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Abstract
Compressed Sensing (CS) is an emerging paradigm in which signals are recovered from un-

dersampled nonadaptive linear measurements taken at a rate proportional to the signal’s true

information content as opposed to its ambient dimension. The resulting problem consists in

finding a sparse solution to an underdetermined system of linear equations. It has now been

established, both theoretically and empirically, that certain optimization algorithms are able

to solve such problems. Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2007),

which is the focus of this thesis, is an established CS recovery algorithm which is known to

be effective in practice, both in terms of recovery performance and computational efficiency.

However, theoretical analysis of IHT to date suffers from two drawbacks: state-of-the-art worst-

case recovery conditions have not yet been quantified in terms of the sparsity/undersampling

trade-off, and also there is a need for average-case analysis in order to understand the behaviour

of the algorithm in practice.

In this thesis, we present a new recovery analysis of IHT, which considers the fixed points of

the algorithm. In the context of arbitrary matrices, we derive a condition guaranteeing conver-

gence of IHT to a fixed point, and a condition guaranteeing that all fixed points are ‘close’ to

the underlying signal. If both conditions are satisfied, signal recovery is therefore guaranteed.

Next, we analyse these conditions in the case of Gaussian measurement matrices, exploiting

the realistic average-case assumption that the underlying signal and measurement matrix are

independent. We obtain asymptotic phase transitions in a proportional-dimensional framework,

quantifying the sparsity/undersampling trade-off for which recovery is guaranteed. By general-

izing the notion of fixed points, we extend our analysis to the variable stepsize Normalised IHT

(NIHT) (Blumensath and Davies, 2010). For both stepsize schemes, comparison with previous

results within this framework shows a substantial quantitative improvement.

We also extend our analysis to a related algorithm which exploits the assumption that the

underlying signal exhibits tree-structured sparsity in a wavelet basis (Baraniuk et al., 2010).

We obtain recovery conditions for Gaussian matrices in a simplified proportional-dimensional

asymptotic, deriving bounds on the oversampling rate relative to the sparsity for which recovery

is guaranteed. Our results, which are the first in the phase transition framework for tree-based

CS, show a further significant improvement over results for the standard sparsity model. We

also propose a dynamic programming algorithm which is guaranteed to compute an exact tree

projection in low-order polynomial time.
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Chapter 1

Introduction

1.1 Compressed Sensing: an overview

The last fifty years have witnessed an information revolution, namely an explosion in mankind’s

ability to sample, store, process and transmit information in ever-increasing volumes. The cat-

alyst for this transformation was the pioneering work of Nyquist and Shannon [131, 139] on

the digitization of analog signals, which showed that any band-limited signal can be exactly

recovered from a set of finitely spaced samples, and much signal processing has now switched

to the digital domain. However, in many current signal processing applications, the traditional

approach involves the acquisition of extremely high-dimensional data which can be prohibitively

expensive, either in terms of time or money. Furthermore, the volume of data acquired may

be so large that it exceeds storage or transmission requirements [6], and subsequently needs

to be compressed. Compression techniques, such as transform coding, are motivated by the

observation that many signals have inherent simplicity structure, so that their true informa-

tion content is much lower than their dimension might suggest. However, there seems to be

something intuitively wasteful about the traditional approach of maximal sampling followed

by compression, in which a full set of measurements are obtained, only for the majority to be

subsequently discarded. If the underlying signal really is compressible, is it not possible to take

less measurements in the first place and build the compression into the measurement process?

The theory of Compressed Sensing (CS) directly addresses this issue, proposing new sensing

protocols in which it is possible to recover compressible signals from a reduced number of

appropriately chosen nonadaptive measurements. In fact, central to CS is the claim that the

number of measurements need only be proportional to the information content of the signal,

rather than its dimension. Having obtained the undersampled measurements, the CS approach

to recovering the original signal is to use optimization formulations and techniques to find

a sparse, approximate solution to the underdetermined system of equations arising from the

measurements. At the heart of compressed sensing is the discovery that, for appropriately
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chosen measurements, a large number of algorithms succeed in solving this seemingly intractable

problem to high accuracy, hence recovering a good approximation to the original signal.

There already exist a wide range of applications of CS theory, spread over areas as diverse

as astronomy, medicine, defence technology and communications. CS has opened up new ap-

proaches to digitizing analog signals, allowing signals of high bandwidth to be sampled more

efficiently [126]. In medical imaging, CS techniques have been used in magnetic resonance

imaging (MRI) where it has been shown possible to reduce the amount of time a patient needs

to remain in the MRI scanner [120]. Defence technology is another promising area, where

storage and transmission capacities on board aircraft are often limited, and the use of CS in

Synthetic Aperture Radar (SAR) imaging is already being explored [134]. Seismic imaging,

where significant undersampling of signals is unavoidable, is also benefiting greatly from the

recent insights of CS [119]. The Herschel telescope launched in 2009 with a camera that im-

plements CS encoding, with the aim of provided more accurate compressed images that can be

transmitted back to earth [28]. In communications theory, a wide range of applications of CS

have been proposed, and in particular new approaches to sparse channel estimation have been

developed [14]. Meanwhile, CS theory is even motivating entirely new technology, such as the

single-pixel camera [82], and this particular application is the focus of Section 1.11.

Outline of the chapter. The aim of the present chapter is to set the original work presented

in later chapters of the thesis within the context of preceding and related research. While CS

itself is less than a decade old, its roots go back much further, and we begin in Section 1.2 by

tracing this history. After establishing a notational framework that will be used throughout the

thesis in Section 1.3, we next describe some of the main results in CS in Section 1.4. Section 1.5

introduces the phase transition framework as a means of addressing the vital question of how

to quantify recovery results in CS. We then present a survey of the various recovery algorithms

which have been proposed for CS in Section 1.6, before introducing the algorithm which will

largely be the subject of analysis in this thesis, Iterative Hard Thresholding (IHT) [26], in Sec-

tion 1.7. This thesis also considers an extension of IHT to a tree-based signal model: we review

the current literature on refined sparsity models for CS in Section 1.8, before introducing the

tree-based signal model and the Iterative Tree Projection (ITP) algorithm [24, 7] in Section 1.9.

We present the outline and contributions of the thesis in Section 1.10, before illustrating some

of the key points of the chapter by means of a case study on the single pixel camera [82] in

Section 1.11.

1.2 Before CS: a brief survey

At its heart, compressed sensing involves finding sparse solutions to underdetermined systems

of linear equations, and its roots therefore lie in underdetermined inverse problems and sparse
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modelling. Central to CS are deep connections between these two areas.

Inverse problems. An inverse problem refers to any problem in which it is required to

convert observed measurements of a system into information about the system itself. Inverse

problems proliferate in many scientific applications, including geophysics, medical imaging,

tomography, remote sensing and astronomy. They have been extensively studied ever since a

seminal paper by the physicist Ambarzumyan in 1929 [3]. Compressed sensing, and therefore

this thesis, is especially concerned with discrete, linear inverse problems, where the task is to

determine an unknown vector x∗ ∈ R
N from the measurements

b = Ax∗ + e, (1.1)

where b ∈ R
n is a vector of measurements, A ∈ R

n×N is the measurement matrix, and where e

is a noise vector.

A well-posed problem was defined by Hadamard [105] as one for which there exists a unique

solution which is stable to small perturbations in the data. However, many inverse problems

are ill-posed as they are underdetermined with n < N , due to limitations on the number of

samples that can be collected, meaning that inferences are required from a relatively small data

sample.

Ill-posed inverse problems can often be transformed into well-posed problems by seeking

a solution that is consistent not only with the data but also with prior notions of the likely

behaviour of the system under exploration. Different strategies for implementing this principle

have been developed, with perhaps the most well-known being the method of regularization,

first proposed by Tikhonov and Arsenin in 1977 [152], in which the approach is to solve a

reformulated optimization problem with an added penalty term.

Sparse inverse problems. Interest in sparse modelling has been gradually developing over

many years, especially in the context of sparse regression in statistics. The task in sparse

regression is to identify the most influential variables of a model, which generally leads to a

well-posed inverse problem, and an early example is found in the work of Garside [97] in 1965

on subset selection. Sparse solutions to inverse problems have also been historically sought in

certain scientific disciplines such as medical ultrasound [133], but most notably by geophysicists

working in reflection seismology, in which properties of the Earth’s subsurface are estimated

from reflected seismic waves. An early example is a paper by Claerbout and Muir in 1973 on

the recovery of wide-band signals from narrow-band data [53] which, once discretized, amounts

to finding a sparse solution to an underdetermined discrete linear inverse problem such as (1.1).

The interest in sparsity naturally fuelled the development of algorithms for sparse solutions

to linear systems. In particular, the sparsity-enforcing properties of the l1-norm, defined as
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the sum of the absolute values of the components of a vector, have long been recognized. For

example, sparse solutions are obtained in [53] by solving an optimization problem involving the

minimization of the l1-norm. The authors recast the problem as a linear program, and methods

for solving linear programs such as the simplex method have existed since the 1940s [57].

Early connections between sparsity, undersampling and uncertainty principles.

Levy and Fullagar in 1981 [117] performed extensive testing which demonstrated that accu-

rate recovery of seismic signals is possible from significantly undersampled measurements using

an l1 approach. As a clear phenomenon began to be observed numerically, it was not long before

the first theoretical results appeared. The earliest recovery guarantee for l1-minimization was

given by Santosa and Symes in 1983 [138], where it was shown that a signal consisting of a

small number of spikes can be recovered from undersampled Fourier measurements, provided

the number of spikes multiplied by the number of missing measurements does not exceed half

the dimension of the signal, which is equivalent to requiring that the number of measurements

n satisfies

n ≥ N

(

1 − 1

2k

)

,

where k is the number of spikes (sparsity) of the underlying signal.

In 1989, Donoho and Stark [74] first pointed to the essential question of the properties of

the measurement matrix, showing that the result in [138] relies upon an uncertainty principle

satisfied by the Fourier transform. Namely, a signal and its Fourier transform cannot both

be arbitrarily sparse. The need for an uncertainty principle is intuitive: we would like the

undersampled measurements to capture sufficient information to recover a sparse signal, and

so it seems natural to require that its measurements can be distinguished from those of any

other sparse signal. But if the Fourier transforms of two sparse signals agree, then the Fourier

transform of the difference between the two signals would vanish and hence also be sparse,

thus violating the uncertainty principle. The authors also conjectured that much stronger

uncertainty principles might hold if the spike positions were scattered at random, a key notion

that would later become an integral part of CS theory.

Sparse approximation over redundant bases. In the 1990s, there was a growing interest

in the signal processing community around finding sparse representations over redundant bases

(in which the number of basis elements is greater than the signal dimension). This could

either arise due to the use of overcomplete representations such as Gabor frames or wavelets,

or due to several orthogonal bases being concatenated together. Being yet another example

of an underdetermined system of linear equations, some strategy is required to select a signal

representation from a potentially infinite number of possibilities. Following several proposed

solutions which do not promote sparsity, Mallat and Zhang [124] proposed the Matching Pursuit

strategy in 1993 which builds up a sequence of sparse approximations in a stepwise, ‘greedy’
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fashion. The authors also pointed to a particular uncertainty principle, namely the incoherence

of basis vectors, as playing a crucial role in the success or otherwise of the sparse approximation.

This was soon followed by the better-performing but more computationally expensive greedy

algorithm, Orthogonal Matching Pursuit (OMP), proposed in [62].

In 1999, Chen, Donoho and Saunders proposed minimizing the l1-norm to obtain sparse

approximations from redundant bases, an approach which they termed Basis Pursuit (BP) [52].

More precisely, the BP criterion is to solve the optimization problem

min
x∈RN

‖x‖1 subject to Ax = b. (1.2)

The authors also proposed a variant called Basis Pursuit De-Noising, which is designed to carry

out sparse approximation in a noisy context, by solving a least-squares problem with an l1

penalty.

Coherence-based recovery guarantees. Theoretical results for Basis Pursuit then began

to follow: first Donoho and Huo [71] showed in 2001 that sparse representations from a concate-

nation of two orthonormal bases are exactly recovered by Basis Pursuit provided the mutual

coherence between the bases is sufficiently small. This was soon followed in 2003 by results

for more general overcomplete representations based on the related concept of coherence, by

Donoho and Elad [70], and by Gribonval and Nielson [102]. Given a measurement matrix A, its

coherence µ(A) is defined to be the maximum absolute Euclidean inner product between any

two distinct columns of A. Writing Ai for the ith column of A, we therefore define

µ(A) := max
i 6=j

∣

∣AT
i Aj

∣

∣ . (1.3)

The authors of [70, 102] give conditions which ensure that the l1-problem (1.2) shares exactly

the same solution as the problem

min
x∈RN

‖x‖0 subject to Ax = b, (1.4)

where ‖x‖0 denotes the l0 pseudo-norm which simply counts the nonzero coefficients of x. Such

a phenomenon is often referred to as l1-l0 equivalence, which we next formalize.

Definition 1.1 (l1-l0 equivalence). Suppose b = Ax∗. We say l1-l0 equivalence holds if (1.4)

and (1.2) share the same solution.

It is shown in both [70] and [102] that l1-l0 equivalence holds provided

µ(A) <
1

2k − 1
. (1.5)

At around the same time, Gilbert et al. [98] proved a coherence-based result for OMP, which was
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subsequently significantly improved by Tropp [153]. Since many representations yield µ(A) =

O(1/
√
n), such coherence results imply that n = O(k2) measurements are sufficient to recover a

k-sparse signal. However, numerical tests by Donoho and Huo led them to conjecture that their

coherence-related results “point the way to a phenomenon valid under far less restrictive sparsity

assumptions” [71]. In particular, the breakthrough of compressed sensing was to establish that

measurement schemes exist for which the number of measurements need only be proportional

to the sparsity of the underlying signal.

1.3 Linear measurements of compressible signals

Before describing some of the key results in compressed sensing, we establish some notation and

present in more detail a well-known framework of linear measurements of compressible signals.

Linear measurements. We consider the problem of recovering a discrete or digitized signal

z∗ ∈ R
N (at a given time if it is time-varying) from a set of linear measurements. Suppose

we obtain n < N measurements as noisy Euclidean inner products of z∗ with a series of fixed

vectors {φ1, φ2, . . . , φn}, so that

bi = φT
i z

∗ + ei for i = 1, 2, . . . , n,

where ei models additive noise. Then the measurement process may be represented by the

matrix equation

b = Φz∗ + e, (1.6)

where Φ is the matrix with φT
1 , φ

T
2 , . . . , φ

T
n as its rows.

Compressible signals. We assume that the signal z∗ has low information content relative

to its dimension, in the sense that there exists some basis in which the signal’s information is

largely captured by relatively few of its coefficients. This means that z∗ is well-approximated

by a sparse vector in some basis. Suppose {ψ1, ψ2, . . . , ψN} is such a basis, and let x∗ be the

coefficients with respect to this basis, so that

z∗ =

N
∑

i=1

x∗iψi,

which we can equally write in matrix notation as

z∗ = Ψx∗, (1.7)
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where Ψ is the N × N matrix with ψ1, ψ2, . . . , ψN as its columns. We consider both exact

and approximate sparse models: either x∗ is k-sparse for some k < N , meaning that it has

exactly k nonzeros; or x∗ is k-compressible, meaning that it is well-approximated by a k-sparse

vector. The former is often a helpful simplification in the context of theoretical analysis, while

the latter is the more likely in practical applications.

The model. Defining A := ΦΨ, we may combine (1.6) and (1.7) and write instead

b = Ax∗ + e, (1.8)

where we refer to the n × N matrix A from now on as the measurement matrix. Recalling

(1.1), we clearly have an ill-posed discrete linear inverse problem, or equivalently a system of

underdetermined linear equations. But in addition, we are assuming that the linear system has

an underlying (exact or approximate) sparse solution. We formalize three possible variants of

this problem below.

Problem 1.1 (Sparse recovery from exact measurements). Recover exactly a k-sparse

x∗ ∈ R
N from the noiseless measurements b = Ax∗ ∈ R

n, where 2k ≤ n ≤ N .

Problem 1.2 (Sparse recovery from noisy measurements). Recover an approximation

to a k-sparse x∗ ∈ R
N from the noisy measurements b = Ax∗ + e ∈ R

n, where 2k ≤ n ≤ N .

Problem 1.3 (Compressible recovery from noisy measurements). Recover an approx-

imation to a k-compressible x∗ ∈ R
N from the noisy measurements b = Ax∗ + e ∈ R

n, where

2k ≤ n ≤ N .

1.4 CS: measurements proportional to sparsity

1.4.1 Results for l1-l0 equivalence

The ‘birth’ of compressed sensing. An important breakthrough came in 2004, when both

Candès, Romberg and Tao [36] and Donoho [67] showed that it is possible to design measurement

matrices for which l1-l0 equivalence as defined in Definition 1.1 holds, provided the number of

measurements satisfies n = O(k logN). This implies that k-sparse signals can be exactly

recovered using l1-minimization from far fewer measurements than previously thought possible.

In [36], working in the complex domain x∗ ∈ C
N , l1-l0 equivalence is shown to hold with

overwhelming probability for the case where the matrix A consists of n randomly chosen rows

from a Fourier transform matrix. In [67], conditions to be satisfied by the measurement matrix

are given, and it is shown that these conditions are satisfied with overwhelming probability for

A = ΦΨ, where the columns of Φ are drawn at random from the unit sphere on R
n, and where

Ψ is an orthogonal transform matrix.
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What is striking is that in both cases the proposed measurement scheme is either random

or randomized, and for this reason probabilistic results are obtained which state that recovery

occurs with ‘overwhelming probability’. By overwhelming probability, it is meant that, if one

considers a sequence of problem sizes (k, n,N) → ∞, then the probability that recovery is

unsuccessful decays exponentially with respect to these problem dimensions. The use of random

or randomized matrices, which may appear at first to be somewhat counter-intuitive, is in fact

crucial for obtaining better recovery guarantees, allowing stronger uncertainty principles to be

derived. On the contrary, random matrices can be intutitively seen to be an attractive option:

if one applies a random matrix to a sparse vector, one would expect the resulting measurements

to be in some sense ‘averaged out’ across all measurement coefficients, leading to particularly

strong uncertainty principles.

Proportional-dimensional results. While [36] and [67] are rightly seen as the foundational

papers, improved results followed for random matrices. It was shown by both Candès and

Tao [39] and Donoho [64] that recovery of any k-sparse signal is guaranteed provided the

number of measurements satisfies

n = O
[

k log

(

N

k

)]

. (1.9)

While it might appear that this is a minor adjustment to a log-factor, in fact the difference

is significant. Condition (1.9) implies that recovery conditions may be characterized by their

asymptotic behaviour as one lets the problem dimensions (k, n,N) grow in proportion to each

other.

In [64], Donoho obtains the improved result for matrices satisfying the same conditions as

in [67], and in particular for the uniform spherical ensemble. In [39], results were obtained

for Gaussian random matrices, in which each entry independently and identically follows a

Gaussian distribution. To obtain their results, the authors introduced a concept that would

eventually become ubiquitous in CS: the Restricted Isometry Property (RIP), which we here

define. Throughout this thesis, we will use ‖·‖ with no subscript to denote the Euclidean norm.

Definition 1.2 (Restricted Isometry Property [39]). For a given matrix A, define the

(symmetric) RIP constant Rs of order s to be

Rs := min
r≥0

r subject to (1 − r)‖y‖2 ≤ ‖Ay‖2 ≤ (1 + r)‖y‖2 for all s-sparse y. (1.10)

Recovery is guaranteed in [39] provided A satisfies

Rk +R2k +R3k < 1. (1.11)

The authors then go on to show that, provided A is drawn from the Gaussian ensemble such
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that (1.9) holds, the condition (1.11) holds with probability approaching 1 exponentially in n

as one grows (k, n,N) proportionally.

Robust recovery guarantees. These early results concerned the simplified case in which

noiseless measurements of an exactly sparse signal are taken. In reality, this is unlikely: signals

are likely to be only approximately sparse, and measurements cannot be obtained to arbitrary

accuracy. It is important, therefore, that recovery guarantees can be extended in both of these

two directions. This was first done for the case of noisy measurements by Donoho [68] in a

companion paper to [64], in which it was shown that an accurate approximation is guaranteed

by solving the problem

min
x∈RN

‖x‖1 subject to ‖Ax− b‖ ≤ σ, (1.12)

which is related to the Basis Pursuit De-Noising formulation previously used in [52], see Sec-

tion 1.6 for further elaboration. In 2006, Candès, Romberg and Tao [37] extended their RIP-

based results from [39] to the case of both noisy measurements and inexactly sparse signals.

Since then, the RIP condition guaranteeing recovery in this sense has been gradually weakened

by a number of authors, including a now well-known result by Candès [32] which we state

next. Small improvements have since been made to this result by Chartrand [46], Foucart and

Lai [94] and Cai, Wang and Xu [31], but we choose to state the result in [32] due to its particular

simplicity. First, let us define x∗k to be the best k-sparse approximation to x∗, as follows.

Definition 1.3 (Best k-sparse approximation). Define x∗k ∈ R
N to be

x∗k = arg min
‖z‖0≤k

‖z − x∗‖. (1.13)

Note that x∗k is in fact the vector x∗ with all but its k largest in magnitude entries set to

zero. The result in [32] follows.

Theorem 1.4 (Robust RIP-based recovery [32]). Suppose that ‖e‖ ≤ σ and R2k <
√

2−1.

Then, given any x∗ ∈ R
N , the solution x̂ to (1.12) satisfies

‖x̂− x∗‖ ≤
(

2
√

1 +R2k

1 −R2k

)

· σ +

( √
2R2k

1 −R2k

)

· ‖x
∗ − x∗k‖1√

k
. (1.14)

In words, the result guarantees that, provided a sufficiently strong RIP condition is satisfied

by the matrix A, the approximation error of the solution x̂ to (1.12) does not exceed a fixed

multiple of the magnitude of the error due to noise in the measurements and inaccuracy of the

sparse model.
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1.4.2 Beyond l1-l0 equivalence

So far in this review, we have maintained a focus on one particular approach to CS recovery: l1-

minimization. Indeed, the theory of CS was first developed solely within the framework of l1-l0

equivalence. However, we have already seen that, even prior to the first CS results, algorithms

which do not solve an l1-minimization problem had already been proposed for sparse signal

recovery. In particular, greedy matching pursuit algorithms had been developed, and coherence-

based recovery guarantees had also been proved for Orthogonal Matching Pursuit (OMP) [153].

OMP with Gaussian measurements. The first theoretical result for CS with a greedy al-

gorithm was proved by Tropp and Gilbert [154], who considered OMP with Gaussian measure-

ments. They showed that, provided the number of measurements satisfies n ≥ 20k log(N/a) for

some 0 < a < 0.36, then OMP with Gaussian measurements exactly recovers a k-sparse signal

with probability exceeding 1 − 2a. However, like the early results for l1-l0 equivalence [36, 67],

this result does not permit a proportional-dimensional interpretation, and furthermore the

probability of failure is fixed and does not become exponentially small.

RIP analysis beyond l1-minimization. During 2008 and 2009, three more algorithms

were shown to exactly recover k-sparse signals from noiseless measurements, or equivalently

to recover compressible signals from noisy measurements to within a given accuracy, provided

the measurement matrix satisfies an RIP condition. In [127], Needell and Tropp proposed

Compressive Sampling Matching Pursuit (CoSaMP), obtaining the recovery condition R4k <

0.1, while Dai and Milenkovic proposed Subspace Pursuit (SP) [56] and derived the condition

R3k < 0.165. In fact, CoSaMP and SP are very similar to each other, and are both closely related

to OMP and StOMP. Around the same time, Blumensath and Davies [23] proposed Iterative

Hard Thresholding (IHT), the algorithm which will largely become the focus of this thesis, and

proved recovery under the condition R3k < 1/
√

8. These original recovery guarantees have all

subsequently been tightened: R4k < 0.384 for CoSaMP by Foucart [92], R3k < 0.35 for SP by

Jain et al. [109], and R3k < 1/
√

3 for IHT by Foucart [93]. More recently, an algorithm called

Orthogonal Matching Pursuit with Replacement (OMPR) has been shown by Jain, Tewari and

Dhillon to provide similar recovery guarantees under the condition R2k < 0.499 [109]. It should

be noted that each of these results parallels Theorem 1.4 for recovery using l1-minimization, and

implies that recovery is successful with Gaussian measurement matrices provided the number

of measurements satisfies (1.9). For a brief description of OMP and related methods, we refer

the reader to the overview of CS algorithms in Section 1.6. We give a thorough introduction to

IHT and related variants in Section 1.7.

But what is the constant of proportionality? The results presented in this and the

previous section establish that it is possible to recover compressible signals by taking a number
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of measurements proportional to the sparsity of the signal’s approximation. However, the crucial

question for a practitioner is a quantitative question: how many measurements should I take to

recover a given signal? Recovery conditions such as (1.9) are proportionality statements which

leave this question unanswered unless the constant of proportionality is itself determined. A

natural way to explore this important quantitative question is by using the phase transition

framework, to which we now turn our focus in the next section.

