41).

ESTIMATION OF THE TME COMPOSITION
USING GENE EXPRESSION DATA

The methods presented above allow for a precise identification of
the immune contents of the TME, but are cumbersome to apply
to large series of tumors. Several methods have been developed
to mine transcriptomic data of tumors in order to decipher the
TME composition (42). These methods use different approaches.
Some of them are based on Gene Set Enrichment Analysis [GSEA
(43)] to provide signatures of immune cells (44) or quantify TME
populations, such as xCell (45) or TIminer (46), a computational
framework that performs several immunogenomics analyses,
including a GSEA-based quantification of the immune infiltrate.

Becht et al. reported in 2016 a novel approach using gene
signatures, with a tool called MCP-counter (47). MCP-counter
relies on the analysis of transcriptomic markers that are only
expressed in one cell population and provides scores that are
proportional to the cell proportion in the analyzed sample.
Signatures are available for eight immune populations, as well
as endothelial cells and fibroblasts. This approach is robust and
allows to compare different samples (48).

Other methods use the deconvolution framework, that is the
estimation of cell population contribution to the overall signal
by solving a set of linear equations (49). Several methods are
based on this approach, with various solving algorithms, such as
least square regression (50), constrained least square regression
(with non-negativity of cell fractions) (51), or nu-support vector
regression. The latter is used by CIBERSORT (52), which
proved efficient in comparing one population with another
and accurately estimates 22 immune populations. Other notable
deconvolution methods include TIMER (53) which performs
sequential estimations to refine the estimation of six immune
populations, EPIC (54), which estimates the proportion of cells
that are not accounted for (among which are tumor cells) as
well as the relative abundances of five tumor-infiltrating immune
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cell types, endothelial cells and fibroblasts, and quanTIseq (55), a
deconvolution pipeline designed for raw RNA-seq data.

Finally, other methods perform complete deconvolution, that
is simultaneous estimation of the cell types proportions and of
their transcriptomic profiles, although generally for a limited
number of populations. This is usually done using non-negative
matrix factorization (56, 57). In a pioneering work, Venet
et al. performed complete deconvolution on colorectal cancer
transcriptomes (56). Although their method cannot be identified
to quantify specific or precise subpopulations, they identified and
quantified populations expressing signatures related to immune
cells. Some methods, such as ISOpure (58) can, if provided with
reference profiles, separate the part of the transcriptome that is
related to tumor or healthy cells.

One of the main advantages of the aforementioned methods
is that they can be applied to very large series of transcriptomic
data, of which many are publicly available on repositories such
as Genomics Data Commons for the Cancer Genome Atlas data,
or Gene Expression Omnibus. This allows to draw conclusions
on extensive cohorts, with more statistical power. Notably, MCP-
counter was used to assess the prognostic impact of various cell
types in different malignancies (47).

As another output of TIminer, Charoentong et al. designed
an immunophenoscore, based on the expression of immune
checkpoint genes, immune effector cells, immune suppressor
cells and antigen processing and presenting machinery genes
(59). They showed that the immunophenoscore was associated
to survival in ccRCC, melanoma, breast and bladder cancers. It
is also associated with response to CTLA-4 and PD-1 blockade in
metastatic melanoma cohorts.

One of the main issues with transcriptomics methods is the
loss of spatial information to localize identified cell types in
the tumor. Using barcodes associated to different regions of the
analyzed tissue prior to RNA-Seq, Ståhl et al. have designed a
spatial transcriptomics method (60). This method can be used
to infer immune cells presence and localization in tumor samples
(61).

Single-cell RNA sequencing (scRNA-Seq) technologies raise a
growing interest and can be a particularly valuable tool in the
context of immunity (62). Indeed, analyzing immune cells at
the single-cell scale allows a complete determination of the cell’s
phenotype and functional orientation. In tumor immunology,
scRNA-Seq has been used to comprehensively characterize the
TME of metastatic melanoma (63) and liver cancer (64), for
instance to deeply characterize well-defined populations, such
as tumor-infiltrating T cells or identify the T cell receptor
repertoire (64). Interestingly, scRNA-Seq allows to study rare
populations, whose expression is hard to segregate from noise in
bulk transcriptomics. scRNA-Seq can also guide deconvolution

by informing on the expression profiles of tumor-infiltrating
immune cells (54, 65). This can alleviate a limitation of several
deconvolution methods, which use cells purified from blood of
healthy donors to derive transcriptomic signatures.

CONCLUSION

Tumors are engaged in intricated relationships with their
microenvironment. The TME is strongly variable between
cancers and patients, in terms of composition and functional
orientation. The interplay between a tumor and its TME has
strong clinical implications, both for prognosis and treatment
options, especially in the era of checkpoint blockade therapies.
Therefore, studying what cell types are present in the TME and
in which numbers is of tremendous importance. To do so, a
large variety of methods have been developed and continuously
refined. This covers immunohistochemistry, flow and mass
cytometry, and the extensive use of transcriptomics, both bulk
and single-cell.

These various techniques have allowed progress to be made
in the understanding of how immune and stromal cells from the
TME shape clinical outcome. With the growing use of therapies
targeting subsets of the TME, they have proved particularly
useful to gain insights into the functioning of these treatments.
Together, the results presented in this review have provided
advances toward a true precision medicine for cancer patients.
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