1.5 Quantitative results via phase transitions

The results in [39] and [64] mentioned in Section 1.4 are asymptotic results for random matrices

in which the dimensions (k, n,N) are allowed to grow to infinity while remaining proportional

to each other. We may represent the latter by defining two new variables as the limiting values

of the ratios n/N and k/n. We will refer to such a framework as the proportional-growth

asymptotic, which we now formally define.

Definition 1.5 (Proportional-growth asymptotic [21]). We say that a sequence of problem

sizes (k, n,N), where 0 < k ≤ n ≤ N , grows proportionally if, for some δ ∈ (0, 1] and ρ ∈ (0, 1],

n

N
→ δ and

k

n
→ ρ as (k, n,N) → ∞.

This framework defines a two-dimensional phase space for asymptotic analysis in which the

variables δ and ρ have a simple practical interpretation. δ is the ratio by which the signal

is undersampled (an undersampling ratio), while the ratio ρ effectively determines how many

measurements need to be taken as a multiple of the sparsity (an oversampling ratio). A matter

of vital practical importance is understanding the relationship between these variables. In CS,

we want to recover signals with sparsity as high as possible, while taking as few measurements

as possible: in other words, we want δ to be small and ρ to be large.

In particular, results such as those in [39] and [64] imply that recovery is asymptotically

guaranteed for the random matrix ensemble in question, provided that ρ < ρ̂(δ) for some

recovery threshold ρ̂(δ) which the authors do not determine. However, both authors make clear

that the recovery thresholds obtainable from their analysis are rather pessimistic, and suggest

that improved quantitative results might be possible.

Precise phase transitions for Gaussian matrices. In 2005, Donoho [66] showed that l1-

l0 equivalence holds for all sparse vectors provided the measurement matrix satisfies a certain

geometrical property. Namely, one requires the quotient polytope obtained by applying the

matrix A to the l1-ball or cross-polytope in R
N ,

{x ∈ R
N : ‖x‖1 ≤ τ},
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to be k-neighbourly. A k-neighbourly polytope is one where any k+1 vertices, not including an

antipodal pair, span a face of the polytope. The condition means that, even though the cross-

polytope is being projected into a lower dimension, all of its k-faces survive the projection, and

none are swallowed up into the interior of the polytope.

The concept of k-neighbourliness had previously been a much-studied topic in combinatorial

geometry. Affentranger and Schneider [2] derived and analyzed a formula for the expected

number of k-faces surviving a random orthogonal projection, and further analysis was carried

out by Böröczky and Henk [29], and also by Vershik and Sporyshev [159] who pioneered the

study of the asymptotic case in which the dimensions grow proportionally. Drawing upon this

rich body of work, Donoho [65] derived a threshold ρ < ρS(δ) for random orthogonal projection

matrices which ensures that, in the proportional-growth asymptotic, with probability tending

to 1 exponentially fast in n, all k-faces survive the projection, thus implying l1-l0 equivalence.

The equivalence threshold ρS(δ) represented a radical improvement on those obtainable from

the analysis in [39] and [64].

The subscript S in ρS(δ) stands for strong, since weaker forms of k-neighbourliness can also

be considered [159]. By weak neighbourliness we mean that the overwhelming majority of k-

faces survive projection, or alternatively that the probability that a single independently-chosen

k-face survives projection is overwhelmingly high. Donoho [65] also derived a weak equivalence

threshold ρ < ρW (δ) for random orthogonal matrices which guarantees that l1-l0 equivalence

holds for the overwhelming majority of k-sparse vectors, or alternatively that l1-l0 equivalence

holds with overwhelming probability for any k-sparse vector whose k non-zero coefficients are

located on a single independently-chosen support set and have a particular sign pattern. Weak

equivalence may therefore be viewed as a particular kind of average-case analysis, as opposed

to strong equivalence which is worst-case analysis. The weak threshold represents a substantial

improvement on the strong threshold, which is not surprising since it requires the satisfaction

of a less stringent condition.

A more comprehensive treatment of the above results is given by Donoho and Tanner in [77].

In particular, it was proved that both the strong and weak equivalence thresholds are precise,

with equivalence also failing to hold with overwhelming probability above the respective curves,

thus giving phase transitions. These results are significant since they were the first to describe

quantitatively and precisely the allowable rates of undersampling in compressed sensing. Fur-

thermore, it follows from the work of Baryshnikov and Vitale [9] that their phase transitions, as

well as applying to random orthogonal matrices, in fact apply equally well to Gaussian random

matrices. Plots of the strong and weak phase transitions for Gaussian measurement matrices

are shown in Figure 1.1. Recovery is asymptotically certain, in the strong and weak senses

respectively, for a (δ, ρ) pair falling below the curve, and asymptotically certain to fail for a

(δ, ρ) pair falling above the curve.
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Figure 1.1: Phase transitions for Gaussian matrices and l1-minimization: weak (unbroken);
strong (dashed) [77].

Empirical phase transitions. Not long after the deep connections between compressed

sensing and combinatorial geometry were made, it was shown empirically that a phase transition

is also observed in practice for l1-l0 equivalence. One of the earliest examples to appear in print

was in 2006 [80], where Donoho et al. presented the results of numerical testing in which high-

dimensional problems were tested with the aim of well approximating the asymptotic limit.

By considering a mesh of equispaced points in the (δ, ρ) plane, multiple trials were performed

where in each case n measurements were taken of a k-sparse vector x∗ of dimension N = 800,

such that n = δN and k = ρn. In each trial, the nonzero coefficients of x∗ were drawn

i.i.d. Gaussian, and the measurement matrix was drawn from the uniform spherical ensemble

(for which theoretical results were obtained in [67] and [64]). In each trial, the solution x̂ to

(1.2) was obtained, and recovery was deemed successful if the error between x̂ and x∗ was

below some small tolerance level. Plots were obtained of the proportion of successful recoveries

throughout the (δ, ρ) plane. The plots showed that a phase transition phenomenon occurs in

practice, though not entirely sharp. Instead, one may observe a narrow band within which the

probability of success transitions from zero to one. But the most striking finding was that, if

one overlays the theoretical phase transition derived in [65], there is close agreement with the

level curve for the empirical proportion of successful recoveries equal to 1/2. In other words,

for high-dimensional problems, one observes empirical behaviour that is essentially described

by the weak phase transition. This is in fact to be expected since, in the experiment just

described, the signal (and therefore its support) is drawn independently of the measurement

matrix. This shows that the strong phase transition, while being a theoretically interesting

concept, is pessimistic concerning how many measurements should be taken in practice.

25



Quantitative analysis of algorithms for compressed signal recovery 26

Universality of empirical phase transitions. The other intriguing aspect of the numerical

results just described is that one observes close agreement with the theoretical phase transition

for Gaussian matrices, even though the matrix used in the tests is not Gaussian, but drawn

from the uniform spherical ensemble. On the other hand, these two distributions are intimately

connected, since a uniform spherical matrix may be obtained by normalizing the columns of

a Gaussian matrix. But it nevertheless raises the question: might similar empirical results be

observed for other families of matrices? Indeed, some of the early theoretical results pointed

in this direction: we have seen, for instance, that the foundational paper of Candès, Romberg

and Tao [36] obtained results for random partial Fourier matrices in the complex domain.

In [78], Donoho and Tanner performed extensive numerical testing of l1-l0 equivalence sim-

ilar to those in [80] for measurement matrices drawn from a number of random or randomized

matrix ensembles. Empirical phase transitions were obtained for various random matrix en-

sembles, including Gaussian matrices, Bernoulli matrices where all entries are independent and

equally likely to be zero or one, and Rademacher matrices where all entries are independent

and equally likely to be plus or minus one. Phase transitions were also obtained for random

partial deterministic transform matrices, including the Discrete Cosine Transform (real coun-

terpart of the Fourier transform) and the Hadamard transform. A plot of these empirical phase

transitions is given in Figure 1.2 [78]. The lower curve is the one of immediate interest: the

upper curve is the for the case in which all coefficients of the sparse signal are assumed to be

nonnegative. A close agreement can be observed between each respective empirical phase tran-

sition and the theoretical weak phase transition for Gaussian matrices. The result for Gaussian

matrices indicates that a close approximation to the asymptotic limit is reached for finite di-

mensions of reasonable size (the authors used N = 1600). That the other non-Gaussian matrix

ensembles should exhibit the same phase transition is remarkable, and points to the universality

of the weak phase transition of [77] over a wide class of different random or randomized matrix

ensembles.

Phase transitions beyond l1-l0 equivalence. The concept of a phase transition can also

be extended to describe the region of phase space in which any CS algorithm exactly recovers

a sparse signal from noiseless measurements (Problem 1.1). Quantitative results in the phase

transition framework have also been obtained for three algorithms which do not rely upon l1-l0

equivalence, CoSaMP, SP and IHT (see also Section 1.4.2). Building upon the existing RIP [39]

analysis for each algorithm, lower bounds on the theoretical strong phase transition for each of

the three algorithms were derived by Blanchard et al. in 2011 [17]. One of the contributions of

the work was the weakening of the RIP conditions from [127, 56, 23] by considering asymmetric

RIP constants, which we next define.
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Figure 1.2: Empirical phase transitions for l1-minimization used in conjunction with various
random and randomized matrix ensembles [78].

Definition 1.6 (Asymmetric RIP [21]). For a given matrix A, define Ls and Us, the lower

and upper RIP constants of order s, to be, respectively,

Ls := 1 − min
1≤‖y‖0≤s

‖Ay‖2

‖y‖2
and Us := max

1≤‖y‖0≤s

‖Ay‖2

‖y‖2
− 1. (1.15)

We note that symmetric and asymmetric RIP constants satisfy the relationRs = max(Ls, Us).

It follows that any asymmetric RIP condition is made stricter in general by the imposition of

symmetry upon the RIP constants. Indeed, this imposition is in many cases artificial, since

RIP constants often do not exhibit symmetry. For example, it was observed in [21] that Us is

often significantly larger than Ls for Gaussian matrices. From now on in this thesis, when we

refer to the RIP, we will assume it to be the asymmetric variant.

By making use of upper bounds on asymmetric RIP constants for Gaussian matrices derived

by Blanchard et al. in [21], lower bounds on the strong phase transition for exact recovery were

obtained in [17] in the proportional-growth asymptotic for each of CoSaMP, SP and IHT. The

phase transition derived in [17] are displayed in Figure 1.3. The reader’s attention should be

drawn in particular to the scale on the ρ-axis, showing that, for each algorithm, critical values

of the ratio ρ are everywhere of the order 10−3 or worse. Since ρ = k/n, these phase transitions

imply that a number of measurements of the order at least 1000 times the sparsity is needed

to guarantee recovery using any of the three algorithms. Empirical studies reported in [21],

in which lower bounds on RIP constants were calculated numerically, show that the bounds

are quite sharp, being always within a factor of 1.83 of empirically observed lower bounds
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for n = 400, with the factor being even lower for small ρ. The conclusion is therefore that,

at least for Gaussian measurement matrices, the RIP gives phase transitions for these three

algorithms which are much lower than those obtained by means of combinatorial geometry for

l1-l0 equivalence. Since the work in [17] was carried out, Bah and Tanner [4] derived improved

upper bounds on RIP constants for Gaussian matrices, which are always within a factor of 1.57

of empirically observed lower bounds for n = 400. We will have cause to make use of Gaussian

RIP bounds later in this thesis (Chapters 2 and 5), and we will use the bounds from [4] in order

to obtain the best possible quantitative results.
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Figure 1.3: Lower bounds on the strong phase transition based upon the RIP for recovery using
Gaussian matrices: IHT (unbroken); CoSaMP (dashed); SP (dash-dot) [17].

These theoretical results are in marked contrast to the observed behaviour of CoSaMP,

SP and IHT. Numerical testing of recovery properties similar to that described earlier in this

section was carried out for each of the three algorithms in question in [72], revealing phase

transitions reasonably comparable to the weak phase transition for l1-l0 equivalence, though

slightly lower. More recently, GPUs have been used to empirically test IHT algorithms upon

problems of high dimension [18]. The authors tested a variable stepsize variant of IHT known

as Normalised IHT (NIHT) [27], which is the subject of theoretical analysis in this thesis.

Figure 1.4 displays empirical phase transitions for different problem sizes obtained for NIHT

used in conjunction with partial DCT measurement matrices [18]. Superimposed in blue is

the theoretical weak phase transition for l1-minimization. The plot demonstrates something

remarkable: NIHT exhibits an empirical phase transition which is at least as good as that for

l1-minimization, making it competitive with l1-minimization from the point of view of recovery

performance. See Sections 1.7 and 2.1 for more details on NIHT.

From Figures 1.1 and 1.3, we conclude that there exists a considerable gap between theo-
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Figure 1.4: Empirical phase transitions for NIHT for different problem sizes, alongside the weak
phase transition for l1-minimization (blue).

retical recovery guarantees and empirically observed performance for IHT and other algorithms

which do not rely upon l1-minimization. We can see, therefore, that the RIP is something of

a ‘blunt instrument’ when it comes to proving quantitative results in compressed sensing. It is

versatile and easy to use, but in some sense fails to capture the essence of what makes a CS

algorithm successful or otherwise. Part of the problem is that it is a worst-case technique and

is therefore limited by the (at present unknown) strong phase transition for each algorithm,

whereas we have seen that it is the average-case weak phase transition which describes the

practical behaviour of a given algorithm. In this thesis, we will obtain the first average-case

recovery guarantees for IHT and a related variant, in the form of lower bounds on a particular

kind of weak phase transition for Gaussian measurement matrices (see Chapter 5).

1.6 Algorithms for CS: a survey

In this section, we present a brief survey of the various algorithms that have been proposed for

compressed sensing. We have established that the task in CS is to recover an underlying sparse

solution from an underdetermined system of linear equations. Considering first the noiseless

case, the problem of finding the sparsest solution to the linear system is found by solving (1.4).

In this simplified case, any k-sparse solution with 2k ≤ n is also the sparsest solution, provided

the measurement matrix satisfies a somewhat mild RIP condition, which we next state.

Lemma 1.7 (Sparsest solution condition [70]). Consider Problem 1.1 and suppose that

L2k < 1 holds for the matrix A. Then x∗ is the solution to (1.4).

Proof: Let y denote the sparsest solution to b = Ax, and suppose y 6= x∗. Then ‖y‖0 ≤ k
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which implies that ‖y − x∗‖0 ≤ 2k. Applying (1.15), ‖A(y − x∗)‖ ≥ (1 − L2k)‖y − x∗‖.
Since y 6= x∗, and supposing L2k < 1, we have ‖A(y − x∗)‖ > 0. One the other hand,

A(y − x∗) = Ay −Ax∗ = b− b = 0, which is a contradiction. �

The condition L2k < 1 is equivalent to requiring that any 2k columns of A are linearly

independent. Equivalently, Donoho and Elad [70] defined the spark of a matrix as the smallest

s such that there exists a linearly dependent collection of s columns, and therefore the condition

may also be expressed as spark(A) > 2k. Provided 2k ≤ n, this condition is satisfied by a

Gaussian matrix with probability 1 [42], and also by any matrix which is in general position

(or equivalently Ln < 1). The conclusion is that it is often possible to assume, at least in

the noiseless setting, that a sparse solution is in fact the most sparse solution, thus reducing

the task of recovery to solving (1.4). For this reason, we will often assume in this thesis that

L2k < 1 holds, which we formalize as the following assumption.

Assumption 1 (2k-column linear independence). Assume that the matrix A satisfies

L2k < 1, that is, any 2k of its columns are linearly independent.

If the measurements are noisy, or if the signal is inexactly sparse, (1.4) may be infeasible,

but we can instead consider solving the problem

min
x∈RN

‖x‖0 subject to ‖Ax− b‖ ≤ σ, (1.16)

which finds the sparsest solution which satisfies the measurements to within some noise tolerance

parameter σ > 0. CS algorithms can be naturally divided into two categories: those which solve

convex relaxations in which the l0-norm in (1.16) is replaced with the l1-norm, and those which

solve the original problem (1.16) more directly. We will present a survey of both categories,

turning our focus first to algorithms for convex relaxation.

1.6.1 Algorithms for solving the l1 convex relaxation

First, let us make precise what we mean by the convex relaxation of (1.16). Given a function

f(x) : X → R defined on some subset X ⊆ R
N , a convex underestimator of f is a convex

function c such that c(x) ≤ f(x) for all x ∈ X. The convex envelope of f is then defined as the

convex function ĉ which is the supremum over all convex underestimators, that is

ĉ(x) := sup{c(x) : c(x) ≤ f(x) ∀ x ∈ X, c convex}.

The l1-norm can be interpreted as the convex envelope of the l0 pseudo-norm in the following

sense, where we define the infinity norm of x ∈ R
N in the usual way as ‖x‖∞ := max

1≤i≤N
|xi|.
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Lemma 1.8 (Convex envelope of the l0-norm). Let x ∈ R
N and let R > 0. Then

(1/R)‖x‖1 is the convex envelope of ‖x‖0 on the set {x : ‖x‖∞ ≤ R}.

It follows that the closest convex relaxation to (1.16) is obtained by replacing the l0-norm

with the l1-norm, thus obtaining (1.12).

Next we introduce two further convex formulations, which can be shown to be essentially

equivalent to (1.12). The first is obtained by interchanging the objective and constraint func-

tions in (1.12), to give

min
x∈RN

1

2
‖Ax− b‖2 subject to ‖x‖1 ≤ τ, (1.17)

where τ ≥ 0. One may view (1.17) as a linear least-squares problem with an l1-ball constraint.

The second formulation is the unconstrained problem

min
x∈RN

1

2
‖Ax− b‖2 + λ‖x‖1, (1.18)

where λ ≥ 0, which follows an often-used technique in optimization of removing the l1 constraint

in (1.17) and instead penalizing it in the objective. Each of the formulations (1.12), (1.17) and

(1.18) is convex but non-smooth, due to the presence of the ‖x‖1 term. However, should it be

required, it is straightforward to convert each formulation into a smooth problem by splitting

x into its positive and negative parts and introducing further non-negativity constraints, which

transforms (1.12) into a second-order cone problem (SOCP), and (1.17) and (1.18) into bound-

constrained quadratic programs (BCQPs). The following theorem establishes that the three

formulations are equivalent under an appropriate choice of parameters.

Theorem 1.9 (Equivalence of l1 formulations [147, Theorem 7]). Consider problems

(1.12), (1.17) and (1.18).

1. Given λ ≥ 0, the global solution x̂(λ) of (1.18) is also the global solution of (1.17) for

some τ ≥ 0. Conversely, given τ ≥ 0, the global solution x̂(τ) of (1.17) is also the global

solution of (1.18) for some λ ≥ 0.

2. Given λ ≥ 0, the global solution x̂(λ) of (1.18) is also the global solution of (1.12) for

some σ ≥ 0. Conversely, given σ ≥ 0, the global solution x̂(σ) of (1.12) is either x̂(σ) = 0

or else is the global solution of (1.18) for some λ ≥ 0.

Interior point methods. The advent of the interior point method (IPM) has revolutionized

large-scale convex optimization, and IPMs are now considered to be the most computationally

efficient option in many applications, especially when dimensions are large. In contrast to

many algorithms for constrained optimization which move around the boundary of the feasible

constraint set, IPMs take a path through the interior of the feasible set by solving a sequence of
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perturbed problems which converge to the original problem. As was noted in Section 1.2, the

problem (1.12) was first proposed in the context of sparse approximation by Donoho et al. in

1999 [52] under the name of Basis Pursuit De-Noising (BPDN). The authors proposed recasting

(1.12) as a perturbed linear program and using an IPM originally designed for regularized

linear programs [99]. Later, as the first results for robust CS began to appear [68, 37], Candès

and Romberg proposed l1-MAGIC [35], an IPM which solves the second-order cone problem

(SOCP) into which (1.12) can easily be recast. The authors make clear that their algorithm is

not designed to be cutting-edge, but more a proof of concept: a more computationally efficient

IPM algorithm was proposed in 2007 by Kim et al. [112], which they called l1 ls, which stands

for ‘l1-regularized least squares’. This time, (1.18) is recast as a bound-constrained quadratic

problem (BCQP), and greater computational efficiency is achieved through preconditioning.

A truncated conjugate-gradient method is used to solve the inner iterations which, like the

algorithm used in [52], allows the measurement matrix to be defined implicitly as a matrix-

vector multiplication. Many of the transforms frequently used in CS, such as the DCT or

wavelets, have fast implicit transforms, making this an important issue for any CS algorithm.

Interior point methods are likely to offer a considerable advantage over gradient-based methods

if the matrices defining the problem are ill-conditioned, and they are especially effective at

exploiting sparsity in the matrices involved. However, neither of these two features characterize

the CS problem: good CS measurement matrices are likely to be very well-conditioned and

highly dense, meaning that IPMs do not offer the same advantages for CS problems as they

often do for other problems.

Iteratively reweighted least squares (IRLS). In IRLS, a sequence of l2-regularized least-

squares problems are solved in which the l1-term in (1.18) is replaced by a weighted l2-norm

term which is designed to converge to the l1-norm as the algorithm progresses. In each iteration,

a least-squares fit must be solved which involves the inversion of the full measurement matrix A,

which unfortunately makes the computational cost somewhat high. IRLS for l1-minimization is

one of a more general family of methods, which date back to the work of Lawson in 1961 [116].

The first IRLS methods for l1-minimization were developed in the 1970s, and it was first pro-

posed as an algorithm for sparse approximation by Gorodnitsky and Rao in 1997 [101], under

the name FOCUSS (Focal Underdetermined System Solver). Interest in IRLS was renewed

with the advent of CS, and a new weighting scheme was proposed in 2008 [49] by Chartrand

and Yin, which led to an improvement in performance, and for which Daubechies et al. [61]

obtained theoretical recovery guarantees using the RIP. Wipf and Nagarajan [160] proposed a

new non-separable weighting scheme in 2010.

Stagewise pivoting. In statistical regression, (1.18) was proposed for the overdetermined

case in 1996 by Tibshirani [151] as a technique for sparse linear regression, and was referred to
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as Least Absolute Shrinkage and Selection (LASSO). In this context, Osborne et al. proposed

an algorithm called Homotopy in 2000 [132] which exploits the fact that the solution to (1.18)

is piecewise-linear as a function of λ. Starting with the solution at λ = 0 (which is just the

zero vector), the next value of λ at which the support set of the solution changes is located at

each stage, and the least-squares solution on the current support is then implicitly calculated

by updating a QR factorization. Later, a version of Homotopy adapted to the underdetermined

setting of CS was proposed in [121]. In 2004, Efron et al. proposed a similar algorithm, called

Least Angle Regression (LARS) [86], which approximates the solution path of (1.18) by a series

of greedy updates. In fact, LARS may be viewed as an l1 counterpart of the greedy OMP

algorithm which was encountered in Sections 1.2 and 1.4.2.

Gradient methods. By far the most popular approach to l1-minimization problems in CS is

to use a gradient method, a wide selection of which are now available. In a gradient method, the

competing goals of satisfying the measurements and maintaining sparsity are separated from

each other and performed sequentially, with the algorithm alternating between gradient steps

to fit the linear system, and projection or shrinkage steps to drive down the l1-norm. This is an

attractive approach since projection onto the l1-ball can be accomplished by a straightforward

component-wise shrinkage operation often referred to as the soft threshold. More precisely,

writing Sτ (x) for the projection of x ∈ R
N onto the l1-ball of radius τ for some τ ≥ 0, namely

Sτ (x) := min
y∈RN

‖y − x‖ subject to ‖y‖1 ≤ τ,

then Sτ (x) is also the solution to the unconstrained problem

min
y∈RN

1

2
‖y − x‖2 + λ‖y‖1,

for some λ ≥ 0, which has the closed-form solution

{Sτ (x)}i = sgn(xi) · min(|xi| − λ, 0) for all i = 1, 2, . . . , N.

The designation ‘soft’ distinguishes the operation from the nonconvex hard threshold which

projects onto the l0-ball, see Section 1.7.

The most computationally expensive steps in a typical gradient method are the matrix-

vector products required to perform the gradient step, and the soft threshold projections. By

contrast, other algorithms for l1-minimization require the repeated solution of large system

of equations and the equivalent inversion of a matrix (for example, IPMs and IRLS), or the

repeated updating of matrix factorizations (for example, stagewise pivoting methods). For this

reason, gradient methods are often viewed as the most computationally efficient algorithms for

l1-minimization. They are, however, especially sensitive to the conditioning of the measurement
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matrix; although we have seen that CS measurement matrices are often very well conditioned.

Also applicable is the more general point that faster implementations are possible by making

use of transform matrices for which implicit matrix-vector products are available.

A number of iterative soft thresholding (IST) methods have been proposed for the uncon-

strained problem (1.18) in recent years, masquerading under the various names of iterative

thresholding [60], forward-backward splitting [54], fixed-point iteration [106] and sparse recon-

struction by separable approximation (SpaRSA) [161], with the algorithm being first developed

in 2003 as a specific case of an expectation-maximization (EM) algorithm for Bayesian image

reconstruction [90]. Standard convergence results for these methods require small gradient steps

to be taken, whereas optimal performance is often attained by taking much larger steps, such as

the Barzilai-Borwein criterion, for example in [161]. Two-stage enhancements to these standard

IST methods have also been proposed, in which use is made of information from the previous two

iterations. Faster empirical performance is reported for TwIST (two-step IST) [15], and a faster

rate of global convergence is both proved and observed for FISTA (fast IST algorithm) [11],

which relies upon recent work on optimal gradient methods in [129]. Most recently, a two-stage

soft thresholding algorithm called Approximate Message Passing (AMP), inspired by ideas from

belief propagation in graphical models, was proposed in [73]. Empirical phase transitions were

obtained for AMP, which were in close agreement with those for l1-l0 equivalence, suggesting

that the algorithm has optimal recovery performance for an l1 algorithm. These empirical

findings were followed by a proof in [10] that, in the proportional-dimensional framework for

Gaussian matrices, AMP converges to the solution of (1.18) in the high-dimensional limit.

Not all gradient methods for CS solve the formulation (1.18) however: SPGL1 [157], which

is also based on soft thresholding, instead solves (1.17) by gradient projection, and connections

between the solutions of (1.17) and (1.12) are also exploited to embed the algorithm within a

scalar equation solver which enables the solution of (1.12). There also exist gradient methods

which take an entirely different approach to soft thresholding: NESTA [12] (named after Nes-

terov) makes use of optimal gradient ideas from [129], but solves instead the formulation (1.12).

Meanwhile, GPSR (gradient projection for sparse reconstruction) [91] is a gradient projection

algorithm which solves the smooth reformulation of (1.18) as a bound-constrained quadratic

program (BCQP), by splitting the variables into their positive and negative parts.

1.6.2 Alternatives to l1-minimization

lp-relaxation. The lp-norm for p ≥ 1 of a vector x ∈ R
N is defined as

‖x‖p :=

(

N
∑

i=1

|xi|p
)

1
p

, (1.19)
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where the l1-norm is recovered by setting p = 1 in (1.19). One may also extend the definition to

any 0 < p < 1, although the resulting function is no longer a norm. However, it is well-known

that minimizing the lp-‘norm’ also promotes sparsity, and another possible approach to CS

recovery is to solve the nonconvex problem

min
x∈RN

1

2
‖Ax− b‖2 + λ‖x‖p, (1.20)

or a related variant. Furthermore, certain recovery results for arbitrary measurement matrices

have also been improved by switching from l1 to lp: In 2007, Chartrand [45] generalized an

RIP condition for l1-l0 equivalence of Candès et al. [38] to the general case of lp-l0 equiva-

lence, obtaining a condition that weakens as p decreases. Shortly afterwards, Chartrand and

Staneva [48] proved that Gaussian matrices satisfy the RIP condition in [45] with overwhelming

probability provided the number of measurements satisfies

n ≥ C1(p) · k + p · C2(p) · k log

(

N

k

)

,

where C1(p) and C2(p) are bounded functions of p in 0 < p ≤ 1.

Quasi-Newton methods [45] have been proposed for (1.20), while in addition the IRLS [49]

and iterative shrinkage [47] techniques for l1-minimization have been extended to the lp setting.

However, due to (1.20) being nonconvex, these algorithms are not guaranteed to find its global

minimizer, but only a local minimizer. On the other hand, numerical experiments in [45, 49, 47]

suggest that the global solution is often obtained, and that an improvement in empirical recovery

performance is observed for the algorithms in question as one decreases p towards zero. However,

there is no evidence that there exists an algorithm for lp-minimization with superior recovery

performance to optimal algorithms for l1-minimization.

Greedy algorithms. We have already met the greedy LARS [86] algorithm in the l1 set-

ting. However, most greedy algorithms for CS are designed to directly solve the l0-constrained

problem

min
x∈RN

1

2
‖Ax− b‖2 subject to ‖x‖0 ≤ k, (1.21)

where k is a positive integer sparsity parameter. The problem (1.21) will be the one of most

interest in this thesis, and for this reason we will simply refer to it from now onwards as the

l0-problem. Greedy algorithms for l0, often referred to as matching pursuits, approximate the

solution path x̂(k) of (1.21) by means of a sequence of local updates in which the sparsity of the

solution is gradually increased. Or viewed another way, matching pursuits seek to gradually

identify the support set of the signal. In a typical greedy algorithm, new support set elements

are usually selected according to the gradient information of the current iterate, and the least-

squares solution on the new support is either calculated explicity, or implicitly by updating a
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QR factorization.

Matching pursuit algorithms were first used in statistical regression, and can be traced back

as far as 1960 [87]. Mallat and Zhang [124] proposed the first such algorithm in a signal pro-

cessing context in 1993, which they simply referred to as Matching Pursuit (MP), though it

had been known to the statistics community for some time previously as Projection Pursuit Re-

gression [95]. The better-performing but more computationally expensive Orthogonal Matching

Pursuit (OMP) soon followed, originally proposed in [51] and introduced to the signal processing

community by [62], see also theoretical results for OMP in Section 1.4.2. Blumensath and Davies

later proposed a truncated conjugate gradient algorithm in [22] for approximating the least-

squares projections, thus reducing computational expense. Other algorithms extended OMP by

allowing several elements to be selected in each iteration, most notably Stagewise Orthogonal

Matching Pursuit (StOMP) [80], Regularized Orthogonal Matching Pursuit (ROMP) [128] and

Stagewise Weak Orthogonal Matching Pursuit (SWOMP) [25].

Later support identification algorithms were proposed which do not build up the solution in

a stagewise manner, but instead maintain a support set of size k which is repeatedly both added

to and pruned back. Algorithms in this category are Compressive Sampling Matching Pursuit

(CoSaMP) [127] and Subspace Pursuit (SP) [56], see Section 1.5 for recovery guarantees and

phase transitions for Gaussian matrices. Since least-squares projections are performed both

after adding to and pruning back the support set, these algorithms have been referred to as

two-stage pursuit algorithms [72]. Various alterations to OMP and two-stage pursuits continue

appear, for example Cycling Matching Pursuit [145], Stepwise Optimal Subspace Pursuit [158],

OMP with Replacement (OMPR) [109] and A* OMP [110].

1.7 Iterative Hard Thresholding

Iterative Hard Thresholding (IHT) is a gradient projection method for (1.21). A gradient

projection method can be applied to any problem of the form

min
x∈RN

f(x) subject to x ∈ F,

where f(x) is differentiable, and where the Euclidean projection onto F exists, is well-defined

and can be computed. In each iteration of a gradient projection algorithm, one takes a step

in the direction of instantaneous steepest descent, namely the negative gradient of f(x) at the

current iterate, before projecting back onto the feasible set F , namely

xm+1 := PF {xm − αm∇f(xm)}, (1.22)
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where we define the Euclidean projection onto the set F as

PF (x) = arg min
z∈RN

‖z − x‖ subject to z ∈ F, (1.23)

and where αm is a (possibly variable) stepsize.

In the context of the l0-problem, writing

Ψ(x) :=
1

2
‖b−Ax‖2 (1.24)

for the objective function of (1.21), we have ∇Ψ(x) = −AT (b−Ax). Meanwhile, if the feasible

set is the nonconvex set of k-sparse vectors in R
N , then the projection in (1.23), which we

denote by Hk(·), is often referred to in the signal processing community as the hard threshold

operator, defined to be

Hk(x) = arg min
‖z‖0≤k

‖z − x‖. (1.25)

As the name suggests, Hk(·) may also be viewed as a thresholding operator which keeps the

k largest in magnitude coefficients of a vector while setting the rest to zero, as the following

lemma establishes. We will assume that, if the kth and (k+1)th entries are of equal magnitude,

some predefined ordering is used to determine the kth largest magnitude.

Lemma 1.10 (Equivalence of the hard threshold and l0 projection). Let Hk(·) be

defined as in (1.25). Then

{Hk(x)}i :=







xi i ∈ Γ

0 i /∈ Γ
where Γ := {indices of the k largest in magnitude entries of x}.

(1.26)

Proof: Let ‖z‖0 ≤ k and let supp(z) = Γ, so that |Γ| ≤ k. Then

‖z − x‖2 = ‖(z − x)Γ‖2
+ ‖xΓC‖2

,

and ‖(z − x)Γ‖2
is minimized by setting zi = xi for all i ∈ Γ. Meanwhile, ‖xΓC‖ is minimized

by choosing Γ to be the set corresponding to the k largest in magnitude coefficients of x. �

Applying (1.22) to (1.21), using (1.25), gives the generic IHT iteration

xm+1 := Hk{xm + αmAT (b−Axm)}. (1.27)

Tracing the algorithm’s history, gradient projection algorithms were first proposed by Gold-

stein in 1964 [100], thus extending the steepest descent method for unconstrained optimization,

first used as far back as 1847 by Cauchy [44], to the setting of constrained optimization. Due
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to a seminal paper by Landweber in 1951 [114], gradient projection methods became known as

projected Landweber algorithms in the signal processing community in the 1990s, although the

constraint set in question was usually convex, see for example [135].

A method very similar to IHT was proposed by Herrity et al. in 2006 [107], where a hard

threshold in which all coefficients with absolute value above some fixed value are kept in each

iteration. Interestingly, this method is in fact a counterpart to the IST method for (1.18)

in the l1 setting, which uses the soft threshold, see section 1.6.1. In 2008, Blumensath and

Davies [26] proposed IHT with unit stepsize as a variant of the algorithm in [107] in which

exactly k nonzero coefficient are retained by the hard threshold in each iteration, for some fixed

sparsity parameter k. The authors also proved convergence of the algorithm under the somewhat

restrictive condition that the spectral norm of the matrix is less than 1. In 2009, Blumensath

and Davies proposed IHT in the context of CS [23], proving recovery of sparse signals, and

stable recovery of compressible signals from noisy measurements, provided A satisfies the RIP

condition R2k < 1/
√

8. By analysing this condition in the proportional-dimensional asymptotic

for Gaussian matrices, Blanchard et al. [17] derived a lower bound on the strong phase transition

for IHT (see Section 1.5 for further elaboration).

In [27], Blumensath and Davies proposed a variant with variable stepsize, which they termed

Normalised Iterative Hard Thresholding (NIHT). In NIHT, αm is chosen to give the maximum

possible decrease in the objective function of (1.21) in the case that the support set remains

unchanged, with a backtracking strategy used to ensure sufficient decrease in the case of a

change in support. The authors prove that NIHT is guaranteed to always converge, and they

also give an RIP condition guaranteeing the convergence of NIHT to the underlying signal x.

These results highlight the important issue that a recovery algorithm may converge, but to an

undesired solution: in particular, algorithms for nonconvex optimization often converge to local

minima, but not necessarily to the global minimum.

Several improvements to the first RIP result for constant stepsize IHT in [23] have since

appeared: Garg and Khandekar [96] obtained R2k < 1/3 for a constant stepsize of α := 1/(1 +

U2k). More recently, Foucart obtained R3k < 1/2 [92], and subsequently R3k < 1/
√

3 [93],

both for unit stepsize. See Chapter 2 for an analysis of the current best RIP conditions for

IHT and NIHT within the same phase transition framework used in [17]. The point was made

in Section 1.5 that the earliest RIP-based recovery guarantee for IHT leads to pessimistic

quantitative predictions concerning the degree of undersampling permitted by the algorithm in

the case of Gaussian matrices, and we will show that the same is true for these more recent

RIP conditions in Chapter 2.

We conclude this section by making the important observation that, since IHT algorithms are

gradient projection algorithms, they share many similarities with the gradient-based algorithms

for l1-minimization which were surveyed in Section 1.6.1 and which are frequently used by

practitioners. In particular, each iteration of an IHT algorithm requires only a handful of
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matrix-vector products and a hard threshold projection, and so the computational cost for IHT

is similar to that for l1-based gradient methods.

1.8 Beyond sparsity: background

We have seen that what enables the recovery of signals from undersampled linear measure-

ments is the use of the prior assumption that the signal is sparse in some basis. Sometimes,

however, a more refined signal model is more appropriate. For example, in image compression,

the JPEG2000 standard exploits the fact that the values and locations of wavelet coefficients of

natural images tend to have a particular structure. From the point of view of signal recovery, it

may be vital to consider a more refined model in order to obtain a sensible solution. Further-

more, because a structured sparsity model represents more prior information about the signal,

recovery is often possible from a reduced number of measurements.

Nonnegativity and other additional constraints. The use of additional assumptions in

sparse inverse problems certainly did not originate with CS. Even as far back as 1907, a result

of Carathéodory [40, 41] implies that the assumption of nonnegativity can dramatically reduce

the number of measurements needed to recover a signal which has a sparse Fourier transform:

provided the nonzero Fourier coefficients are positive, n = 2k+ 1 equally-spaced measurements

uniquely determines the signal.

The first theoretical CS results for the case of nonnegative coefficients were obtained in 2005

by Donoho and Tanner [75, 76]. The authors showed in [75] that l1-l0 equivalence for nonnega-

tive signals is equivalent to k-neighbourliness of the projected nonnegatively-constrained l1-ball,

which is in fact another regular polytope, the simplex. We recall from Section 1.5 that both

a strong and weak notion of neighbourliness can be considered, where strong neighbourliness

means that all k-faces survive projection and weak neighbourliness means that the majority

of k-faces survive projection. In the same proportional-dimensional asymptotic with which

we are now familiar, Vershik and Sporyshev derived the weak phase transition ρ̂+
W (δ) for the

simplex way back in 1992 [159], without appreciating its implication for l1-l0 equivalence at

the time. The authors of [76] also derived a strong neighbourliness threshold ρ̂+
S (δ), which the

authors went on to show to be a sharp phase transition in [77]. These results, valid for random

orthogonal or Gaussian measurement matrices, establish precise quantitative limits on under-

sampling for nonnegative signals. Both phase transitions are higher than the respective phase

transitions for the unconstrained case, which implies that fewer measurements need to be taken,

which is entirely as expected given that the nonnegativity constraint represents additional prior

information about the signal.

In [79], the same authors analyzed the neighbourliness of the positive orthant {x ∈ R
N : x ≥

0} when projected by means of a matrix which is in general position and has centrosymmetric ex-
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changeable columns almost surely, and derived phase transitions in the (δ, ρ)-plane below which

a system of linear equations has a unique solution under nonnegativity constraints – namely the

original sparse nonnegative solution x∗ from which the measurements were generated. Notably,

these results apply not just to Gaussian matrices, but to a wide range of matrices satisfying

the above assumptions. Results were also obtained for the hypercube {x ∈ R
N : 0 ≤ x ≤ 1},

under the assumption that the projection matrix is in general position. Within these regions

of phase space, therefore, signals with nonnegativity or box constraints can be recovered using

any algorithm capable of generating a feasible point of the problem.

Block sparsity. In the decade prior to the emergence of CS, techniques were already being

developed for recovering signals in which the locations of the nonzero coefficients have a partic-

ular structure. For example, motivated by an application in brain imaging, Rao [137] proposed

a variant of the IRLS algorithm FOCUSS [101] in 1996 which was adapted to recover block-

sparse signals, in which the nonzero coefficients cluster together in blocks. Around the time

that CS was emerging, various extensions of existing algorithms for CS with simple sparsity

were proposed for recovering block-sparse signals, including a variant of basis pursuit in which

the l1 vector norm is replaced with the mixed lp/l1 norm for some p > 0 [146, 55], and the

simultaneous OMP (S-OMP) algorithm [155]. Tropp [155, 156], Chen and Huo [50] and Eldar

et al. [88] extended existing coherence-based recovery conditions for basis pursuit and OMP,

obtaining improved recovery guarantees for their respective block-sparse variants.

In 2008, Eldar and Mishali introduced the concept of block-RIP [89], in which RIP bounds

are only required to hold for vectors with valid supports under the block-sparse model. The

authors showed that robust recovery by l2/l1-minimization is guaranteed under the same RIP

condition as in [32], where standard RIP constants are replaced by their block-based equivalents.

Furthermore, it is shown that the number of measurements needed to guarantee recovery from

random measurements (i.i.d. subgaussian entries) satisfies

n = O
[

k +
k

J
log

(

N

k

)]

, (1.28)

where J is the number of blocks in the signal model. The reason that it is possible to obtain

improved results is that RIP bounds are now only required to hold for vectors with certain

supports, namely those which satisfy the block-sparsity model. This result suggests that l2/l1-

minimization might boast an improved recovery phase transition over l1-minimization in the

(δ, ρ) proportional-growth asymptotic. In this respect, Stojnic et al. [143] showed that, given

τ > 0, for fixed J satisfying J > 1/(1 − δ) and J > log(1/τ)/τ , a lower bound on the strong

phase transition is given by ρ̂S(δ) = 1/2 − τ . Since ρ < 1/2 is required to ensure a unique

solution to the system of equations (see Lemma 1.7), this means that the highest possible strong

phase transition is achieved provided the size of the blocks is suitably large.
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In 2010, Baraniuk et al. proposed and analysed algorithms within a general model-based

framework for structured sparsity [7]. It is observed that any CS algorithm which uses hard

threshold operations to perform sparse projections may be mutated into an algorithm for struc-

tured sparse recovery by replacing the hard threshold with the projection onto the feasible

set for the model. Based upon this observation, the authors proposed block-based versions of

CoSaMP [127] and IHT [26]. The authors obtain recovery guarantees for these algorithms by

substituting block-based RIP constants into the same RIP conditions previously given for the

case of simple sparsity [92, 93]. The authors also extend their results to signals which only ap-

proximately fit the structured sparsity model. For random matrices with subgaussian entries, it

follows that recovery is guaranteed for both algorithms provided the number of measurements

satisfies (1.28).

Other refined sparsity models. This thesis will address another form of structured sparsity:

tree-based models, to which we devote Section 1.9. We have sought to describe the refinements to

simple sparsity which have been the subject of most research attention, and for which improved

theoretical results have been obtained. Mention should also be given to the recent work by

Duarte et al. on spectral compressive sensing [81], where signals are modelled as sparse in

the Fourier domain, with the additional restriction that selected basis vectors are sufficiently

uncorrelated. In a different direction, a weighted l1-minimization method has been proposed

by Khajehnejad et al. [111] for recovering signals with nonuniform sparsity, where coefficients

are assigned different prior probabilities of being nonzero. Research into more refined sparsity

models is likely to continue to be driven by the widely varying needs of practitioners. We have

concentrated on refinements to sparsity models, but it should also be added that other models

of low signal information content exist. In particular, there has been an explosion of interest in

modelling signals as low-rank matrices [34] in the last five years, an emerging area of research

with many connections to CS theory.

1.9 Tree-based models for CS

The advent of the wavelet transform in the 1980s has undoubtedly revolutionized signal pro-

cessing. In particular, it is now well-known that wavelets provide sparse representations for

piecewise-smooth signals [123]. They are widely used in many applications, especially in im-

age processing, and they provide the basis for the JPEG-2000 compression standard [141].

Wavelet coefficients have a multiscale tree structure, in which each coefficient has a single ‘par-

ent’ coefficient and a small number of ‘children’ coefficients. Furthermore, wavelets coefficient

tend to exhibit the property of persistence across scales, meaning that large coefficients tend

to be propagated down branches of the tree. It follows that the large wavelet coefficients of

piecewise-smooth signals can often be effectively modelled as forming a connected subtree.
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Tree-based sparsity models have been extensively used in the signal processing community

ever since they were first proposed in the context of wavelet compression [140]. CS algorithms

adapted to tree-based models began to appear in 2005, with Duarte et al. proposing variants of

MP and OMP [83], and La and Do proposing a variant of OMP [113]. These algorithms build

up the support set of the signal in a greedy manner, using gradient information to select new

coefficients, while ensuring that the support set remains a connected subtree at each iteration.

In [84], a weighted l1-minimization strategy was proposed, in which tree-structure dependencies

are enforced by means of a weighting scheme based on a Hidden Markov Tree (HMT) model.

In [24], Blumensath and Davies considered a more general model of finite-dimensional unions

of subspaces which includes a variety of structured sparsity models, including the tree-based

model. A variant of IHT [26] was proposed in which the hard threshold projection Hk is replaced

by the projection onto the appropriate union of subspaces. The authors also introduced the

model-based RIP, showing that any existing RIP condition guaranteeing recovery using IHT [26]

also holds for the model-based version of IHT, upon the substitution of model-based RIP

constants into the condition. Moreover, they argued that such results represent a qualitative

improvement since the model imposes a restriction on the number of permissible support sets.

Tree-based models were also considered within a general model-based framework by Bara-

niuk et al. in [7] (see Section 1.8). Variants of IHT and CoSaMP [127] were considered in which

Hk is replaced by the projection onto the set of vectors supported on connected subtrees of

cardinality k. Under the assumption that the projection is computed exactly, explicit robust

recovery conditions for both algorithms were obtained in terms of the tree-based RIP. In fact, it

follows from their analysis that any RIP conditions for recovery using these algorithms can be

extended in this way, including the state-of-the-art results at the time of writing in [93] and [92].

It is observed that tree-based RIP is not sufficient to ensure that the results extend to signals

which are only approximately tree-sparse, but it is shown that the results can be extended in

this way provided the measurement matrix satisfies a certain Restricted Amplification Property

(RAmP). For random matrices with subgaussian entries, it is proved that both tree-based RIP

and the RAmP hold, and therefore recovery is guaranteed for both algorithms, with overwhelm-

ing probability provided the number of measurements satisfies n = O(k). Comparing this result

with (1.9), we observe an improvement in the form of the removal of the log-factor. In the phase

transition framework, the result also suggests that recovery is asymptotically determined by the

oversampling factor ρ = k/n alone, and not by the undersampling factor δ = n/N . However,

the result exhibits the same ambiguity that was observed in Section 1.4: it is equally computa-

tionally intractable to calculate tree-based RIP constants, leaving unanswered the quantitative

question as to the constant of proportionality involved.

In addition to IHT for standard CS, this thesis focusses upon its tree-based variant just

described, which we will refer to as Iterative Tree Projection (ITP). The algorithm differs from
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IHT only in the projection, so that one proceeds by means of the iteration

xm+1 := Pk{xm + αmAT (b−Axm)}, (1.29)

where Pk(·) is the Euclidean projection onto the set of vectors supported on connected trees

of cardinality k. See Section 6.2 for a more precise definition of Pk(·) in the context of dyadic

wavelet trees. ITP may be viewed as a gradient projection algorithm for the tree-based l0-

problem

min
x∈RN

Ψ(x) subject to x ∈ Tk, (1.30)

where Ψ(·) is defined in (1.24).

The results in [7] make the assumption that it is possible to perform the exact tree pro-

jection Pk(·). Various strategies exist for approximately computing this projection, including

the Condensing Sort and Select Algorithm (CSSA) [8] and an approach based upon Lagrangian

relaxation [63, 69]. However, to the best of our knowledge, no algorithm with sub-exponential

complexity has been shown to exactly perform tree projection for a given sparsity k.

1.10 Outline and contribution of the thesis

In Chapter 2, we first bring the quantitative analysis of RIP conditions for IHT algorithms up

to date, by quantifying the current state-of-the-art RIP conditions for IHT [93] in the phase

transition framework for Gaussian measurement matrices, and by obtaining the first such phase

transition for the variable stepsize variant NIHT. We show that, while there is an improvement in

the phase transition for IHT, the results are still pessimistic compared to average-case behaviour,

and especially so for NIHT. The chapter concludes with some considerations on the choice of

support sizes in RIP conditions.

RIP analysis is by nature worst-case analysis and results are therefore limited by the strong

phase transition. In contrast, we have seen in Section 1.5 that it is the weak phase transition

which captures the average-case, practical case of interest. The main contribution of this thesis

is to pioneer of a new method of recovery analysis which leads to average-case recovery guar-

antees and lower bounds on a particular kind of weak phase transition for the case of Gaussian

matrices. By making the realistic assumption that the original signal and measurement ma-

trix are independent, we derive phase transitions for both IHT and NIHT which more closely

describe the true performance of the algorithm.

In Chapter 3, we first present our new analysis in the more general context of arbitrary

measurement matrices. Our approach, in contrast to previous RIP-based analysis [23, 96, 92,

93, 27], considers the fixed points of IHT. We derive necessary conditions for IHT to have a fixed

point on a given support set, and we prove convergence of IHT to some fixed point under an
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RIP condition significantly weaker than those that have appeared previously. We also extend

our analysis to the variable step-size NIHT by generalizing the notion of a fixed point to a

stable point. While our main aim is to obtain average-case recovery guarantees, for the sake

of comparison we conclude the chapter by translating our stable point analysis into worst-case

RIP-based recovery conditions for both IHT and NIHT.

Under the assumption of independence between the original signal and measurement matrix,

the necessary conditions for a stable point derived in Chapter 3 turn out to be especially

amenable to probabilistic analysis in the case of Gaussian measurement matrices. To perform

this analysis, we require some results concerning distributions of certain Rayleigh quotients,

and large deviations results for certain Gaussian-related random variables in the proportional-

dimensional asymptotic introduced in Section 1.5, and we develop these tools in Chapter 4.

We begin Chapter 5 by quantifying in the phase transition framework the worst-case RIP-

based recovery conditions derived from our stable point analysis in Chapter 3, and by motivating

the need for average-case analysis. We then apply the probabilistic tools developed in Chapter 4

to the conditions derived in Chapter 3, obtaining lower bounds on a weak phase transition guar-

anteeing exact recovery of the original signal in the case of noiseless measurements and exactly

sparse signals. We also extend our results to the more realistic model of noisy measurements

and compressible signals, showing that the same phase transition guarantees convergence to

a stable point which approximates the original signal within some error tolerance, which we

quantify as a multiple of the unrecoverable energy due to compression error and measurement

noise.

Chapters 6 and 7 extend our recovery analysis of Chapters 3, 4 and 5 to the tree-based

setting and ITP algorithms. Our recovery results, in common with previous RIP-based re-

sults [24, 7], require that the tree projection in ITP be performed exactly. However, we noted

in Section 1.9 that currently available algorithms are only guaranteed to approximately calcu-

late a tree projection for a given sparsity [8, 63, 69]. In Chapter 6, after first giving a more

technical introduction to the tree-based signal model and the ITP algorithm, we propose a dy-

namic programming (DP) algorithm which is guaranteed to perform an exact tree projection,

and we also prove that it has low-order polynomial complexity. We then adapt the stable point

analysis of Chapter 3 for arbitrary matrices to ITP algorithms.

In Chapter 7, we build upon the stable point analysis of Chapter 6 to obtain quantitative

recovery results for ITP algorithms in the context of Gaussian measurement matrices. Since

the number of permissible support sets is much reduced in the tree-based model, tighter tail

bound results are derived in which there is no dependence upon the δ variable. This allows

us to obtain results in a simplified proportional-dimensional asymptotic in which we entirely

dispense with the δ variable. We derive critical oversampling thresholds ρ̂, such that recovery is

guaranteed provided ρ < ρ̂. These results give a significant improvement upon those for simple

sparsity and IHT algorithms.
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Chapter 8 gives final conclusions and potential related research directions for the future.

To summarize, the contributions of this thesis are as follows.

• We quantify existing state-of-the-art RIP-based recovery analysis of IHT algorithms in the

context of Gaussian measurement matrices by means of the phase transition framework.

Our analysis leads to the highest known lower bound on the strong phase transition for

recovery using IHT (Chapter 2).

• We introduce an entirely new recovery analysis of IHT algorithms which considers the

fixed or stable points of the algorithms. We derive from our analysis new RIP conditions

guaranteeing robust recovery. We quantify these recovery conditions by means of the

phase transition framework for Gaussian matrices, and in doing so obtain the highest

known lower bound on the strong phase transition for recovery using NIHT (Chapter 3).

• We obtain the first quantitative average-case recovery guarantees for IHT algorithms in

the phase transition framework for Gaussian matrices. We give lower bounds on a par-

ticular kind of weak phase transition for recovery using IHT and NIHT, which assumes

independence between the signal and measurement matrix. We obtain significant im-

provements upon the best RIP-based phase transitions for both algorithm variants. Our

results consider the realistic model of noisy measurements and inexactly sparse signals,

guaranteeing an improved robustness to these inaccuracies. Our results narrow the gap

between worst-case recovery guarantees and average-case performance of IHT algorithms

(Chapters 4 and 5).

• We extend our recovery analysis to ITP algorithms, the tree-based mutations of IHT

algorithms, with the same stepsize schemes (ITP and NITP). We obtain quantitative

average-case recovery guarantees for Gaussian matrices by introducing a simplified asymp-

totic framework. This is the first time that recovery guarantees for a tree-based algorithm

have been quantified in this way (Chapters 6 and 7).

• We propose a dynamic programming (DP) algorithm for exact tree projection. We also

prove that our algorithm has low-order polynomial complexity (in fact O(Nk) for binary

tree structures), making it the first algorithm with sub-exponential complexity guaranteed

to perform an exact tree projection (Chapter 6).

1.11 An illustration: the single-pixel camera

As an illustration, we conclude this first chapter by describing one particular example of an

application of Compressed Sensing in the context of imaging. In 2008, Duarte et al. [82]

proposed a new design for a camera which exploits CS theory. In contrast to a conventional

camera which would have a vast array of photon detectors – one for each pixel – the single-pixel
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camera is so-called because it uses only a single photon detector or ‘pixel’. The incident light

field is directed onto a Digital Micromirror Device (DMD) which consists of an array of tiny

mirrors, one corresponding to each pixel. Each mirror can be oriented in one of two directions:

the ‘on’ position directs the light for that pixel towards the single detector, while the ‘off’

position directs the light away from the detector. The light from all the pixels set to the ‘on’

position is then summed and a measurement is recorded as an output voltage on the photon

detector. The measurement is then subsequently digitized. A series of measurements can be

obtained by flipping the mirrors and repeating the process a number of times. See Figure 1.5

for a diagram of the camera design.

Figure 1.5: A schematic diagram of the Rice CS single-pixel camera.

The concept of a single-pixel camera is not a new one, and it fits into the broad category

of multiplexing imaging methods in which a series of consecutive measurements are made by

a single detector. What sets the CS single-pixel camera model apart is a novel sampling

approach which means that it is possible to take fewer measurements. It therefore offers an

alternative approach to obtaining compressed images: rather than taking a full set of samples

and subsequently compressing, compressed samples are acquired in the first place. To achieve

this, CS theory motivates the use of a random sampling procedure in which each mirror is set

randomly to either the ‘on’ or ‘off’ position with equal probability.

Modelling the incident light field as a discrete pixelated array consisting of N pixels, we

may also represent this ‘original image’ as a vector z∗ ∈ R
N . By means of the DMD, the light
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from all the pixels set to the ‘on’ position is summed to give a single measurement. We may

model this summation as an inner product of the original image z with some vector φi ∈ R
N

consisting of random ones and zeros. Sampling error is likely to occur, particularly as a result

of photon counting noise, and subsequently due to quantization error in the digitization, which

may be modelled as additive noise. We may therefore write

bi = φT
i z

∗ + ei.

In keeping with the CS ethos, we choose to undersample the image and take n such measure-

ments, where n ≪ N . Writing Φ for the n × N matrix whose rows are the vectors {φT
i }, we

may represent the entire measurement process by the matrix equation (1.6). In this case, the

matrix Φ is a random Bernoulli matrix consisting of equiprobable ones and zeros.

We note that the sampling model here described fits precisely into the general framework

of undersampled linear measurements introduced in Section 1.3. Furthermore, many images

are compressible in some appropriate transform basis, such as a wavelet basis, and so it is

quite realistic to assume that the image in question may be compressible. The single-pixel

camera therefore represents a very natural application of CS theory. Furthermore, if an image

is compressible using a wavelet transform, it is also likely that its wavelet coefficients have

a rooted tree structure, which suggests that improved recovery may be possible by using a

tree-based recovery algorithm.

During the 2nd year of my PhD studies, I undertook an internship in the defence technology

company SELEX Galileo Ltd. The aim of the project [149, 150] was to explore the potential

of the single-pixel camera by building a computer model of the camera design, incorporating

several CS recovery algorithms, and subjecting the model to extensive numerical testing. The

final model offered a variety of choices for the measurement scheme (including Bernoulli matrices

and Gaussian matrices), the sparsifying transform (including several commonly-used wavelet

transforms) and also the recovery algorithm. Three CS recovery algorithms were tested, two of

which are the subject of recovery analysis in this thesis: NIHT [27] (see Sections 1.7 and 2.1) and

its tree-based variant normalised ITP [7] (see Sections 1.9 and 6.1). Tests were also carried out

upon a gradient projection method for l1-minimization, based upon the SPGL1 method [157]

(see Section 1.6), which we refer to as l1-projection.

Reflecting the phase transition framework with which we are now familiar, there are two

parameters which the user is free to vary: the undersampling ratio δ = n/N and the algorithm’s

tuning parameter. For NIHT and NITP, the tuning parameter is simply the assumed sparsity

of the image, whereas for l1-projection the tuning parameter τ similarly constrains the sparsity

of the algorithm’s output. We report here the results of systematic testing throughout this two-

dimensional parameter space, which may be instructively compared with the phase transitions

from Section 1.5. Recovery of a test image by each of the three algorithms was tested by
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means of multiple trials on a mesh of equally-spaced grid points in the parameter space. In the

experiments which we report here, the measurement scheme was a close variant of the Bernoulli

sampling scheme in which each entry of the measurement matrix is ±1 with equal probability,

and Daubechies 9-7 wavelets [59] – on which the JPEG2000 compression standard is partly

based [141] – were used as the sparsifying transform.

Figure 1.6 gives plots of recovery accuracy in the form of the root mean-squared error

(RMSE) of the algorithm output in relation to the original image data used to generate the

measurements. We observe an optimal tuning behaviour, namely that for a given undersampling

ratio δ, there exists some value of the respective tuning parameters which minimize the RMSE.

Underlying phase transitions provide the explanation for the optimal tuning behaviour: below

the optimal tuning curve, the algorithm has good recovery performance, meaning that results

improve as the sparsity is increased; however, as the sparsity is increased such that the phase

transition is breached, recovery performance begins to deteriorate. Tracing out the optimal

tuning curve (the superimposed black curve) from right to left, we see that recovery accuracy

degrades gracefully as the image is more aggressively undersampled, and that similar recovery

performance may be observed for each of the algorithms. We wish to emphasize in particular

that NIHT and NITP, which are not based upon l1-minimization, have competitive recovery

performance with l1-projection. We also observe that the tree-based NITP gives a modest

improvement for small values of δ, with the optimal tuning curve being higher and exhibiting

less dependence upon δ, which is in keeping with the results alluded to in Section 1.9.

In conclusion, based upon my experience fully documented in [149, 150], the CS single-

pixel camera is a promising new technology, offering the potential for image recovery from

significantly fewer measurements. Furthermore, the effectiveness of CS recovery algorithms,

including NIHT and NITP, was empirically demonstrated.
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(a)

(b)

(c)

Figure 1.6: Phase plots of average RMSE for a 64x64 test image (a) l1-projection (b) NIHT (c)
NITP.
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Chapter 2

RIP-based phase transitions for IHT/NIHT

In subsequent chapters of this thesis, by introducing a new method of analysis, we will derive

lower bounds on the weak recovery phase transition for IHT [26] and its variant NIHT [27] in

the case of Gaussian matrices. In order to show that our approach leads to improved recovery

guarantees, it is necessary to compare our phase transitions with those presently obtainable

from RIP analysis. The RIP condition for IHT obtained by Blumensath and Davies in [23] was

analysed in the phase transition framework in [17] by Blanchard et al., and the resulting phase

transition was presented in Section 1.4 (see Figure 1.3). However, the RIP condition for NIHT

derived in [27] has not been analysed in the phase transition framework for Gaussian matrices.

Furthermore, since the work in [17], other RIP-based recovery conditions have been derived for

constant stepsize IHT [96, 92, 93], and these conditions must also be examined in the same

framework in order to determine the current best recovery results based upon RIP analysis.

We address both of these issues in the present chapter.1 We begin in Section 2.1 by formally

introducing the generic IHT algorithm and the IHT and NIHT stepsize schemes. Then, in

Section 2.2, we extend a recent analysis of IHT with unit stepsize and noiseless measurements

by Foucart [93] in several directions: we consider an arbitrary constant stepsize and noisy

measurements, we weaken the condition by asymmetrizing the RIP constants, and we also

extend the result to NIHT. In Section 2.3, we translate the conditions derived in Section 2.2

into the phase transition framework for Gaussian matrices, showing that the resulting phase

transitions are higher than those arising from previous analysis, including the analysis of NIHT

in [27]. We conclude the chapter with a discussion of the results in Section 2.4, and some

observations concerning support sizes of RIP constants in Section 2.5.

1Material in this chapter applies similar proof techniques to those published in [17], which was a joint
authorship with J. Blanchard, C. Cartis and J. Tanner, in order to quantify more recent RIP analysis.
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2.1 Stepsize schemes for IHT

We recall from Section 1.3 that the problem we are interested in is the recovery of a compressible

signal x∗ ∈ R
N from the noisy linear measurements b = Ax + e ∈ R

n, where A ∈ R
n×N is

the measurement matrix, and where e ∈ R
n is a noise vector. Since the signal is compressible,

it can be well-approximated by a k-sparse vector for some sparsity k, which motivates seeking

to recover the signal by solving the l0-problem (1.21). The generic family of IHT algorithms,

which solves (1.21) by gradient projection, has already been described in Section 1.7, but we

now summarize it more formally in Algorithm 2.1.

Algorithm 2.1 Generic IHT [26]

Inputs: A, b, k.
Initialize x0 = 0, m = 0.
While some termination criterion is not satisfied, do:

1. Compute a stepsize αm.

2. Compute xm+1 := Hk

{

xm + αmAT (b−Axm)
}

,
where Hk(·) is defined in (1.25).

3. Set m := m+ 1.

End; output x̂ = xm.

Often in this thesis, we will consider the infinite sequence of iterates generated by IHT, but

in practice a termination criterion would need to be employed. There are various possibilities

for a practical termination criterion, such as requiring that the iterates approach each other,

i.e. ‖xm − xm−1‖ ≤ η for some η > 0, or requiring that a good approximation to the linear

system be obtained, i.e. ‖b−Axm‖ ≤ η for some η > 0.

For Algorithm 2.1 to be well-defined, it remains to define a stepsize scheme {αm}, and we

will consider two options, which give rise to the IHT (constant stepsize) and NIHT (normalised

stepsize) variants respectively.

Algorithm 2.2 IHT [23]

Given some α > 0, on Step 1 of each iteration m ≥ 0 of generic IHT, set

αm := α. (2.1)

The NIHT stepsize choice comprises two steps. Firstly, one initializes with the exact line-

search criterion [130], which ensures maximum decrease in the objective of (1.21) provided the

support set remains unchanged. However, this choice may not even ensure a decrease in the ob-

jective of (1.21) in the case when there is a change in the support set. For this reason, a second

backtracking step is used in which the stepsize is repeatedly shrunk by some shrinkage param-

eter κ > 1 until a condition is satisfied which guarantees a decrease in the objective of (1.21).

In practice, the choice of κ constitutes a trade-off between recovery performance and computa-
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Algorithm 2.3 NIHT [27]

Given some c ∈ (0, 1) and κ > 1/(1− c), on Step 1 of each iteration m ≥ 0 of generic IHT, do:

1.1. Exact linesearch.

(a) Set Γm := supp(xm).

(b) Compute

αm :=
‖AT

Γm(b−Axm)‖2

‖AΓmAT
Γm(b−Axm)‖2

. (2.2)

(c) Let x̃m+1 := Hk

{

xm + αmAT (b−Axm)
}

.

1.2. Backtracking. If supp(x̃m+1) = supp(xm), end; output αm.

Else, while αm ≥ (1 − c) ‖x̃m+1−xm‖2

‖A(x̃m+1−xm)‖2 , do:

(a) αm := αm/(κ(1 − c)).

(b) x̃m+1 := Hk

{

xm + αmAT (b−Axm)
}

.

End; output αm.

tional efficiency: for optimal performance, κ close to 1 should be chosen, while increasing κ will

lead to fewer backtracking steps, making the algorithm more computationally efficient. The

backtracking step ensures a potentially desirable property of the NIHT algorithm, namely that,

provided the measurement matrix satisfies mild linear independence assumptions, it is guaran-

teed to converge [27]. However, it is also possible to conceive of a variant of NIHT in which

the backtracking step is entirely omitted and in which the exact linesearch stepsize is always

selected. Furthermore, RIP-based recovery guarantees have also been proven for this simplified

variant. We will make reference to these results later in the chapter, while largely restricting

our focus to the algorithm originally proposed in [27] in which backtracking is included.

Bounds on the NIHT stepsize are given in the following lemma.

Lemma 2.1 (NIHT stepsize bounds). Suppose Assumption 1 holds and let αm be chosen

according to Algorithm 2.3. Then

1

κ(1 + U2k)
≤ αm ≤ 1

1 − Lk
. (2.3)

Proof: If (2.2) is accepted, then αm ≤ 1/(1 − Lk) by (1.15), which is well-defined by

Assumption 1. On the other hand, if (2.2) is rejected, the backtracking phase can only reduce

the stepsize further, which proves the upper bound in (2.3). To prove the lower bound, we

also distinguish two cases. If (2.2) is accepted, then αm ≥ 1/(1 + Uk) by (1.15). Since κ > 1,

and since U2k ≥ Uk by the nonincreasing property of RIP constants, the lower bound in (2.3)

holds in this case. On the other hand, if (2.2) is rejected, the penultimate stepsize calculated in

the backtracking phase must also have been rejected. Writing α̃m for the penultimate stepsize,
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since α̃m was rejected, we have

α̃m ≥ (1 − c)
‖x̃m+1 − xm‖2

‖A(x̃m+1 − xm)‖2
≥ 1 − c

1 + U2k
, (2.4)

where the last step follows from (1.15). But αm = α̃m/[κ(1− c)], which combines with (2.4) to

give the lower bound in (2.3) in this case also. �

It follows that, for both IHT and NIHT, there exist lower and upper bounds on the stepsize,

α > 0 and α > 0 respectively, such that α ≤ αm ≤ α for all m ≥ 0, by (2.3) in the case of

NIHT, and trivially by (2.1) in the case of IHT.

2.2 An RIP analysis of IHT for arbitrary matrices

In this section, we obtain robust recovery guarantees in terms of asymmetric RIP constants

for both IHT and NIHT, thereby extending the noiseless, symmetric RIP analysis of IHT by

Foucart in [93].

Before beginning our analysis, we first present a lemma which allows us to restrict our

attention to the case of exactly sparse signals. The result, which bounds the factor by which

the measurement matrix amplifies nonsparse vectors, is proved in [127].

Lemma 2.2 (Amplification bound [127, Proposition 3.5]). Given some positive integer

s, suppose that A ∈ R
n×N has upper RIP constant Us, as defined in (1.6). Then, for any

x ∈ R
N ,

‖Ax‖ ≤
√

1 + Us

[

‖x‖ +

√

1

s
‖x‖1

]

. (2.5)

It was shown in [127] that Lemma 2.2 allows the noisy measurements of a compressible signal

to be viewed as measurements of a sparse signal with a different noise vector which incorporates

the compression error. To see this, let x∗k be the best k-sparse approximation to the original

signal x∗ as defined in (1.13), and let us define

E := A(x∗ − x∗k) + e. (2.6)

Then we have

b = Ax∗ + e = Ax∗k +A(x∗ − x∗k) + e = Ax∗k + E,

and Lemma 2.2 implies that

‖E‖ = ‖A(x∗ − x∗k) + e‖ ≤ ‖e‖ + ‖A(x∗ − x∗k)‖
≤ ‖e‖ +

√
1 + Uk

[

‖x∗ − x∗k‖ +
√

1
k‖x∗ − x∗k‖1

]

,
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which may be viewed as a bound for ‖E‖ in terms of a measure of the unrecoverable energy

of the signal, due both to measurement noise and the signal being only approximately sparse.

It follows that any result for exactly sparse signals which bounds the approximation error in

terms of ‖e‖ may be extended to compressible signals. Therefore, in this chapter, we restrict

our attention to the case in which noisy measurements are taken of an exactly k-sparse signal.

Notation. Before proceeding, we introduce some notation that will be used throughout the

rest of the thesis. Given some index set Γ ⊆ {1, 2, . . . N}, we define the complement of Γ to

be ΓC = {1, 2, . . . N} \ Γ. We write xΓ for the restriction of the vector x to the coefficients

indexed by the elements of Γ, and we write AΓ for the restriction of the matrix A to those

columns indexed by the elements of Γ. When it exists, we denote by A†
Γ the Moore-Penrose

pseudoinverse, namely

A†
Γ := (AT

ΓAΓ)−1AT
Γ . (2.7)

The following lemma gives some further consequences of the RIP and is proved in [16].

Lemma 2.3 (Consequences of the RIP [16, Lemma 15]). Given some positive integer s,

suppose that A ∈ R
n×N has lower and upper RIP constants Ls and Us respectively, as defined

in (1.6). Let Ω be a set of cardinality s, and let Ω = Ω1 ∪ Ω2 where |Ω1| = s1, |Ω2| = s2 and

s = s1 + s2. Then

‖AT
Ωy‖ ≤

√

1 + Us‖y‖ for all y ∈ R
n; (2.8)

(1 − Ls)‖x‖ ≤ ‖AT
ΩAΩx‖ ≤ (1 + Us)‖x‖ for all x ∈ R

s; (2.9)

1

1 + Us
‖x‖ ≤ ‖(AT

ΩAΩ)−1x‖ ≤ 1

1 − Ls
‖x‖ for all x ∈ R

s; (2.10)

‖A†
Ωy‖ ≤ 1√

1 − Ls

‖y‖ for all y ∈ R
n, provided A†

Ω is well-defined; (2.11)

‖AT
Ω1
AΩ2

z‖ ≤ 1

2
(Ls + Us)‖z‖ for all z ∈ R

s2 ; (2.12)

‖(I−ωAT
ΩAΩ)x‖ ≤ max{ω(1+Us)−1, 1−ω(1−Ls)}‖x‖ for all x ∈ R

s and all ω > 0. (2.13)

Next, by largely following the analysis in [93], we use the RIP to obtain a result for generic

IHT with bounded stepsize.

Lemma 2.4 (Iteration invariant for bounded stepsize). Consider Problem 1.2. Let the

stepsizes of generic IHT satisfy

α ≤ αm ≤ α (2.14)

for all m ≥ 0. Then

‖xm+1 − x∗‖ ≤
√

3 max{α(1 +U3k)− 1, 1−α(1−L3k)}‖xm − x∗‖+α
√

3(1 + U2k)‖e‖. (2.15)
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Proof: Let us write am := xm + αmAT (b−Axm), which can be rearranged to give

am = xm + αmAT (Ax∗ + e−Axm) = x∗ + (I − αmATA)(xm − x∗) + αmAT e. (2.16)

Let us write Λ = supp(x∗), Γm = supp(xm), Γm+1 = supp(xm+1) and let us further define

Ω = Λ ∪ Γm ∪ Γm+1. (2.17)

By (1.26), we have

‖am
Λ ‖2 ≤ ‖am

Γm+1‖2,

which cancels to give

‖am
Λ\Γm+1‖2 ≤ ‖am

Γm+1\Λ‖2. (2.18)

Substituting (2.16) into (2.18) gives

∥

∥

∥

{

x∗ + (I − αmATA)(xm − x∗) + αmAT e
}

Λ\Γm+1

∥

∥

∥

≤
∥

∥

∥

{

x∗ + (I − αmATA)(xm − x∗) + αmAT e
}

Γm+1\Λ

∥

∥

∥
,

and the triangle inequality, along with x∗Γm+1\Λ = 0, implies

∥

∥

∥
x∗Λ\Γm+1

∥

∥

∥
−
∥

∥

∥

{

(I − αmATA)(xm − x∗) + αmAT e
}

Λ\Γm+1

∥

∥

∥

≤
∥

∥

∥

{

(I − αmATA)(xm − x∗) + αmAT e
}

Γm+1\Λ

∥

∥

∥
. (2.19)

The sets Λ \ Γm+1 and Γm+1 \Λ are disjoint, and we may therefore apply the Cauchy-Schwarz

inequality, namely (a+ b)2 ≤
√

2(a2 + b2), to (2.19), yielding

∥

∥

∥
x∗Λ\Γm+1

∥

∥

∥
≤

√
2
∥

∥

{

(I − αmATA)(xm − x∗) + αmAT e
}

Λ∪Γm+1

∥

∥ ,

from which a further application of the triangle inequality and (2.17) leads us to deduce

∥

∥

∥
x∗Λ\Γm+1

∥

∥

∥
≤

√
2
{
∥

∥(I − αmAT
ΩAΩ)(xm − x∗)Ω

∥

∥+ αm
∥

∥AT
Λ∪Γm+1e

∥

∥

}

. (2.20)

Meanwhile, splitting on Γm+1 and Λ \ Γm+1, and using the definition of Γm+1 = supp(xm+1),

‖xm+1 − x∗‖2 =
∥

∥(xm+1 − x∗)Γm+1

∥

∥

2
+
∥

∥(xm+1 − x∗)Λ\Γm+1

∥

∥

2

=
∥

∥

{

(I − αmATA)(xm − x∗) + αmAT e
}

Γm+1

∥

∥

2
+
∥

∥

∥
x∗Λ\Γm+1

∥

∥

∥

2

,

where the second inequality follows from (2.16). We then apply the triangle inequality and
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(2.17) to deduce

‖xm+1 − x∗‖2 ≤
{
∥

∥

{

(I − αmATA)(xm − x∗)
}

Γm+1

∥

∥+
∥

∥

{

αmAT e
}

Γm+1

∥

∥

}2
+
∥

∥

∥
x∗Λ\Γm+1

∥

∥

∥

2

≤
{∥

∥(I − αmAT
ΩAΩ)(xm − x∗)Ω

∥

∥+ αm
∥

∥AT
Λ∪Γm+1e

∥

∥

}2
+
∥

∥

∥
x∗Λ\Γm+1

∥

∥

∥

2

.(2.21)

Substituting (2.20) into (2.21) then gives

‖xm+1 − x∗‖2 ≤ 3
{∥

∥(I − αmAT
ΩAΩ)(xm − x∗)Ω

∥

∥+ αm
∥

∥AT
Λ∪Γm+1e

∥

∥

}2
. (2.22)

Since |Ω| ≤ 3k and |Λ∪Γm+1| ≤ 2k, the result now follows by applying (2.8), (2.13) and (2.14)

to (2.22), and taking square roots. �

Both the IHT and NIHT stepsize schemes have bounded stepsizes, and we may therefore

deduce the following results.

Theorem 2.5 (Iteration invariant for IHT). Consider Problem 1.2. Then the iterates of

IHT with stepsize α satisfy

‖xm+1 − x∗‖ ≤ µIHTα

k ‖xm − x∗‖ + ξIHTα

k ‖e‖, (2.23)

where

µIHTα

k :=
√

3 max{α(1 + U3k) − 1, 1 − α(1 − L3k)} (2.24)

and

ξIHTα

k := α
√

3(1 + U2k). (2.25)

Proof: For IHT with stepsize α, we have α = α and α = α, and the result follows by

applying Lemma 2.4. �

Theorem 2.6 (Iteration invariant for NIHT). Consider Problem 1.2 and suppose Assump-

tion 1 holds. Then the iterates of NIHT with shrinkage parameter κ satisfy

‖xm+1 − x∗‖ ≤ µNIHTκ

k ‖xm − x∗‖ + ξNIHTκ

k ‖e‖, (2.26)

where

µNIHTκ

k :=
√

3 max

{

1 + U3k

1 − Lk
− 1, 1 − 1 − L3k

κ(1 + U2k)

}

(2.27)

and

ξNIHTκ

k :=

√

3(1 + U2k)

1 − Lk
. (2.28)

Proof: For a given κ > 1, the stepsize bounds (2.3) apply to NIHT, and the result follows

by applying Lemma 2.4 with α := 1/(1 − Lk) and α := 1/[κ(1 + U2k)]. �
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In order to prove recovery results, we will need the following lemma.

Lemma 2.7. Suppose there exist µ ∈ [0, 1) and ξ > 0 such that the sequence of iterates {xm}
satisfies, for each m ≥ 0,

‖xm+1 − x∗‖ ≤ µ‖xm − x∗‖ + ξ‖e‖. (2.29)

Then, for all m ≥ 0,

‖x̄− x∗‖ ≤ µm‖x∗‖ +
ξ

1 − µ
‖e‖. (2.30)

Proof: We first prove by induction that, for all m ≥ 0,

‖xm − x∗‖ ≤ µm‖x∗‖ + ξ

(

1 − µm

1 − µ

)

‖e‖. (2.31)

Supposing (2.31) holds for some m ≥ 0, then we may apply (2.29) to (2.31) to deduce

‖xm+1 − x∗‖ ≤ µ
[

µm‖x∗‖ + ξ
(

1−µm

1−µ

)

‖e‖
]

+ ξ‖e‖
= µm+1‖x∗‖ +

[

ξ
(

1 + µ−µm+1

1−µ

)]

‖e‖
= µm+1‖x∗‖ + ξ

(

1−µm+1

1−µ

)

‖e‖,

and so (2.31) also holds for m + 1. Since x0 = 0, the result holds trivially for m = 0, and

therefore for all m ≥ 0 by induction. Since µm ∈ (0, 1) for all m ≥ 0, (2.30) now follows. �

Provided µ < 1, the µm‖x∗‖ term in (2.30) tends to zero, and the expression ξ/(1 − µ)

may be viewed as a stability factor, giving a limiting bound on the approximation error as a

multiple of the noise level ‖e‖. We now proceed to the recovery results for both IHT and NIHT

for arbitrary matrices.

Corollary 2.8 (IHT). Consider Problem 1.2. Let µIHTα

k and ξIHTα

k be defined as in The-

orem 2.5. Then, provided µIHTα

k < 1, the output, x̂, of IHT with stepsize α at iteration m,

satisfies

‖x̂− x∗‖ ≤
(

µIHTα

k

)m

‖x∗‖ +
ξIHTα

k

1 − µIHTα

k

‖e‖. (2.32)

Proof : The result follows by combining Theorem 2.5 and Lemma 2.7. �

Corollary 2.9 (NIHT). Consider Problem 1.2. Let µNIHTκ

k and ξNIHTκ

k be defined as in

Theorem 2.6. Then, provided µNIHTκ

k < 1, the output, x̂, of NIHT with shrinkage parameter κ

at iteration m, satisfies

‖x̂− x∗‖ ≤
(

µNIHTκ

k

)m

‖x∗‖ +
ξNIHTκ

k

1 − µNIHTκ

k

‖e‖. (2.33)

Proof: The result follows by combining Theorem 2.6 and Lemma 2.7. �
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Though both Corollaries 2.8 and 2.9 give a limiting bound on the approximation error, they

do not necessarily imply convergence of the algorithm. In the simplified noiseless case however,

both results can be used to deduce convergence to x∗ at a linear rate. In the next section,

we give explicit results concerning convergence in the noiseless case, in the phase transition

framework for Gaussian matrices. See also Section 3.2 in which we prove robust convergence

results for both stepsize schemes as part of our new analysis.

A similar recovery result may also be obtained for the simplified version of NIHT in which the

backtracking step is omitted, since in this case we may take α := 1/(1+Uk) and α := 1/(1−Lk).

Indeed, since we could also sub-optimally take α := 1/(1 + U2k), it follows that Corollary 2.9

holds for NIHT without backtracking by setting κ := 1 in µNIHTκ

k and ξNIHTκ

k . Furthermore,

since decreasing κ weakens the recovery condition, we see that removing the backtracking step

actually leads to an improved recovery condition.

2.3 Improved phase transitions for IHT and NIHT

In [17], RIP recovery conditions were translated into phase transitions for Gaussian matrices in

the proportional-dimensional asymptotic of Definition 1.5, using upper bounds on RIP constants

derived in [21]. In this section, we follow essentially the same approach as in [17], applying

Gaussian RIP bounds to the conditions derived in Section 2.2 for IHT and NIHT. Since the

work in [17], tighter bounds on RIP constants for Gaussian matrices have been derived in [4],

and we shall switch to using these improved bounds in order to optimize the resulting phase

transitions.

We now consider the RIP for an n × N Gaussian matrix, whose RIP constants therefore

depend not just upon the sparsity k, but also its dimensions (n,N). While it would be more

precise to follow [17] and [19] in denoting the lower and upper RIP constants by L(k, n,N) and

U(k, n,N) respectively, for the sake of uniformity we continue to use the notation introduced

in Definition 1.6. Note that the functions µIHTα

k , ξIHTα

k , µNIHTκ

k and ξNIHTκ

k defined in (2.24),

(2.25), (2.24) and (2.25) respectively also now depend upon (n,N).

Many of the asymptotic bounds in this thesis will involve the Shannon entropy, which we

next define.

Definition 2.10 (Shannon entropy [21]). Given p ∈ (0, 1), define the Shannon entropy with

base e logarithms as

H(p) := −p ln(p) − (1 − p) ln(1 − p). (2.34)

The following RIP bounds L(δ, ρ) and U(δ, ρ) were defined in [4].

Definition 2.11 (RIP bounds [4, Definition 2.2]). Let (δ, ρ) ∈ (0, 1)2, γ ∈ [ρ, δ−1]. Let

ψmin(λ, γ) := H(γ) +
1

2
[(1 − γ) lnλ+ γ ln γ + 1 − γ − λ] ,
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ψmax(λ, γ) :=
1

2
[(1 + γ) lnλ− γ ln γ + 1 + γ − λ] ,

where H(p) is defined in (2.34). Define λmin(δ, ρ; γ) and λmax(δ, ρ; γ) to be the solutions to

δψmin(λmin(δ, ρ; γ), γ) +H(δρ) − δγH(ρ/γ) = 0 for λmin(δ, ρ; γ) ≤ 1 − γ,

and

δψmax(λ
max(δ, ρ; γ), γ) +H(δρ) − δγH(ρ/γ) = 0 for λmax(δ, ρ; γ) ≥ 1 + γ.

Let λmin(δ, ρ) := maxγ λ
min(δ, ρ; γ) and λmax(δ, ρ) := minγ λ

max(δ, ρ; γ), and define

L(δ, ρ) := 1 − λmin(δ, ρ) and U(δ, ρ) := λmax(δ, ρ) − 1.

The next result, from [4], proves that the numerically computable functions defined in

Definition 2.11 are upper bounds on RIP constants for Gaussian matrices with exponentially

high probability.

Theorem 2.12 (Validity of RIP bounds [4, Theorem 2.3]). Let A be a matrix of size

n ×N whose entries are drawn i.i.d. from N (0, 1/n). Let L(δ, ρ) and U(δ, ρ) be defined as in

Definition 2.11. For any fixed ǫ > 0, in the proportional-growth asymptotic,

P[Lk < L(δ, ρ) + ǫ] → 1 and P[Uk < U(δ, ρ) + ǫ] → 1, (2.35)

exponentially in n.

The next two lemmas are needed to enable a translation of Corollaries 2.8 and 2.9 for

arbitrary matrices into the phase transition framework for Gaussian matrices.

Lemma 2.13 ([17, Lemma 12]). For some τ < 1, define the set Z := (0, τ)p×(0,∞)q and let

F : Z → R be continuously differentiable on Z. Let A ∈ R
n×N be a Gaussian matrix with RIP

constants Lk, . . . , Lpk and Uk, . . . , Uqk, and let L(δ, ρ), . . . ,L(δ, pρ) and U(δ, ρ), . . . ,U(δ, qρ) be

defined as in Definition 2.11. Define 1 to be the vector of all ones, and

z(k, n,N) := [Lk, . . . , Lpk, Uk, . . . , Uqk],

z(δ, ρ) := [L(δ, ρ), . . . ,L(δ, pρ),U(δ, ρ), . . . ,U(δ, qρ)].

Suppose, for all t ∈ Z, (∇F [t])i ≥ 0 for all i = 1, . . . , p+ q and there exists j ∈ {1, . . . , p} such

that (∇F [t])j > 0. Then, for any ǫ ∈ (0, 1), in the proportional-growth asymptotic,

P (F [z(k, n,N)] < F [z(δ, (1 + ǫ)ρ)]) → 1 as n→ ∞, (2.36)

exponentially in n on the draw of A. Also, F [z(δ, ρ)] is strictly increasing in ρ.
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Proof: A proof was given in [17] for the case where L(δ, ·) and U(δ, ·) are the earlier RIP

bounds of Blanchard et al. [21], in which the only assumption made concerning the RIP bounds,

in addition to Theorem 2.12, is that L(δ, ρ) is strictly increasing in ρ and U(δ, ρ) is nondecreasing

in ρ. Both properties also hold for the bounds defined in Definition 2.11 [4], and therefore the

same argument in [17, Lemma 12] also holds in our case. �

Lemma 2.14. For some τ < 1, define the set Z := (0, τ)p × (0,∞)q and let F,G,H : Z → R

satisfy the conditions of Lemma 2.13. Suppose that

µ(k, n,N) = max
{

F [z(k, n,N)], G[z(k, n,N)]
}

, ξ(k, n,N) = H[z(k, n,N)], (2.37)

and

µ(δ, ρ) = max
{

F [z(δ, ρ)], G[z(δ, ρ)]
}

, ξ(δ, ρ) = H[z(δ, ρ)]. (2.38)

Then µ(δ, ρ) and ξ(δ, ρ) are both strictly increasing in ρ and, for any ǫ ∈ (0, 1), in the proportional-

growth asymptotic,

P
{

µ(k, n,N) ≥ µ(δ, (1 + ǫ)ρ)
}

→ 0, (2.39)

and

P
{

ξ(k, n,N) ≥ ξ(δ, (1 + ǫ)ρ)
}

→ 0, (2.40)

both exponentially in n. Furthermore, define ρ̂(δ) as the unique solution to µ(δ, ρ) = 1, and

suppose that

ρ < (1 − ǫ)ρ̂(δ). (2.41)

Then

µ(δ, (1 + ǫ)ρ) < 1, (2.42)

and, in the proportional-growth asymptotic,

P
{

µ(k, n,N) ≥ 1
}

→ 0, (2.43)

exponentially in n.

Proof: By assumption, we may apply Lemma 2.13 to each of F (z), G(z) andH(z), deducing

from (2.36) that

P (F [z(k, n,N)] < F [z(δ, (1 + ǫ)ρ)]) → 1 as n→ ∞, (2.44)

P (G[z(k, n,N)] < G[z(δ, (1 + ǫ)ρ)]) → 1 as n→ ∞, (2.45)

P (H[z(k, n,N)] < H[z(δ, (1 + ǫ)ρ)]) → 1 as n→ ∞, (2.46)

exponentially in n, and that F [z(δ, ρ)], G[z(δ, ρ)] and H[z(δ, ρ)] are each strictly increasing in
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ρ, from which it immediately follows that both µ(δ, ρ) and ξ(δ, ρ) are also strictly increasing in

ρ. Combining (2.37), (2.38), (2.45) and (2.46), we have

P
{

µ(k, n,N) ≥ µ(δ, (1 + ǫ)ρ)
}

= P

{

max
{

F [z(k, n,N)], G[z(k, n,N)]
}

≥ max
{

F [z(δ, (1 + ǫ)ρ)], G[z(δ, (1 + ǫ)ρ)]
}

}

≤ P
{

F [z(k, n,N)] ≥ F [z(δ, (1 + ǫ)ρ)]
}

+ P
{

G[z(k, n,N)] ≥ G[z(δ, (1 + ǫ)ρ)]
}

→ 0 as n→ ∞, (2.47)

and therefore (2.39) holds. Meanwhile, combining (2.37), (2.38) and (2.46) immediately yields

(2.40). Now suppose (2.41) holds. Since 1− ǫ < (1 + ǫ)−1 for any ǫ ∈ (0, 1), (2.41) implies that

(1 + ǫ)ρ < ρ̂(δ), (2.48)

Since µ(δ, ρ) is strictly increasing in ρ, it follows from (2.48) and the definition of ρ̂(δ) that

µ(δ, (1 + ǫ)ρ) < µ (δ, ρ̂(δ)) = 1,

which proves (2.42), and from which it also follows that

P
{

µ(k, n,N) ≥ 1
}

≤ P
{

µ(k, n,N) ≥ µ(δ, (1 + ǫ)ρ)
}

,

to which we may apply (2.47) to deduce (2.43). �

We now proceed to our phase transition results.

Theorem 2.15 (IHT). Consider Problem 1.2 and suppose the entries of A ∈ R
n×N are drawn

i.i.d. from N (0, 1/n). Define

µIHTα(δ, ρ) :=
√

3 max{α[1 + U(δ, 3ρ)] − 1, 1 − α[1 − L(δ, 3ρ)]} (2.49)

and

ξIHTα(δ, ρ) := α
√

3[1 + U(δ, 2ρ)], (2.50)

and define ρ̂IHTα

RIP (δ) as the unique solution to µIHTα(δ, ρ) = 1. Choose ǫ ∈ (0, 1) and suppose

that

ρ < (1 − ǫ)ρ̂IHTα

RIP (δ). (2.51)

Suppose x̂ is the output of IHT with stepsize α at iteration m. Then

µIHTα(δ, (1 + ǫ)ρ) < 1, (2.52)
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and, in the proportional-growth asymptotic,

‖x̂− x∗‖ ≤
(

µIHTα(δ, (1 + ǫ)ρ)
)m ‖x∗‖ +

ξIHTα(δ, (1 + ǫ)ρ)

1 − µIHTα(δ, (1 + ǫ)ρ)
‖e‖, (2.53)

with probability tending to 1 exponentially in n.

Proof: Select ǫ ∈ (0, 1), fix τ < 1 and let

z(k, n,N) := [L3k, U2k, U3k] and z(δ, ρ) := [L(δ, 3ρ),U(δ, 2ρ),U(δ, 3ρ)].

Define Z := (0, τ) × (0,∞)2, and define the functions Fα(z), Gα(z), Hα(z) : Z → R as

Fα(z) = Fα(z1, z2, z3) :=
√

3[α(1 + z3) − 1], (2.54)

Gα(z) = Gα(z1, z2, z3) :=
√

3[1 − α(1 − z1)], (2.55)

Hα(z) = Hα(z1, z2, z3) := α
√

3(1 + z2), (2.56)

noting that

µIHTα

k = max
{

Fα[z(k, n,N)], Gα[z(k, n,N)]
}

, ξIHTα

k = Hα[z(k, n,N)],

where µIHTα

k and ξIHTα

k are defined in (2.24) and (2.25) respectively, and

µIHTα(δ, ρ) = max
{

Fα[z(δ, ρ)], Gα[z(δ, ρ)]
}

, ξIHTα(δ, ρ) = Hα[z(δ, ρ)],

where µIHTα(δ, ρ) and ξIHTα(δ, ρ) are defined in (2.49) and (2.50) respectively. Now Fα(z),

Gα(z) and Hα(z) are continuously differentiable and nondecreasing in (z1, z2, z3) ∈ Z, and

strictly increasing in z3, z1 and z2 respectively due to α > 0, and therefore each satisfies the

conditions of Lemma 2.13. We may therefore apply Lemma 2.14, deducing

P
{

µIHTα

k ≥ µIHTα(δ, (1 + ǫ)ρ)
}

→ 0, (2.57)

and

P
{

ξIHTα

k ≥ ξIHTα(δ, (1 + ǫ)ρ)
}

→ 0, (2.58)

exponentially in n, and furthermore that µIHTα(δ, ρ) and ξIHTα(δ, ρ) are both strictly increasing

in ρ, from which it follows that ρ̂IHTα

RIP (δ) is unique. Since (2.51) holds, we may also use

Lemma 2.14 to deduce (2.52), and furthermore that

P
{

µIHTα

k ≥ 1
}

→ 0, (2.59)

exponentially in n, and we may apply Corollary 2.8 to deduce (2.32) with probability tending
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to 1 exponentially in n. Since µIHTα(δ, ρ) and ξIHTα(δ, ρ) are strictly increasing in ρ, (2.53)

now follows from (2.32), (2.57) and (2.58). �

Theorem 2.15 gives a continuous range of phase transitions for any 0 < α < 2. For α ≥ 2,

the result gives ρ̂IHTα

RIP (δ) = 0 for all δ ∈ (0, 1). It is clear that µIHTα(δ, ρ) takes its minimum

value where both expressions inside the maximum in (2.49) are equal, which implies that the

optimum phase transition is obtained when the stepsize is taken to be

α̂ := 2/[2 + U(δ, 3ρ) − L(δ, 3ρ)], (2.60)

for which we have

µIHTα̂(δ, ρ) :=
√

3

[ L(δ, 3ρ) + U(δ, 3ρ)

2 + U(δ, 3ρ) − L(δ, 3ρ)

]

, ξIHTα̂(δ, ρ) := 2
√

3

[

√

1 + U(δ, 2ρ)

2 + U(δ, 3ρ) − L(δ, 3ρ)

]

.

(2.61)

The stepsize choice (2.60) was first adopted in [17]. It is instructive to point out that µIHTα̂(δ, ρ)

differs only from the corresponding function in [17] by a scaling factor of
√

3/(2
√

2), from which

it is immediately clear that the present recovery condition represents an improvement. However,

as in [17], the result degrades as α is either increased or decreased away from α̂.

In the idealized case of zero measurement noise, we can deduce from Theorem 2.15 guaran-

teed convergence of IHT at a linear rate.

Corollary 2.16 (Noiseless case). Consider Problem 1.1 and suppose the entries of A ∈ R
n×N

are drawn i.i.d. from N (0, 1/n). Choose ǫ ∈ (0, 1) and suppose that (2.51) holds, where

ρ̂IHTα

RIP (δ) and µIHTα(δ, ρ) are defined as in Theorem 2.15. Then, in the proportional-growth

asymptotic, the iterates of IHT with stepsize α converge to x∗ at a linear rate, with probability

tending to 1 exponentially in n.

Proof: Since we consider Problem 1.1, we have e := 0. Provided (2.51) holds, we can apply

Theorem 2.15 with e := 0, deducing that, for any m ≥ 0,

‖xm − x∗‖ ≤
(

µIHTα(δ, (1 + ǫ)ρ)
)m ‖x∗‖,

where

µIHTα(δ, (1 + ǫ)ρ) < 1,

and so we have convergence to x∗ with convergence rate µIHTα(δ, (1 + ǫ)ρ). �

We next obtain a recovery result for NIHT.
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Theorem 2.17 (NIHT). Consider Problem 1.2 and suppose the entries of A ∈ R
n×N are

drawn i.i.d. from N (0, 1/n). Define

µNIHTκ(δ, ρ) :=
√

3 max

{

1 + U(δ, 3ρ)

1 − L(δ, ρ)
− 1, 1 − 1 − L(δ, 3ρ)

κ[1 + U(δ, 2ρ)]

}

(2.62)

and

ξNIHTκ(δ, ρ) :=

√

3[1 + U(δ, 2ρ)]

1 − L(δ, ρ)
, (2.63)

and define ρ̂NIHTκ

RIP (δ) as the unique solution to µNIHTκ(δ, ρ) = 1. Choose ǫ ∈ (0, 1) and suppose

that

ρ < (1 − ǫ)ρ̂NIHTκ

RIP (δ). (2.64)

Suppose x̂ is the output of NIHT with shrinkage parameter κ at iteration m. Then

µNIHTκ(δ, (1 + ǫ)ρ) < 1, (2.65)

and, in the proportional-growth asymptotic,

‖x̂− x∗‖ ≤
(

µNIHTκ(δ, (1 + ǫ)ρ)
)m ‖x∗‖ +

ξNIHTκ(δ, (1 + ǫ)ρ)

1 − µNIHTκ(δ, (1 + ǫ)ρ)
‖e‖, (2.66)

with probability tending to 1 exponentially in n.

Proof: Select ǫ ∈ (0, 1), fix τ < 1 and let

z(k, n,N) := [Lk, L3k, U2k, U3k] and z(δ, ρ) := [L(δ, ρ),L(δ, 3ρ),U(δ, 2ρ),U(δ, 3ρ)].

Define Z := (0, τ)2 × (0,∞)2, and define the functions Fα(z), Gα(z), Hα(z) : Z → R as

Fκ(z) = Fκ(z1, z2, z3, z4) :=
√

3

[

1 + z4
1 − z1

− 1

]

,

Gκ(z) = Gκ(z1, z2, z3, z4) :=
√

3

[

1 − 1 − z2
κ(1 + z3)

]

,

Hκ(z) = Hκ(z1, z2, z3, z4) :=

√

3(1 + z3)

1 − z1
,

noting that

µNIHTκ

k = max
{

Fκ[z(k, n,N)], Gκ[z(k, n,N)]
}

, ξNIHTκ

k = Hκ[z(k, n,N)],

where µNIHTκ

k and ξNIHTκ

k are defined in (2.27) and (2.28) respectively, and

µNIHTκ(δ, ρ) = max
{

Fκ[z(δ, ρ)], Gκ[z(δ, ρ)]
}

, ξNIHTκ(δ, ρ) = Hκ[z(δ, ρ)],
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where µNIHTκ(δ, ρ) and ξNIHTκ(δ, ρ) are defined in (2.62) and (2.63) respectively. Now Fκ(z),

Gκ(z) andHκ(z) are continuously differentiable and nondecreasing in (z1, z2, z3, z4), and strictly

increasing componentwise in (z1, z4), (z2, z3) and (z1, z3) respectively, and therefore each satis-

fies the conditions of Lemma 2.13. We may therefore apply Lemma 2.14, deducing

P
{

µNIHTκ

k ≥ µNIHTκ(δ, (1 + ǫ)ρ)
}

→ 0 (2.67)

and

P
{

ξNIHTκ

k ≥ ξNIHTκ(δ, (1 + ǫ)ρ)
}

→ 0, (2.68)

exponentially in n, and furthermore that µNIHTκ(δ, ρ) and ξNIHTκ(δ, ρ) are both strictly in-

creasing in ρ, from which it follows that ρ̂NIHTκ

RIP (δ) is unique. Since (2.64) holds, we may also

use Lemma 2.14 to deduce (2.65), and furthermore that

P
{

µNIHTκ

k ≥ 1
}

→ 0, (2.69)

exponentially in n, and we may apply Corollary 2.9 to deduce (2.33) with probability tending

to 1 exponentially in n. Since µNIHTκ(δ, ρ) and ξNIHTκ(δ, ρ) are strictly increasing in ρ, (2.66)

now follows from (2.33), (2.67) and (2.68). �

In the idealized case of zero measurement noise, we can deduce from Theorem 2.17 guaran-

teed convergence of NIHT at a linear rate.

Corollary 2.18 (Noiseless case). Consider Problem 1.1 and suppose the entries of A ∈ R
n×N

are drawn i.i.d. from N (0, 1/n). Choose ǫ ∈ (0, 1) and suppose that (2.64) holds, where

ρ̂NIHTκ

RIP (δ) and µNIHTκ(δ, ρ) are defined as in Theorem 2.17. Then, in the proportional-growth

asymptotic, the iterates of NIHT with shrinkage parameter κ converge to x∗ at a linear rate,

with probability tending to 1 exponentially in n.

Proof: Since we consider Problem 1.1, we have e := 0. Provided (2.64) holds, we can apply

Theorem 2.17 with e := 0, deducing that, for any m ≥ 0,

‖xm − x∗‖ ≤
(

µNIHTκ(δ, (1 + ǫ)ρ)
)m ‖x∗‖,

where

µNIHTκ(δ, (1 + ǫ)ρ) < 1,

and so we have convergence to x∗ with convergence rate µNIHTκ(δ, (1 + ǫ)ρ). �
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2.4 Discussion of results

Current state-of-the-art phase transitions. The functions ρ̂IHTα

RIP (δ) and ρ̂NIHTκ

RIP (δ) de-

fine curves in the (δ, ρ)-plane, which are plotted in Figure 2.1(a). For IHT, we take α := α̂ as

defined in (2.60), and a shrinkage parameter of κ := 1.1 is used for NIHT. For a sequence of

problem instances with dimensions (k, n,N), provided the ratio ρ = k/n falls below ρ̂IHTα̂

RIP (δ)

or ρ̂NIHT1.1

RIP (δ), then with probability approaching 1 exponentially fast in n on the draw of the

matrix A, the algorithm in question achieves the bound (2.53) or (2.66) respectively for any

k-sparse vector x∗. In the idealized case of zero measurement noise, Corollaries 2.16 and 2.18

imply exact recovery of any k-sparse x∗. The curves therefore define lower bounds on the strong

phase transition for the two variants of IHT. Also plotted in Figure 2.1(a) is the corresponding

lower bound on the phase transition for IHT resulting from the previous analysis in [17]. We

observe an improvement on the phase transition for IHT by around a factor of 4, while the

phase transition is in fact lower for NIHT than for IHT.
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Figure 2.1: (a) Current best lower bounds on the strong phase transition based upon the RIP
for recovery using Gaussian matrices: IHT (unbroken); NIHT (dashed). The corresponding
result for IHT from [17] is shown for comparison (dash-dot). (b) The inverse of each respective
phase transition.

Figure 2.1(b) plots the reciprocal of each phase transition, which may be interpreted as the

number of measurements that must be taken as a multiple of the sparsity in order to guarantee

recovery. In particular, a minimum of n ≥ 234k and n ≥ 1617k measurements must be taken

to guarantee recovery using IHT and NIHT respectively. The figure for IHT is, of course, an

improvement upon the corresponding figure resulting from the analysis of IHT in [23], which is

n ≥ 905k.

Theorems 2.15 and 2.17 define a stability factor, namely a maximum factor by which the

l2-norm of the noise is amplified in the final approximation error. Plots of the stability factors

for both IHT and NIHT are displayed in Figure 2.2. We observe, as in [17], that the stability

factor becomes unbounded as the phase transition is approached. It follows that phase tran-

sitions lower than those defined by ρ̂IHTα

RIP (δ) and ρ̂NIHTκ

RIP (δ) are actually required to ensure a
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satisfactory stability in the presence of noise.
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Figure 2.2: Contour plots of the stability factors for IHT and NIHT: (a) ξIHTα̂(δ, ρ)/[1 −
µIHTα̂(δ, ρ)] (b) ξNIHT1.1(δ, ρ)/[1 − µNIHT1.1(δ, ρ)].

In the idealized case of noiseless measurements, an inspection of Corollaries 2.16 and 2.18

reveals that, below the phase transition, each algorithm has guaranteed linear convergence,

with convergence factor given by µIHTα̂(δ, ρ) and µNIHT1.1(δ, ρ) respectively. Therefore, in

order to guarantee convergence at a given rate, even lower phase transitions than those given

by ρ̂IHTα̂

RIP (δ) and ρ̂NIHT1.1

RIP (δ) are in fact required.

Comparison with other RIP results for IHT. Let us now justify the claim that the

phase transitions derived in Section 2.3 represent the current state-of-the-art. Concerning IHT,

we have already argued that the result of Theorem 2.15 is necessarily an improvement upon the

corresponding result in [17], based on the analysis of Blumensath and Davies [23], since the only

change to the function µIHTα̂(δ, ρ) is a scaling down by a factor of
√

3/(2
√

2). The same may

be observed for the analysis in [92], where Foucart obtains the symmetric condition R3k < 1/2

for unit stepsize. Like in the analysis in Section 2.2, R3k is used to bound the expression

∥

∥(I − αmAT
ΩAΩ)(xm − x∗)Ω

∥

∥ ,

where |Ω| ≤ 3k, and so in the asymmetric context for arbitrary stepsize, the bound (2.13) may

be used to finally obtain

µIHTα̂(δ, ρ) := 2

[ L(δ, 3ρ) + U(δ, 3ρ)

2 + U(δ, 3ρ) − L(δ, 3ρ)

]

,

which represents a simple scaling up of µIHTα̂(δ, ρ) by a factor of 2/
√

3 compared to the result

presented here.

While the methods of analysis in [23, 92, 93] are very similar, one other somewhat different

approach was taken in [96], where it was shown that R2k < 1/3 guarantees recovery for the
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Figure 2.3: A comparison of RIP-based phase transitions for IHT algorithms; (a) IHT: [93]
(unbroken); [92] (dashed); [96] (dotted); [23] (dash-dot); (b) NIHT: our analysis (unbroken);
[27] (dashed).

stepsize choice α̃ := 1/[1 + U(δ, 2ρ)]. The approach in [17] was also applied to this analysis

in [148], where the optimal expression for µIHTα̂ was found to be

µIHTα̃(δ, ρ) :=

√

L(δ, 2ρ) + U(δ, 2ρ)

1 − L(δ, 2ρ)
.

Lower bounds on the strong phase transition for Gaussian matrices for each of the analyses

of IHT [23, 96, 92, 93] are shown in Figure 2.3(a) to allow a comparison. We observe that

the highest phase transition is obtained from the result presented here based upon Foucart’s

analysis in [93].

Concerning NIHT, we must translate the result of Blumensath and Davies from [27] into

the phase transition framework to enable a comparison with the phase transition displayed in

this section. This is particularly straightforward, since the authors performed an asymmetric

RIP analysis, obtaining

µNIHTκ

k := 4max

{

1 + U2k

1 − L2k
− 1, 1 − 1 − L2k

κ(1 + U2k)

}

.

The authors upper bound the stepsize by αm ≤ 1/(1−L2k), which may in fact be tightened to

αm ≤ 1/(1 − Lk) in accordance with (2.3). This tightening leads to

µNIHTκ

k := 4max

{

1 + U2k

1 − Lk
− 1, 1 − 1 − L2k

κ(1 + U2k)

}

,

which, after the substitution of Gaussian RIP bounds, yields

µNIHTκ(δ, ρ) := 4max

{

1 + U(δ, 2ρ)

1 − L(δ, ρ)
− 1, 1 − 1 − L(δ, 2ρ)

κ[1 + U(δ, 2ρ)]

}

.

The resulting phase transition, with κ := 1.1, is plotted alongside the one determined for NIHT
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in this thesis in Figure 2.3(b). We again observe that the phase transition obtained from the

present analysis is higher. However, a comparison with Figure 2.3(a) shows that the best phase

transition for NIHT is considerably lower than its counterpart for IHT.

2.5 Support sizes of RIP constants

The observant reader will have noticed that the form of µNIHTκ

k for the analysis in [27] presented

above is similar to that for the analysis considered in this chapter, except that RIP constants of

order 3k are replaced by RIP constants of order 2k.2 This change was sought deliberately by the

authors in order to obtain a condition in terms of RIP constants of lower order. Indeed, this is

one of several examples in the recent literature [127, 31, 30, 92] where reductions in support sizes

of RIP recovery conditions have been intentionally sought. One motivation for this practice is

the greater aesthetic appeal of conditions with smaller support sizes. In addition, there seems

to be something natural about seeking results with support size 2k in the light of the L2k < 1

condition for a sparse solution to be the most sparse (see Lemma 1.7). A particularly simple

example is found in [92], in which the condition R2k < 1/4 is deduced from the condition

R3k < 1/2. In this case, it is not clear upon initial inspection which condition is weaker, since

both the bound and the support size have been reduced.
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Figure 2.4: An example of support set splitting from [92]: phase transitions for Gaussian
matrices for (a) R3k < 1/2 (unbroken); (b) R2k < 1/4 (dashed).

The phase transition framework for Gaussian matrices allows such support size reductions

to be examined for efficacy. Figure 2.4 displays lower bounds on the phase transition for

Gaussian matrices for each of the two conditions in [92]. We observe that the original condition

R3k < 1/2 is in fact the weaker condition, at least for Gaussian matrices. The point was made

in [19, 20] that it is not always quantitatively advantageous to seek RIP conditions with smaller

2Material in this section extends the observations published in [19, 20], which were joint authorships with J.
Blanchard.
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support sizes, and several examples were given to illustrate this. In particular, it was noted that

conditions involving smaller support sizes are often obtained simply by splitting support sets,

and it was argued in [19, 20] that, since this approach involves the invoking of an inequality

which is unlikely to be sharp, it is unlikely to offer any quantitative improvement. Foucart also

obtains the result R2k < 1/4 by splitting support sets, and therefore it is no surprise that the

resulting condition is stricter.

In this chapter, we have sought to obtain the best possible phase transitions for Gaussian

matrices by drawing upon current state-of-the-art RIP recovery analysis. The resulting phase

transitions are still pessimistic compared to average-case behaviour of IHT algorithms (see

Section 1.7), and there is a clear need for an alternative method of analysis leading to average-

case recovery guarantees. We turn our efforts in this direction in the next chapter, where we

present our new approach to recovery analysis for IHT algorithms.

71





Chapter 3

A new recovery analysis of IHT algorithms

In this chapter1, we present a new recovery analysis of IHT algorithms which takes a markedly

different approach to the analysis in Chapter 2. In the context of IHT, whereas previous analysis

takes the direct approach of bounding the approximation error from iteration to iteration, we

take a two-part approach in which we analyse the fixed points of the algorithm. Firstly, we prove

necessary conditions for there to be a fixed point on a given support, in order to determine

bounds on the approximation error of any fixed point. Secondly, we give a condition which

guarantees the convergence of IHT to one of its fixed points. Our recovery results then follow

by combining the two parts of the analysis. By extending the notion of a fixed point to the

concept of an α-stable point, we follow broadly the same approach to obtain recovery results for

NIHT. By way of outline, in Section 3.1, we introduce the concept of an α-stable point of generic

IHT, and prove a necessary condition for there to be an α-stable point on a given support. In

Section 3.2, we provide RIP conditions guaranteeing convergence of both the IHT and NIHT

stepsize variants to an α-stable point. We prove our results in the context of Problem 1.3,

namely in the most general case of k-compressible signals and noisy measurements. The reason

for this approach is that, in the following two chapters, we will analyse the conditions derived

in this chapter by making average-case assumptions, and therefore we wish to dispense with

the RIP wherever possible. Considering Problem 1.3 directly means we avoid the need to

revert to the RIP and Lemma 2.2 in order to extend results for k-sparse recovery to results for

k-compressible recovery.

In later chapters, we will use average-case assumptions to analyse the stable point conditions

derived in Section 3.1 for Gaussian matrices. However, the RIP can also be used to analyse

these conditions, and we perform this analysis in Section 3.3 for comparison purposes. By

combining these results with the RIP-based convergence analysis from Section 3.2, we deduce

RIP conditions for IHT and NIHT which guarantee robust signal recovery. Since we perform

worst-case RIP analysis alone in Section 3.3, we revert to Problem 1.2 in Section 3.3, relying

1Material in the following three chapters is in preparation for submission in [42], which is a joint authorship
with C. Cartis whose permission has been obtained for the inclusion of the material.
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upon Lemma 2.2 for the extension to k-compressible signals. We first introduce some notation.

Notation. Recalling from (1.13) that x∗k is the best k-sparse approximation to x∗, we define

the support set Λ to be

Λ := supp(x∗k). (3.1)

Note that Λ may also be viewed as the set of indices corresponding to the largest k coefficients

of x∗. We will assume that x∗ itself is at least k-sparse (it may not be sparse at all), so that x∗k

is exactly k-sparse and Λ has cardinality |Λ| = k. Recalling (2.6), the combined noise E due

both to compression error and noise in the measurements may be written as

E := A(x∗ − x∗k) + e = AΛCx∗ΛC + e. (3.2)

Given some index set Γ of cardinality k, we also define

ẽΓ := e+A(Γ∪Λ)Cx∗(Γ∪Λ)C . (3.3)

Note that the subscript in ẽΓ ∈ R
n is used to highlight the dependence on the choice of

support set Γ, but does not denote a restriction as is often the case for subscripts in this thesis.

3.1 Analysis of the stable point condition

Let us begin our considerations with IHT, the constant stepsize variant. Recalling the algorithm

summary in Algorithm 2.1, let us write

φ(x) := Hk{x+ αAT (b−Ax)}, (3.4)

so that the IHT iteration can be expressed as xm+1 = φ(xm). Then a fixed point of IHT is

defined as any x̄ ∈ R
N such that

φ(x̄) = x̄. (3.5)

The following necessary conditions for some x̄ to be a fixed point of IHT are a reformulation of

those originally given for IHT with unit stepsize by Blumensath and Davies in [26].

Lemma 3.1 (IHT fixed point necessary condition [26]). Suppose x̄ ∈ R
N is a fixed point

of IHT with stepsize α > 0. Then there exists some set Γ with supp(x̄) ⊆ Γ and |Γ| = k such

that the following two conditions hold:

{

AT (b−Ax̄)
}

Γ
= 0; (3.6)

min
i∈Γ

|x̄i| ≥ αmax
j∈ΓC

|
{

AT (b−Ax̄)
}

j
|. (3.7)
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Proof: Suppose x̄ is a fixed point of IHT with stepsize α > 0 and let Γ be such that

supp(x̄) ⊆ Γ and |Γ| = k. We denote

ā := x̄+ αAT (b−Ax̄) (3.8)

so that

φ(x̄) = Hk(ā). (3.9)

We distinguish two cases: first suppose that supp(x̄) = Γ. Then by (3.5), supp(φ(x̄)) = Γ,

which along with (3.9), implies that

āΓ = x̄Γ, (3.10)

which in turn combines with (3.8) to give (3.6). Now (3.9) also combines with (1.26) to give

|āi| ≥ |āj | for all i ∈ Γ and all j ∈ ΓC . (3.11)

Since supp(x̄) = Γ, (3.8) implies that āΓC = αAT
ΓC (b − Ax̄) which, together with (3.10) and

(3.11), implies (3.7). Now suppose that supp(x̄) ⊂ Γ. Then by (3.5), supp(φ(x̄)) = supp(x̄),

which along with (3.9), implies that

āsupp(x̄) = x̄supp(x̄),

which in turn combines with (3.8) to give

{

AT (b−Ax̄)
}

supp(x̄)
= 0. (3.12)

Since |supp(x̄)| < k, we also have x̄i = 0 for some i ∈ Γ, and it follows from (3.9) and (1.26)

that āΓC = 0, and since supp(x̄) ⊂ Γ, this implies

AT
supp(x̄)C (b−Ax̄) = 0. (3.13)

We may now deduce (3.6) by combining (3.12) and (3.13), while (3.7) also follows trivially from

(3.13) since ΓC ⊂ supp(x̄)C . �

Conditions (3.14) and (3.15) have a simple intuitive interpretation: if a further iteration of

IHT is applied at a fixed point x̄, there is no change in the support set, for which we require

the gradient terms on the complement of the support of x̄ to be suitably small, namely (3.7)

must hold. Meanwhile, the coefficients on the support of x̄ remain unchanged, for which we

require the gradient on the support of x̄ to be zero, namely (3.6) must hold.
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If the inequality in (3.7) is replaced by a strict inequality, then it can be shown that the

conditions in Lemma 3.1 are also sufficient for x̄ to be a fixed point of IHT [26].

However, when it comes to NIHT, if (3.6) holds, the exact linesearch stepsize choice (2.2)

with which the NIHT stepsize is initialized is not well-defined since the numerator and denom-

inator are both zero. To address this issue, we introduce the concept of an α-stable point.

Definition 3.2 (α-stable points of generic IHT). Given α > 0 and an index set Γ with

|Γ| = k, we say x̄ ∈ R
N is an α-stable point of generic IHT on Γ if supp(x̄) ⊆ Γ and

{

AT (b−Ax̄)
}

Γ
= 0 and (3.14)

min
i∈Γ

|x̄i| ≥ αmax
j∈ΓC

|
{

AT (b−Ax̄)
}

j
|. (3.15)

Note that Γ is defined to be a set of cardinality k and so is not necessarily the support of x̄;

rather the support of x̄ is contained within Γ. We focus entirely on generic IHT in the present

chapter and in Chapter 5, and so for brevity’s sake we will generally drop the ‘of generic IHT’

label. Often, we will not need to specify a set Γ, and we will simply refer to an x̄ satisfying

Definition 3.2 as an α-stable point. For IHT, we can view an α-stable point as a generalization

of the notion of a fixed point. In particular, note that, by Lemma 3.1, any fixed point of IHT

with stepsize α > 0 is an α-stable point of generic IHT.

In general, we will be interested in values of α which lower bound the stepsize αm of generic

IHT. We next show that any α-stable point may be characterized as a minimum-norm solution

on some k-subspace.

Lemma 3.3. Suppose Assumption 1 holds and suppose x̄ is an α-stable point of generic IHT

on Γ for some α > 0. Then x̄Γ = A†
Γb, where the Moore-Penrose pseudoinverse A†

Γ is defined

in (2.7).

Proof: It follows from (3.14) that AT
Γ (b − AΓx̄Γ) = 0 where supp(x̄) ⊆ Γ and |Γ| = k.

Under Assumption 1, the pseudoinverse A†
Γ in (2.7) is well-defined and we may rearrange to

give x̄Γ = A†
Γb. �

While the previous lemma tells us that any stable point is necessarily a minimum-norm

solution on some k-subspace, the converse may not hold. In the case of Problem 1.3, we next

deduce a necessary condition for a stable point on a given support which is only in terms of x∗,

A and e and their restrictions to certain support sets.
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Theorem 3.4 (Stable point condition). Consider Problem 1.3. Suppose Assumption 1 holds

and suppose there exists an α-stable point on some Γ such that Γ 6= Λ. Then

∥

∥

∥
A†

ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥
+
∥

∥

∥
x∗Γ\Λ

∥

∥

∥
+
∥

∥

∥
A†

ΓẽΓ

∥

∥

∥
≥ α

{
∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)AΛ\Γx

∗
Λ\Γ

∥

∥

∥
−
∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)ẽΓ

∥

∥

∥

}

,

(3.16)

where Λ is defined in (3.1) and ẽΓ is defined in (3.3).

Proof: Assume x̄ is an α-stable point on Γ. Since Γ \Λ ⊆ Γ and Λ \Γ ⊆ ΓC , (3.15) implies

that

min
i∈Γ\Λ

|x̄i| ≥ α max
j∈Λ\Γ

|
{

AT (b−Ax̄)
}

j
|. (3.17)

Definition 3.2 implies that |Γ| = |Λ|, and therefore |Γ \ Λ| = |Λ \ Γ|. This, properties of the

Euclidean norm and (3.17) provide

‖x̄Γ\Λ‖2 ≥ |Γ \ Λ|
{

min
i∈Γ\Λ

|x̄i|
}2

≥ |Λ \ Γ|
{

α max
j∈Λ\Γ

|
{

AT (b−Ax̄)
}

j
|
}2

≥ α2‖AT
Λ\Γ(b−Ax̄)‖2.

(3.18)

Problem 1.3 and (3.3) imply

b = Ax∗ + e = AΓx
∗
Γ +AΛ\Γx

∗
Λ\Γ +A(Λ∪Γ)Cx∗(Λ∪Γ)C + e = AΓx

∗
Γ +AΛ\Γx

∗
Λ\Γ + ẽΓ. (3.19)

This and Lemma 3.3 now provide, under Assumption 1,

x̄Γ = A†
Γb = x∗Γ +A†

ΓAΛ\Γx
∗
Λ\Γ +A†

ΓẽΓ,

where in the last equality, we used A†
ΓAΓ = I. Therefore,

∥

∥x̄Γ\Λ

∥

∥ =

∥

∥

∥

∥

(

x∗Γ +A†
ΓAΛ\Γx

∗
Λ\Γ +A†

ΓẽΓ

)

Γ\Λ

∥

∥

∥

∥

≤
∥

∥

∥
x∗Γ\Λ

∥

∥

∥
+
∥

∥

∥
A†

ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥
+
∥

∥

∥
A†

ΓẽΓ

∥

∥

∥
, (3.20)

which upper bounds the left-hand side of (3.18). Under Assumption 1, we may next use

Lemma 3.3 and (3.19) to express the right-hand side of (3.18) independently of x̄, as

AT
Λ\Γ(b−Ax̄) = AT

Λ\Γ(I −AΓA
†
Γ)b = AT

Λ\Γ(I −AΓA
†
Γ)(AΛ\Γx

∗
Λ\Γ + ẽΓ),

where in the last equality, we used A†
ΓAΓ = I. We therefore may deduce

∥

∥

∥
AT

Λ\Γ(b−Ax̄)
∥

∥

∥
≥
∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)AΛ\Γx

∗
Λ\Γ

∥

∥

∥
−
∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)ẽΓ

∥

∥

∥
. (3.21)

Substituting (3.20) and (3.21) into (3.18), we arrive at (3.16). �

In the case of Problem 1.2, Theorem 3.4 simplifies to the following corollary.
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Corollary 3.5 (Exactly sparse signals; noisy measurements). Consider Problem 1.2.

Suppose Assumption 1 holds and suppose there exists an α-stable point of generic IHT on some

Γ such that Γ 6= Λ. Then

∥

∥

∥
A†

ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥
+
∥

∥

∥
A†

Γe
∥

∥

∥
≥ α

{∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)AΛ\Γx

∗
Λ\Γ

∥

∥

∥
−
∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)e
∥

∥

∥

}

, (3.22)

where Λ is defined in (3.1).

Proof: Since x∗ΛC = 0, we also have ẽΓ = e and x∗Γ\Λ = 0, and making both these substitu-

tions in (3.16) yields the required result. �

Corollary 3.5 simplifies further in the case of Problem 1.1.

Corollary 3.6 (Noiseless case). Consider Problem 1.1. Suppose Assumption 1 holds and

suppose there exists an α-stable point of generic IHT on some Γ such that Γ 6= Λ. Then

∥

∥

∥
A†

ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥
≥ α

∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)AΛ\Γx

∗
Λ\Γ

∥

∥

∥
, (3.23)

where Λ is defined in (3.1).

Proof: The result follows immediately upon setting e := 0 in (3.22). �

3.2 Convergence analysis

In this section, we derive convergence conditions for both IHT and NIHT. We first introduce

some more notation. Recalling (1.24), we let

gm := ∇Ψ(xm) and Γm := supp(xm) for all m ≥ 0, (3.24)

where {xm} are the iterates of generic IHT.

Some useful properties of the iterates of the generic IHT algorithm are given in the next

lemma.

Lemma 3.7. The iterates of generic IHT satisfy, for all m ≥ 0,

‖xm+1 − xm‖2 + 2αm(gm)T (xm+1 − xm) ≤ 0 (3.25)

and

Ψ(xm+1) − Ψ(xm) = (gm)T (xm+1 − xm) +
1

2

∥

∥A(xm+1 − xm)
∥

∥

2
. (3.26)
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Proof: Using (1.25) and (3.24), we may rewrite the generic IHT iteration (1.27) as

xm+1 = arg min
‖z‖0≤k

‖z − {xm − αmgm} ‖2,

from which we may deduce

‖xm+1 − (xm − αmgm)‖2 ≤ ‖xm − (xm − αmgm)‖2 = (αm)2‖gm‖2,

which expands to give

‖xm+1 − xm‖2 + 2αm(gm)T (xm+1 − xm) + (αm)2‖gm‖2 ≤ (αm)2‖gm‖2,

and so (3.25) holds. Since Ψ(x) in (1.24) is a quadratic function, we have no remainder in the

following second-order Taylor expansion

Ψ(xm+1) − Ψ(xm) = [∇Ψ(xm)]
T

(xm+1 − xm) + 1
2 (xm+1 − xm)T

[

∇2Ψ
]

(xm+1 − xm)

= (gm)T (xm+1 − xm) + 1
2 (xm+1 − xm)TATA(xm+1 − xm),

and so (3.26) follows. �

A sufficient condition for convergence of generic IHT is given next.

Lemma 3.8 (Sufficient condition for convergence). Consider Problem 1.3. Suppose As-

sumption 1 holds, and suppose the iterates of generic IHT satisfy

‖xm+1 − xm‖2 ≤ d
[

Ψ(xm) − Ψ(xm+1)
]

for all m ≥ 0, (3.27)

for some d > 0 which does not depend upon m, where Ψ(x) is defined in (1.24). Assume that

there exist α ≥ α > 0 such that

α ≥ αm ≥ α for all m ≥ 0. (3.28)

Then xm → x̄ as m→ ∞, where x̄ is an α-stable point of generic IHT.

Proof: We deduce from (3.27) that

∞
∑

m=0

‖xm+1 − xm‖2 ≤ d
∞
∑

m=0

[

Ψ(xm) − Ψ(xm+1)
]

≤ dΨ(x0),

where to obtain the last inequality we used Ψ(xm) ≥ 0. Thus convergent series properties

provide

‖xm+1 − xm‖ → 0 as m→ ∞. (3.29)
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From (1.27) and (3.24), we deduce

xm+1
Γm+1 = xm

Γm+1 − αmgm
Γm+1 and xm+1

(Γm+1)C = 0.

Thus restricting (3.29) to Γm+1 and using (3.28) provide

‖gm
Γm+1‖ → 0 as m→ ∞, (3.30)

while restricting (3.29) to Γm \ Γm+1 yields

‖xm
Γm\Γm+1‖ → 0. (3.31)

For m ≥ 0, let ym denote the minimum-norm solution on Γm, namely,

ym
Γm := A†

Γmb and ym
(Γm)C := 0, (3.32)

which is well-defined due to Assumption 1. Then (3.32) and xm
(Γm)C = 0 provide

‖ym+1 − xm‖ ≤ ‖ym+1
Γm+1 − xm

Γm+1‖ + ‖xm
(Γm+1)C‖ = ‖A†

Γm+1b− xm
Γm+1‖ + ‖xm

Γm\Γm+1‖
= ‖(AT

Γm+1AΓm+1)−1AT
Γm+1(b−AΓm+1xm

Γm+1)‖ + ‖xm
Γm\Γm+1‖

= ‖(AT
Γm+1AΓm+1)−1gm

Γm+1‖ + ‖xm
Γm\Γm+1‖ → 0 as m→ ∞,

where the limit follows from (3.30), (3.31), Assumption 1 and the fact that there are finitely

many distinct support sets Γm, m ≥ 0. This and (3.29) further give

‖ym − xm‖ → 0 as m→ ∞, (3.33)

and so for any ǫ > 0, there exists m0 ≥ 0 such that

‖ym − xm‖ ≤ ǫ for all m ≥ m0. (3.34)

We denote the index set of changing minimum-norm solutions by S :=
{

m ≥ m0 : ym+1 6= ym
}

,

and we will show that S is finite. Now set

ǫ :=
1

4
min
m∈S

‖ym+1 − ym‖. (3.35)

Note that ǫ > 0 since there are finitely many distinct support sets Γm, m ≥ 0. Then, the

triangle inequality, (3.34) and (3.35) yield

‖xm+1 − xm‖ ≥ ‖ym+1 − ym‖ − ‖ym+1 − xm+1‖ − ‖ym − xm‖ ≥ 4ǫ− ǫ− ǫ > ǫ for all m ∈ S.
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This and (3.29) imply that S must be finite and so there exists m1 ≥ m0 such that ym+1 =

ym = x̄ for all m ≥ m1, where x̄Γ = A†
Γb and x̄ΓC = 0, for some Γ with |Γ| = k. This and

(3.33) give

xm → x̄ as m→ ∞. (3.36)

Clearly, (3.14) holds for the limit point x̄ of the iterates {xm}. To complete the proof, it remains

to establish (3.15). The thresholding operation that defines xm+1 in generic IHT gives that

min
i∈Γm+1

|xm+1
i | ≥ max

j∈(Γm+1)C
|{xm − αmgm}j | for all m ≥ 0, (3.37)

and (3.28) implies that there exists a convergent subsequence of stepsizes,

αmr → α̃ ≥ α as r → ∞. (3.38)

Letting ǫ := 1
2 mini∈supp(x̄) x̄i, (3.36) implies that ‖xm − x̄‖ ≤ ǫ, and so

supp(x̄) ⊆ Γm, for all m sufficiently large. (3.39)

Firstly, assume that supp(x̄) = Γ. Then, since |Γ| = |Γm| = k, (3.39) implies that Γm = Γ for

all m sufficiently large which, together with (3.37), provides

min
i∈Γ

|xm+1
i | ≥ max

j∈ΓC
|{xm − αmgm}j | for all m sufficiently large. (3.40)

Passing to the limit in (3.40) on the subsequence mr for which (3.38) holds, using (3.36),

x̄ΓC = 0 and the right-hand side of (3.28) imply (3.15) holds in this case. It remains to consider

the case when supp(x̄) ⊂ Γ. Then mini∈Γ |x̄i| = 0 and so (3.36) further provides

min
i∈Γm+1

|xm+1
i | → 0 as m→ ∞. (3.41)

Now (3.39) and again (3.36) provide

xm
Γm+1 → 0 as m→ ∞. (3.42)

Passing to the limit in (3.37) on the subsequence mr for which (3.38) holds, and using (3.41)

and (3.42), we obtain that gm
(Γm+1)C → 0 as m → ∞. This and (3.30) now give that gm =

AT (Axm − b) → 0, which due to (3.36), implies that AT (b − Ax̄) = 0 and so (3.15) trivially

holds in this case. �

In [26], Blumensath and Davies prove convergence of the iterates of IHT to a single limit

point under the assumption that α‖A‖2 < 1. Largely following their method of proof, we now
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show that the latter requirement on the IHT stepsize can be weakened to a condition involving

the RIP constant U2k of A.

Theorem 3.9 (IHT convergence). Consider Problem 1.3. Suppose that Assumption 1 holds,

and suppose that the IHT stepsize satisfies

α <
1

1 + U2k
. (3.43)

Then IHT with stepsize α converges to an α-stable point x̄ of generic IHT.

Proof: Let m ≥ 0. Since the support size of the change to the iterates xm+1 − xm is at

most 2k, (1.15) with s = 2k provides ‖A(xm+1 − xm)‖2 ≤ (1 + U2k)‖xm+1 − xm‖2. Using this

bound, and (3.25) with the choice (3.43), in (3.26), we obtain

Ψ(xm+1)−Ψ(xm) ≤ − 1

2α
‖xm+1−xm‖2+

1

2
(1+U2k)‖xm+1−xm‖2 =

α(1 + U2k) − 1

2α
‖xm+1−xm‖2,

which, due to (3.43), implies that (3.27) holds with d := 2α/[1 − α(1 + U2k)]. Due to (6.39),

(3.28) trivially holds with α = α = α. Thus Lemma 3.8 applies, and the IHT iterates xm

converge to an α-stable point. �

A similar result has also recently appeared in [93]. We next obtain a convergence result

for NIHT. In this case, there is no explicit requirement for an RIP condition to be satisfied;

however, the RIP this time appears in the choice of α.

Theorem 3.10 (NIHT convergence). Suppose Assumption 1 holds. Then NIHT with shrink-

age parameter κ converges to a [κ(1 + U2k)]−1-stable point x̄ of generic IHT.

Proof: Firstly, we consider the case when the exact linesearch choice is accepted, so that

αm is given by (2.2). Then (3.24) implies Γm+1 = Γm, and (1.27) implies

xm+1
Γm = xm

Γm − αmgm
Γm . (3.44)

Using (3.44), (2.2) becomes

αm =
‖gm

Γm‖2

‖AΓmgm
Γm‖2

=
‖xm+1 − xm‖2

‖A(xm+1 − xm)‖2
. (3.45)

Using that xm+1 − xm is supported on Γm, expressing gm
Γm from (3.44) and substituting into

82



Quantitative analysis of algorithms for compressed signal recovery 83

(3.26), we deduce that

Ψ(xm+1) − Ψ(xm) = − 1

αm
(xm+1

Γm − xm
Γm)T (xm+1

Γ − xm
Γ ) +

1

2
‖A(xm+1 − xm)‖2

= − 1

αm
‖xm+1 − xm‖2 +

1

2αm
‖xm+1 − xm‖2

= − 1

2αm
‖xm+1 − xm‖2, (3.46)

where to obtain the second equality, we also used (3.45). Alternatively, when αm is computed

by shrinkage, we deduce that

‖A(xm+1 − xm)‖2 ≤ 1 − c

2αm
‖xm+1 − xm‖2.

Substituting this and (3.25) into (3.26), we obtain

Ψ(xm+1)−Ψ(xm) ≤ − 1

2αm
‖xm+1−xm‖2+

1 − c

2αm
‖xm+1−xm‖2 = − c

2αm
‖xm+1−xm‖2. (3.47)

Thus (3.46), (3.47) and c ∈ (0, 1) imply that, for all m ≥ 0,

‖xm+1 − xm‖2 ≤ 2αm

c
[Ψ(xm) − Ψ(xm+1)] ≤ 2(1 − c)

c(1 − L2k)
[Ψ(xm) − Ψ(xm+1)],

due to (2.3). Hence (3.27) holds with d := 2(1− c)/[c(1−L2k)], and so does (3.28) due to (2.3).

Lemma 3.8 applies and, together with (2.3), provides the required conclusion. �

3.3 RIP conditions based on the new recovery analysis

In this section, we use the RIP to translate the results in Sections 3.1 and 3.2 into new RIP-

based recovery conditions for both IHT and NIHT. Since we choose to use the RIP, Lemma 2.2

and the comments thereafter apply, which show that any result for Problem 1.2 can be extended

to a result for Problem 1.3. Hence, we may restrict our focus to Problem 1.2, noting that in

this simplified case we have E := e. The next pivotal result proves that, under a certain RIP

condition, any α-stable point of generic IHT approximates the original k-sparse signal x∗ to

within a fixed multiple of ‖e‖.

Lemma 3.11 (Stable point error bounds). Consider Problem 1.2. Suppose Assumption 1

holds and let x̄ be an α-stable point of generic IHT. Define

π
α
k := α

[

(1 − Lk) − (L2k + U2k)2

4(1 − Lk)

]

− (L2k + U2k)

2(1 − Lk)
(3.48)

and

ξ
α
k :=

1√
1 − Lk

+ α
√

1 + Uk. (3.49)
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Provided π
α
k > 0, x̄ satisfies

‖x̄− x∗‖ ≤
√

(

ξ
α
k

π
α
k

)2

+

[

ξ
α
k (L2k + U2k)

2π
α
k (1 − Lk)

+
1√

1 − Lk

]2

‖e‖. (3.50)

Proof: Assume x̄ is an α-stable point on Γ. Then, under Assumption 1, we may apply

Corollary 3.5 to deduce (3.22). Next we use the RIP to upper bound the left-hand side of

(3.22). By (2.10) and (2.12) of Lemma 2.3, we have

∥

∥

∥
A†

ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥
=
∥

∥

∥
(AT

ΓAΓ)−1AT
ΓAΛ\Γx

∗
Λ\Γ

∥

∥

∥
≤ 1

1 − Lk

∥

∥

∥
AT

ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥
≤ L2k + U2k

2(1 − Lk)

∥

∥

∥
x∗Λ\Γ

∥

∥

∥
,

(3.51)

and, by (2.11) of Lemma 2.3, we have

∥

∥

∥
A†

Γe
∥

∥

∥
≤ 1√

1 − Lk

‖e‖. (3.52)

Similarly, we use the RIP to lower bound the right-hand side of (3.22). By (2.9), (2.12) and

(2.10) of Lemma 2.3, we have

∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)AΛ\Γx

∗
Λ\Γ

∥

∥

∥
≥

∥

∥

∥
AT

Λ\ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥
−
∥

∥

∥
AT

Λ\ΓAΓ(AT
ΓAΓ)−1AT

ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥

≥ (1 − Lk)
∥

∥

∥
x∗Λ\Γ

∥

∥

∥
− (L2k + U2k)2

4(1 − Lk)

∥

∥

∥
x∗Λ\Γ

∥

∥

∥

=

[

(1 − Lk) − (L2k + U2k)2

4(1 − Lk)

]

∥

∥

∥
x∗Λ\Γ

∥

∥

∥
, (3.53)

and by (2.8) of Lemma 2.3, and since (I −AΓA
†
Γ) is a contraction, we have

∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)e
∥

∥

∥
≤
√

1 + Uk

∥

∥

∥
(I −AΓA

†
Γ)e
∥

∥

∥
≤
√

1 + Uk‖e‖. (3.54)

Combining (3.22) with (3.51), (3.52), (3.53) and (3.54), we obtain

L2k + U2k

2(1 − Lk)

∥

∥

∥
x∗Λ\Γ

∥

∥

∥
+

1√
1 − Lk

‖e‖ ≥ α

{[

(1 − Lk) − (L2k + U2k)2

4(1 − Lk)

]

∥

∥

∥
x∗Λ\Γ

∥

∥

∥
−
√

1 + Uk‖e‖
}

,

which may be rearranged to give

π
α
k

∥

∥

∥
x∗Λ\Γ

∥

∥

∥
≤ ξ

α
k ‖e‖. (3.55)

Under the assumption π
α
k > 0, we may conclude

∥

∥

∥
x∗Λ\Γ

∥

∥

∥
≤ ξ

α
k

π
α
k

‖e‖. (3.56)
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We now bound the approximation error of x̄. We may apply (3.56) to deduce

∥

∥(x̄− x∗)Λ\Γ

∥

∥ =
∥

∥

∥
x∗Λ\Γ

∥

∥

∥
≤ ξ

α
k

π
α
k

‖e‖. (3.57)

Meanwhile, applying Lemma 3.3, and using A†
ΓAΓ = I, we have

(x̄− x∗)Γ = A†
Γb− x∗Γ = A†

ΓAΛ\Γx
∗
Λ\Γ + x∗Γ +A†

Γe− x∗Γ = A†
ΓAΛ\Γx

∗
Λ\Γ +A†

Γe,

and we may therefore use the triangle inequality to bound

‖(x̄− x∗)Γ‖ ≤
∥

∥

∥
A†

ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥
+
∥

∥

∥
A†

Γe
∥

∥

∥
. (3.58)

Applying (3.51) and (3.52) to (3.58), along with a further application of (3.56), leads to

‖(x̄− x∗)Γ‖ ≤ L2k + U2k

2(1 − Lk)

∥

∥

∥
x∗Λ\Γ

∥

∥

∥
+

1√
1 − Lk

‖e‖ ≤
[

ξ
α
k (L2k + U2k)

2π
α
k (1 − Lk)

+
1√

1 − Lk

]

‖e‖. (3.59)

Since (x̄− x∗) is supported on Γ ∪ Λ, we may write

‖x̄− x∗‖2 =
∥

∥(x̄− x∗)Λ\Γ

∥

∥

2
+ ‖(x̄− x∗)Γ‖2

,

from which (3.50) now follows upon substitution of (3.57) and (3.59). �

We may use Lemma 3.11 to deduce the following RIP-based recovery result for IHT.

Theorem 3.12 (IHT). Suppose Assumption 1 holds, and define

αmin :=
2(L2k + U2k)

4(1 − Lk)2 − (L2k + U2k)2
and αmax :=

1

1 + U2k
. (3.60)

Provided

αmin < αmax, (3.61)

and provided α satisfies

α ∈ (αmin, αmax), (3.62)

IHT with stepsize α converges to x̄ such that (3.50) holds with α := α.

Proof: By (3.60) and (3.61), any α chosen according to (3.62) satisfies (3.43). Therefore,

under Assumption 1, we may apply Theorem 3.9 and conclude that IHT converges to some

α-stable point x̄. On the other hand, simple rearrangement shows that, if α is chosen according

to (3.62), then πα
k > 0, where πα

k is defined in (3.48). Hence, under Assumption 1, we may

apply Lemma 3.11 with α := α, giving the desired result. �
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Theorem 3.12 guarantees recovery provided the stepsize α falls within some admissible

interval, whenever the interval is well-defined. In fact, the stable point condition yields a lower

bound on the stepsize, while the convergence condition enforces an upper bound on the stepsize.

It has been observed empirically [72] that care must be taken to ensure that the IHT stepsize is

neither too small or too large. Our analysis suggests a simple interpretation of this observation:

the stepsize must be small enough to ensure that the algorithm converges, but large enough to

ensure that it does not converge to fixed points other than the original signal.

It is common in the CS literature to give RIP-based recovery guarantees in terms of a single

symmetric RIP constant (see Definition 1.2). In this regard, it is straightforward to deduce

from Theorem 3.12 that, provided

R2k <

√
13 − 3

2
≈ 0.303,

stable recovery of IHT is guaranteed for any α falling in the interval

R2k

1 − 2R2k
< α <

1

1 +R2k
.

However, weaker recovery conditions in terms of R2k already exist for IHT: the current best

known such condition is R2k < 1/3, obtained by Garg and Khandekar [96] for the stepsize

choice α := 1/(1 +R2k).

Next we give a recovery result for NIHT.

Theorem 3.13 (NIHT). Suppose Assumption 1 holds, and suppose that

(L2k + U2k)
[

L2k + U2k + 2κ(1 + U2k)
]

< 4(1 − Lk)2. (3.63)

Then NIHT with shrinkage parameter κ converges to x̄ such that (3.50) holds with α := [κ(1 +

U2k)]−1.

Proof: Since Assumption 1 holds, we may apply Theorem 3.10 and conclude that NIHT

converges to some α-stable point x̄, where

α := [κ(1 + U2k)]−1. (3.64)

On the other hand, if α is given by (3.64), simple rearrangement shows that (3.63) is equiv-

alent to π
α
k > 0, where π

α
k is defined in (3.48). Hence, under Assumption 1, we may apply

Lemma 3.11, concluding that x̄ satisfies (3.50) for α given by (3.64). �

The result in Theorem 3.13 degrades as the shrinkage parameter κ is increased. As κ→ 1,

the recovery condition for NIHT in Theorem 3.13 approaches the recovery condition for IHT in
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Theorem 3.12.

In the context of symmetric RIP, it is straightforward to deduce from Theorem 3.13 that

robust recovery is guaranteed for NIHT with stepsize κ provided

R2k <

√
κ2 + 8κ+ 4 − (κ+ 2)

2κ
,

which gives, for example, R2k < (
√

1401 − 31)/22 ≈ 0.292 for κ := 1.1, and which represents

an improvement upon the previous best known recovery condition for NIHT in terms of R2k,

namely R2k < 1/9 [27], which holds for NIHT with no backtracking.

Without quantifying the results in this section, it is unclear how they compare with the

results in Chapter 2. We will present such a comparison in the phase transition framework for

Gaussian matrices at the start of Chapter 5, where we will argue for the need for average case

analysis in order to obtain significantly improved phase transitions for IHT algorithms.
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Chapter 4

Large deviations tools for Gaussian matrices

In Chapter 2, we obtained phase transitions for IHT algorithms in the case of Gaussian matrices

by making use of numerically computable upper bounds on RIP constants [4]. These RIP

bounds hold with overwhelming probability in the proportional-dimensional asymptotic defined

in Definition 1.5. In this chapter, we develop asymptotic bounds in the proportional-dimensional

framework for other quantities related to Gaussian matrices. First, in Section 4.1, we analyse the

stable point condition from Theorem 3.4, assuming Gaussian measurement noise, and assuming

independence of the original signal, measurement matrix and measurement noise. By making

use of standard results concerning Rayleigh quotients of Gaussian-related matrices, we derive

the precise distribution of bounds for each term in (3.16) in terms of the χ2 and F distributions.

There are combinatorially many possible support sets for a stable point, and each gives rise

to instances of the distributions arising from (3.16). In order to bound over all support sets,

the remainder of the chapter is devoted to proving large deviations bounds in the proportional-

dimensional asymptotic for a combinatorial number of χ2- and F -distributed random variables.

In Section 4.2, we first establish results concerning the asymptotic behaviour of the regularized

incomplete gamma and beta functions when their parameters grow proportionally. Since these

functions are the distribution functions for the χ2 and F distributions respectively, we are

then able to draw upon these results in Section 4.3 to prove our large deviations bounds.

Furthermore, the tail bounds we derive for the χ2 distribution may be viewed as a special version

of the RIP in which the matrix and vector are assumed to be independent, and Section 4.3 also

includes a discussion comparing the two notions.

4.1 Distribution results for Rayleigh quotients

The aim of this section is to derive distribution results in the context of Gaussian measurement

matrices for each of the terms in the stable point condition (3.16) of Theorem 3.4. We first give

some definitions of Gaussian and Gaussian-related matrix variate distributions, along with some

fundamental results concerning their Rayleigh quotients when applied to independent vectors.
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4.1.1 Definitions and preliminary lemmas

We will consider a particular kind of matrix variate Gaussian distribution in which all entries

are i.i.d. Gaussian random variables.

Definition 4.1 (Matrix variate Gaussian distribution). We say that an s×t matrix B fol-

lows the matrix variate Gaussian distribution B ∼ Ns,t(µ, σ
2), if each entry of B independently

follows the (univariate) Gaussian distribution Bij ∼ N (µ, σ2).

The matrix variate distribution is usually defined in the more general setting where entries

are not necessarily independent, see for example [103], but we choose to restrict to the case of

independent entries in this thesis. We will in fact further restrict our attention to the central

matrix variate Gaussian distribution, in which µ = 0. In this case, the probability density

function (pdf) of the matrix variate Gaussian distribution defined here has the following elegant

form.

Lemma 4.2 (Matrix variate Gaussian pdf). Let B ∼ Ns,t(0, σ
2). Then the pdf of B is

fB(M) =
1

(2πσ2)
st
2

e−
‖M‖2

F
σ2 , (4.1)

where

‖M‖F :=

√

√

√

√

s
∑

i=1

t
∑

j=1

M2
ij

is the Frobenius norm.

Proof: Since each entry Bij of B is i.i.d. N (0, σ2), we have

fB(M) =

s
∏

i=1

t
∏

j=1

fBij
(Mij) =

s
∏

i=1

t
∏

j=1

1

σ
√

2π
e−

M2
ij

σ2 =
1

(2πσ2)
st
2

e{− 1
σ2

Ps
i=1

Pt
j=1 M2

ij},

and the result now follows. �

Crucial to our argument will be the well-known result that the central matrix variate Gaus-

sian distribution defined in Definition 4.1 is invariant under transformation by an independent

orthogonal matrix.

Lemma 4.3 (Orthogonal invariance). Let B ∼ Ns,t(0, σ
2) and let Z1 ∈ R

s×s and Z2 ∈ R
t×t

be orthogonal and independent of B. Then

Z1B ∼ Ns,t(0, σ
2), independently of Z1, (4.2)

and

BZ2 ∼ Ns,t(0, σ
2), independently of Z2. (4.3)
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Proof: Let us write Y := Z1B, and first consider the case where Z1 is a fixed orthogonal

matrix. Then ‖Y ‖F = ‖Z1B‖F = ‖B‖F by the orthogonal invariance of the Frobenius norm,

and since the Jacobian of the transformation Z → Y is equal to 1, and using Lemma 4.2, it

then follows that the pdf of Y satisfies

fY (M) =
1

(2πσ2)
st
2

e−
‖M‖2

F
σ2 = fB(M),

and therefore that Y ∼ Ns,t(0, σ
2), independently of Z1. Now suppose Z1 is random but in-

dependent of B. Then, by the preceding argument, the conditional distribution Y |Z1 satisfies

Y |Z1 ∼ Ns,t(0, σ
2), independently of Z1, yielding (4.2). The proof of (4.3) is analogous. �

We can further deduce from Lemma 4.3 the following result.

Lemma 4.4. Let B ∼ Ns,t(0, σ
2) and let z ∈ R

t be a fixed vector. Then Bz ∼ Ns,1(0, σ
2‖z‖2).

Proof: Let B ∼ Ns,t(0, σ
2) and let Z ∈ R

t×t be an orthogonal matrix such that its first

column is z normalized, so that

Z =

[

z

‖z‖

∣

∣

∣

∣

Z2

]

.

Then by Lemma 4.3, BZ ∼ Ns,t(0, σ
2). Since Bz

‖z‖ is a submatrix of BZ, we therefore have

Bz
‖z‖ ∼ Ns,1(0, σ

2), from which the result follows. �

Let us also define the matrix variate Wishart distribution, which is closely related to the

matrix variate Gaussian distribution.

Definition 4.5 (Matrix variate Wishart distribution). Let B ∼ Ns,t(µ, σ
2) such that

s ≥ t. Then we say that BTB follows a matrix variate Wishart distribution Wt(s;µ, σ
2) with s

degrees of freedom, mean µ and variance σ2.

We will state distribution results in terms of the (univariate) χ2 and F distributions, which

we first formally define.

Definition 4.6 (χ2 and F distributions [1, pp.940,946]). Given a positive integer s, let

Zi ∼ N (0, 1) for 1 ≤ i ≤ s. Then we say P = Z2
1 + Z2

2 + . . . + Z2
s follows a chi-squared

distribution with s degrees of freedom, and we write P ∼ χ2
s. Furthermore, given positive

integers s and t, if P ∼ 1
sχ

2
s and Q ∼ 1

tχ
2
t are independent random variables, we say that P/Q

follows the F-distribution, and we write P/Q ∼ F(s, t).

Useful results concerning the distributions of Rayleigh quotients related to Gaussian and

Wishart matrices are given in the next lemma.
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Lemma 4.7 (Distributions of Rayleigh quotients). Let B ∼ Ns,t(0, σ
2) with s ≥ t. Let

z ∈ R
t be independent of B, and such that P(z 6= 0) = 1. Then

zTBTBz

zT z
∼ σ2χ2

s and is independent of z; (4.4)

zT z

zT (BTB)−1z
∼ σ2χ2

s−t+1 and is independent of z; (4.5)

zT (BTB)2z

zT z
has the same distribution as

{

(BTB)2
}

11
. (4.6)

Proof: Let B ∼ Ns,t(0, σ
2) with s ≥ t. [103, Theorem 3.3.12] gives a more general result

than (4.4) for when the entries of B are not necessarily independent. The present result follows

by setting Σ = σ2I for the covariance matrix. Similarly, (4.5) follows by setting Σ = σ2I in [103,

Corollary 3.3.14.1]. To prove (4.6), let S = BTB so that S ∼ Wt(s; 0, σ
2) and let Z ∈ R

t×t

be any orthogonal matrix which is independent of B. Lemma 4.3 yields BZ ∼ Ns,t(0, σ
2)

independently of Z, and, writing T := ZTSZ, we therefore have

T = ZTSZ = ZTBTBZ = (BZ)TBZ ∼ Wt(s; 0, σ
2), (4.7)

independently of Z. In particular, let us fix the first column of Z as z normalized so that

Z =

[

z

‖z‖

∣

∣

∣

∣

Z2

]

,

which leads to

zTS2z = zT (ZTZT )2z = zTZTZTZTZT z = zTZT 2ZT z

= zT

[

z

‖z‖

∣

∣

∣

∣

Z2

]

T 2





zT

‖z‖

ZT
2



 z = [ ‖z‖ | 0 ]T 2





‖z‖
0



 = (T 2)11‖z‖2.

Dividing by ‖z‖2 and using (4.7) then gives the desired result. �

Equipped with the necessary tools, we proceed in the next section to obtain our desired

distribution results.

4.1.2 Analysis of the stable point condition for Gaussian matrices

We now make the assumption that the measurement matrix is drawn from the (central) matrix

variate Gaussian distribution with appropriate normalization.

Assumption 2 (Independent Gaussian measurements). The measurement matrix A has

i.i.d. N (0, 1/n) entries, so that A ∼ Nn,N (0, 1/n). Furthermore, A is independent of x∗.

We are thus considering precisely the same family of matrices for which RIP-based recovery
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phase transitions were obtained for IHT algorithms in Chapter 2. Furthermore, given Assump-

tion 2, the following result from [103] allows us to dispense with Assumption 1.

Lemma 4.8 ([103, Theorem 3.2.1]). Let B ∼ Ns,t(0, σ
2) where s ≥ t. Then BTB is positive

definite with probability 1.

Provided 2k ≤ n, Assumption 2 now implies Assumption 1, since Theorem 4.8 holds for all

the 2k-column submatrices of A.

As in Chapters 2 and 3, we will assume measurements to be noisy, but from now on we will

impose the further assumption that measurement noise is itself Gaussian and independent of

the original signal.

Assumption 3 (Independent Gaussian noise). The noise vector e has i.i.d. Gaussian

entries ei ∼ N(0, σ2/n), independently of both A and x.

Note that, under Assumption 3, E‖e‖2 = σ2, so that ‖e‖ ≈ σ.

We saw in Section 2.2 that any result for exactly sparse signals (Problem 1.2) can be extended

by means of the RIP to a result for compressible signals (Problem 1.3). However, our aim in

the rest of this thesis is to perform average case analysis, and therefore we choose to dispense

with worst-case tools such as the RIP wherever possible. We will instead directly prove results

applicable to noisy measurements and compressible signals. Unless explicitly stated otherwise,

in all that follows in this and the next chapter, we are considering solving Problem 1.3. Recalling

(1.13) and (3.1), we define the unrecoverable energy Σ of the problem, due both to noise in the

measurements and to the signal being only approximately sparse, as follows.

Definition 4.9 (Unrecoverable energy). Given some index set Γ of cardinality k, define

σ̃Γ :=
√

σ2 + ‖x∗
(Γ∪Λ)C‖2, (4.8)

and define

Σ := σ + ‖x∗ΛC‖. (4.9)

We now give the main result of this section, in which we derive precise distributions for

various expressions which make up the stable point condition (3.16) of Theorem 3.4, in terms

of the χ2 and F distributions.

Lemma 4.10 (Distribution results for the stable point condition). Suppose Assump-

tions 2 and 3 hold, and let Γ and Λ be index sets of cardinality k, where k < n, such that Γ 6= Λ.

Then
‖A†

ΓAΛ\Γx
∗
Λ\Γ‖

‖x∗Λ\Γ‖
=
√

FΓ, where FΓ ∼ k

n− k + 1
F (k, n− k + 1); (4.10)

‖AT
Λ\Γ(I −AΓA

†
Γ)AΛ\Γx

∗
Λ\Γ‖

‖x∗Λ\Γ‖
≥
(

n− k

n

)

·RΓ, where RΓ ∼ 1

n− k
χ2

n−k. (4.11)
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‖A†
ΓẽΓ‖ ≤ σ̃Γ ·

√

GΓ, where GΓ ∼ k

n− k + 1
F (k, n− k + 1); (4.12)

‖AT
Λ\Γ(I −AΓA

†
Γ)ẽΓ‖ ≤ σ̃Γ

√

k(n− k)

n2
· (SΓ)(TΓ), where SΓ ∼ 1

n− k
χ2

n−k, TΓ ∼ 1

k
χ2

k,

(4.13)

where ẽΓ is defined in (3.3) and σ̃Γ is defined in (4.8).

Proof of (4.10): Let AΓ have the singular value decomposition

AΓ := U [D | 0]V T = U1DV
T , (4.14)

where D ∈ R
k×k is diagonal, and where V ∈ R

k×k and U = [U1 | U2] ∈ R
n×n are orthogonal,

with U1 ∈ R
n×k. By Assumption 2, A†

Γ is well-defined and we have the standard result

A†
Γ = V D−1UT

1 , (4.15)

and since (AT
ΓAΓ)−1 = V D−2V T , it follows by rearrangement that

D−2 = V T (AT
ΓAΓ)−1V. (4.16)

Using (4.15) and (4.16), we have

‖A†
ΓAΛ\Γx

∗
Λ\Γ‖2 = (x∗Λ\Γ)TAT

Λ\Γ(A†
Γ)T (A†

Γ)AΛ\Γx
∗
Λ\Γ

= (x∗Λ\Γ)TAT
Λ\ΓU1D

−1V TV D−1UT
1 AΛ\Γx

∗
Λ\Γ

= (x∗Λ\Γ)TAT
Λ\ΓU1D

−2UT
1 AΛ\Γx

∗
Λ\Γ

= (x∗Λ\Γ)TAT
Λ\ΓU1V

T (AT
ΓAΓ)−1V UT

1 AΛ\Γx
∗
Λ\Γ. (4.17)

By Lemma 4.3, we have UTAΛ\Γ ∼ Nn,r(0, 1/n), independently of U , where r := |Λ \Γ|. Since

UT
1 AΛ\Γ is a submatrix of UTAΛ\Γ, it follows that UT

1 AΛ\Γ ∼ Nk,r(0, 1/n), independently

of U . Writing C := V UT
1 AΛ\Γ ∈ R

k×r, we also have by Lemma 4.3 that C ∼ Nk,r(0, 1/n),

independently of both U and V , and therefore independently of AΓ. Substituting for C in

(4.17), we have

‖A†
ΓAΛ\Γx

∗
Λ\Γ‖2

‖x∗Λ\Γ‖2
=

(x∗Λ\Γ)TCT (AT
ΓAΓ)−1Cx∗Λ\Γ

(x∗Λ\Γ)Tx∗Λ\Γ

=
(x∗Λ\Γ)TCT (AT

ΓAΓ)−1Cx∗Λ\Γ

(x∗Λ\Γ)TCTCx∗Λ\Γ

·
(x∗Λ\Γ)TCTCx∗Λ\Γ

(x∗Λ\Γ)Tx∗Λ\Γ

, (4.18)

where x∗, C and AΓ are all independent. Now it follows from Lemma 4.7 that

(x∗Λ\Γ)TCTCx∗Λ\Γ

(x∗Λ\Γ)Tx∗Λ\Γ

∼ 1

n
χ2

k and
(x∗Λ\Γ)TCTCx∗Λ\Γ

(x∗Λ\Γ)TCT (AT
ΓAΓ)−1Cx∗Λ\Γ

∼ 1

n
χ2

n−k+1, (4.19)
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where both distributions are independent of each other. Combining (4.18) and (4.19) leads us

to conclude
‖A†

ΓAΛ\Γx
∗
Λ\Γ‖2

‖x∗Λ\Γ‖2
∼ χ2

k

χ2
n−k+1

=
k

n− k + 1
F(k, n− k + 1),

where in the last step we use the fact that the two distributions are independent, which proves

(4.10).

Proof of (4.11): Using (4.14) and (4.15), we have

AΓA
†
Γ = U1DV

TV D−1UT
1 = U1U

T
1 = U





I 0

0 0



UT ,

and writing I = UUT ,

I −AΓA
†
Γ = U











I 0

0 I



−





I 0

0 0











UT = U





0 0

0 I



UT = U2U
T
2 , (4.20)

which in turn gives

AT
Λ\Γ(I −AΓA

†
Γ)AΛ\Γ = AT

Λ\ΓU2U
T
2 AΛ\Γ. (4.21)

Writing F := UT
2 AΛ\Γ, we have UTAΛ\Γ ∼ Nn,r(0, 1/n) by Lemma 4.3, and since UT

2 AΛ\Γ ∈
R

(n−k)×r is a submatrix of UTAΛ\Γ, it follows that

F ∼ N(n−k),r(0, 1/n). (4.22)

Substituting for F in (4.21) gives

AT
Λ\Γ(I −AΓA

†
Γ)AΛ\Γ = FTF. (4.23)

Now, writing M := FTF , and using (4.23) and (4.6) of Lemma 4.7, we deduce

‖AT
Λ\Γ(I −AΓA

†
Γ)AΛ\Γx

∗
Λ\Γ‖2

‖x∗Λ\Γ‖2
=

‖FTFxΛ\Γ‖2

‖x∗Λ\Γ‖2
=

(x∗Λ\Γ)T (FTF )2x∗Λ\Γ

(x∗Λ\Γ)Tx∗Λ\Γ

∼ (M2)11. (4.24)

To obtain a lower bound in terms of the chi-squared distribution, note that

(M2)11 =

r
∑

i=1

M2
i1 = M2

11 +

r
∑

i=2

M2
i1 ≥M2

11. (4.25)

Meanwhile it follows from (4.22) and (4.6) that

M11 =
n−k
∑

i=1

F 2
i1 ∼ 1

n
χ2

n−k,
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which combines with (4.24) and (4.25) to give (4.11).

Proof of (4.12): Since A(Γ∪Λ)C ∈ Nn,N−2k+r(0, 1/n) independently of x∗(Γ∪Λ)C , we may

apply Lemma 4.4 to deduce

{

A(Γ∪Λ)Cx∗(Γ∪Λ)C

}

i
∼ N

(

0,
‖(x∗Γ∪Λ)C‖2

n

)

,

noting also that
{

A(Γ∪Λ)Cx∗(Γ∪Λ)C

}

i
is independent of AΓ∪Λ, which combines with Assump-

tion 3 to give

{ẽΓ}i ∼ N
(

0,
σ̃2

Γ

n

)

, (4.26)

independently of AΓ∪Λ. By (4.15), we have

A†
ΓẽΓ = V D−1UT

1 ẽΓ = V D−1p, (4.27)

where p := UT
1 ẽΓ ∈ R

n−k. By (4.26), we may view ẽΓ as a one-column Gaussian matrix, such

that ẽΓ ∼ Nn,1(0, σ̃
2
Γ/n), it follows from Lemma 4.3 that

p ∼ Nk,1(0, σ̃
2
Γ/n), (4.28)

independently of U and therefore independently of AΓ. Substituting (4.16) into (4.27) then

gives

‖A†
ΓẽΓ‖2 = ‖V D−1p‖2 = ‖D−1p‖2 = pTD−2p = pTV T (AT

ΓAΓ)−1V p = qT (AT
ΓAΓ)−1q, (4.29)

where q := V p ∈ R
k. It now follows from (4.28) and Lemma 4.3 that q ∼ Nk,1(0, σ̃

2
Γ/n),

independently of V and therefore independently of AΓ, and consequently that

qT q ∼ σ̃2
Γχ

2
k. (4.30)

By (4.5) of Lemma 4.7,
qT q

qT (AT
ΓAΓ)−1q

∼ 1

n
χ2

n−k+1. (4.31)

Since q and AΓ are independent, we may combine (4.29), (4.30) and (4.31) to give

‖A†
ΓẽΓ‖ ∼ σ̃Γ

√

GΓ, where GΓ ∼ k

n− k + 1
F (k, n− k + 1), (4.32)

and (3.20) now follows.

Proof of (4.13): Using (4.20), we have

AT
Λ\Γ(I −AΓA

†
Γ)ẽΓ = AT

Λ\ΓU2U
T
2 ẽΓ = AT

Λ\ΓU2f = BT f, (4.33)
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where B := UT
2 AΛ\Γ ∼ Nn−k,r(0, 1/n) by Lemma 4.3, and where

f := UT
2 ẽΓ ∼ Nn−k,1(0, σ̃

2
Γ/n) (4.34)

by (4.26) and Lemma 4.3. Now let B have singular value decomposition

W [F | 0]Y T = W1FY
T , (4.35)

where F ∈ R
r×r is diagonal, and where Y ∈ R

r×r and W = [W1 | W2] ∈ R
(n−k)×(n−k) are

orthogonal, noting that W1 ∈ R
(n−k)×r. We have

g := WT
1 f ∼ Nr,1(0, σ̃

2
Γ/n) (4.36)

by (4.34) and Lemma 4.3, and we may apply (4.33) to give

‖AT
Λ\Γ(I −AΓA

†
Γ)ẽΓ‖2 ≤ ‖BT f‖2 = ‖Y FWT

1 f‖2

= ‖Fg‖2 = gTF 2g = gTY T (BTB)Y g = hT (BTB)h,
(4.37)

where h := Y g ∈ R
k. Since h ∼ Nr,1(0, σ̃

2
Γ/n) by (4.36) and Lemma 4.3, it follows that

hTh ∼ σ̃2
Γχ

2
r ≤ σ̃2

Γχ
2
k, (4.38)

since a χ2
r random variate may be viewed as a truncation of its extension to a χ2

k random

variate. By (4.4) of Lemma 4.7,
hTBTBh

hTh
∼ 1

n
χ2

n−k. (4.39)

Combining (4.37), (4.38) and (4.39) then proves (4.13). �

4.2 Proportional-dimensional asymptotic results for the

regularized incomplete gamma and beta functions

In this section, we obtain proportional-dimensional asymptotic results for the distribution func-

tions of the χ2 and F distributions, namely the regularized incomplete gamma and beta func-

tions.

4.2.1 Definitions and preliminary results

The gamma function, and its incomplete and regularized extensions, can be defined as integrals.

Definition 4.11 (Gamma functions [1, Sections 6.1 and 6.5]). Given p, q > 0, define the
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gamma function as

Γ(p) :=

∫ ∞

0

tp−1e−t dt, (4.40)

define the lower and upper incomplete gamma functions, respectively, as

γ(p, q) :=

∫ q

0

tp−1e−t dt and Γ(p, q) :=

∫ ∞

q

tp−1e−t dt, (4.41)

and define the lower and upper regularized incomplete gamma functions to be, respectively,

P (p, q) :=
γ(p, q)

Γ(p)
and Q(p, q) :=

Γ(p, q)

Γ(p)
. (4.42)

The gamma function can also be viewed as an extension of the factorial function to the

positive real line. Unsurprisingly, then, the gamma function has asymptotic behaviour akin to

Stirling’s formula. The next result describes this asymptotic behaviour in the context of the

logarithm of the gamma function.

Lemma 4.12 (Log-gamma asymptotic [136, Theorem 12 and (4)]). For p > 0,

ln Γ(p) =

(

p− 1

2

)

ln p− p+
1

2
ln(2π) + o(1), (4.43)

where we adopt the usual convention of writing f(p) = o(1) if f(p) → 0 as p→ ∞.

For notational convenience, for p > 0, let us define

Φ(p) := p ln p− p− ln Γ(p). (4.44)

Using Lemma 4.12, we may deduce the following limiting result for Φ(p).

Lemma 4.13 (Log-gamma limit). The following limit holds.

lim
p→∞

1

p
Φ(p) = 0, (4.45)

where Φ(p) is defined in (4.44).

Proof: Dividing (4.43) throughout by p gives

1

p
ln Γ(p) = ln p− 1 + o(1),

and dividing (4.44) throughout by p then gives

1

p
Φ(p) = ln p− 1 − [ln p− 1 + o(1)] = o(1),

which proves the result. �
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The beta function, and its incomplete and regularized variants, can also be defined as

integrals.

Definition 4.14 (Beta functions [1, Sections 6.2 and 6.6]). Given p, q > 0 and x ∈ [0, 1],

define the beta function to be

B(p, q) :=

∫ 1

0

tp−1(1 − t)q−1 dt, (4.46)

define the incomplete beta function to be

Bx(p, q) :=

∫ x

0

tp−1(1 − t)q−1 dt, (4.47)

and define the regularized incomplete beta function to be

Ix(p, q) :=
Bx(p, q)

B(p, q)
. (4.48)

The next result shows that the standard gamma and beta functions defined in (4.40) and

(4.46) are closely related.

Lemma 4.15 (Beta-gamma identity [136, Theorem 7]). For any p, q > 0,

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (4.49)

Preliminaries addressed, we proceed to the main results of this section.

4.2.2 Asymptotics for the regularized incomplete gamma function

By analogy with the proportional-dimensional asymptotic for CS defined in (1.5), we consider

the case in which the parameters of the regularized incomplete gamma function grow propor-

tionally, with their ratio tending to some fixed limit. The functions P (p, q) and Q(p, q) tend to

a spike at q = p in the limit as (p, q) → ∞, which indicates that exponential decay can only

occur for P (p, q) if p > q, and for Q(p, q) if q > p. We therefore derive a separate result for

both the lower and upper variants of the function. We first give the result for P (p, q). In the

following two results, we will consider the change of variables

u(t) :=

√

2

[

t

p
− 1 − ln

(

t

p

)]

, (4.50)

which is strictly decreasing for 0 < t < p and strictly increasing for t > p, and we will further

define

u∗(p, q) :=

√

2

[

q

p
− 1 − ln

(

q

p

)]

. (4.51)
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Theorem 4.16 (Lower regularized incomplete gamma function). Let p > q > 0 be such

that q
p → γ as (p, q) → ∞ with 0 < γ < 1. Then

lim
p→∞

1

p
lnP (p, q) = −(γ − 1 − ln γ), (4.52)

where P (p, q) is defined in (4.42).

Proof: By (4.41) and simple rearrangement, we have

γ(p, q) =

∫ q

0

tp−1e−t dt =
(p

e

)p
∫ q

0

1

t
e−p[ t

p
−1−ln( t

p )] dt,

to which we may apply the change of variables (4.50) to obtain

γ(p, q) =
(p

e

)p

Ip,q, (4.53)

where

Ip,q :=

∫ ∞

u∗(p,q)

ue−
1
2 pu2 · 1

(

1 − t
p

) du, (4.54)

and where u∗(p, q) is defined in (4.51). Note that, since q/p→ γ,

lim
p→∞

u∗(p, q) =
√

2(γ − 1 − ln γ). (4.55)

Since t ≤ q, we may upper bound (4.54) as

Ip,q ≤ 1
(

1 − q
p

)

∫ ∞

u∗(p,q)

ue−
1
2 pu2

=
1

p
(

1 − q
p

)e−
1
2 p[u∗(p,q)]2 . (4.56)

On the other hand, since t ≤ q and 1 − q/p ≤ 1, we may lower bound (4.54) as

Ip,q ≥
∫ ∞

u∗(p,q)

ue−
1
2 pu2

du =
1

p
e−

1
2 p[u∗(p,q)]2 ,

which, together with (4.56) and taking logarithms, gives

1

p
ln

{

1

p
e−

1
2 p[u∗(p,q)]2

}

≤ 1

p
ln Ip,q ≤ 1

p
ln







1

p
(

1 − q
p

)e−
1
2 p[u∗(p,q)]2







. (4.57)

Using (4.55), we pass to the limit of (4.57) and deduce

lim
p→∞

1

p
ln Ip,q = −1

2
lim

p→∞
[u∗(p, q)]2 = −(γ − 1 − ln γ). (4.58)
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Combining (4.42) and (4.53), we have

P (p, q) =
1

Γ(p)

(p

e

)p

Ip,q,

and taking logarithms we have

1

p
lnP (p, q) =

1

p
Φ(p) +

1

p
ln Ip,q, (4.59)

where Φ(p) is defined in (4.44), and the result now follows by using (4.58) and Lemma 4.12 to

take limits of (4.59). �

The corresponding result for Q(p, q) is given next.

Theorem 4.17 (Upper regularized incomplete gamma function). Let 0 < p < q be such

that q
p → γ as (p, q) → ∞ with γ > 1. Then

lim
p→∞

1

p
lnQ(p, q) = −(γ − 1 − ln γ), (4.60)

where Q(p, q) is defined in (4.42).

Proof: By (4.41) and simple rearrangement, we have

Γ(p, q) =

∫ ∞

q

tp−1e−t dt =
(p

e

)p
∫ ∞

q

1

t
e−p[ t

p
−1−ln( t

p )] dt,

to which we may apply the change of variables (4.50) to obtain

γ(p, q) =
(p

e

)p

Jp,q, (4.61)

where

Jp,q :=

∫ ∞

u∗(p,q)

ue−
1
2 pu2 · 1

(

t
p − 1

) du, (4.62)

and where u∗(p, q) is given by (4.51). Note that, since q/p→ γ,

lim
p→∞

u∗(p, q) =
√

2(γ − 1 − ln γ). (4.63)

Since t ≥ q, we may upper bound (4.62) as

Jp,q ≤ 1
(

q
p − 1

)

∫ ∞

u∗(p,q)

ue−
1
2 pu2

=
1

p
(

q
p − 1

)e−
1
2 p[u∗(p,q)]2 . (4.64)
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In order to lower bound Jp,q, we need a more involved argument. Let us first show that

t

p
≤ u2 + 4. (4.65)

First note that (4.65) holds trivially if t/p < 4. Supposing t/p ≥ 4, basic calculus then gives

t/p − 1 ≥ 2 ln(t/p), which upon substitution into (4.50) gives t/p ≤ u2 + 1, which thus proves

(4.65) in general. We may use (4.65) to lower bound (4.62) as

Jp,q ≥
∫ ∞

u∗(p,q)

ue−
1
2 pu2

u2 + 3
du

=

[ −1

p(u2 + 3)
e−

1
2 pu2

]∞

u∗(p,q)

−
∫ ∞

u∗(p,q)

2u

p(u2 + 3)2
e−

1
2 pu2

du

≥ e−
1
2 p[u∗(p,q)]2

p{[u∗(p, q)]2 + 3} − 2

3p
Jp,q, (4.66)

where in the last step we use u2 + 3 ≥ 3 and t
p − 1 ≤ u2 + 3. Rearranging (4.66) yields

Jp,q ≥ 1
(

p+ 2
3

)

{[u∗(p, q)]2 + 3}e
− 1

2 p[u∗(p,q)]2 ,

which, together with (4.64) and taking logarithms, gives

1

p
ln

{

1
(

p+ 2
3

)

{[u∗(p, q)]2 + 3}e
− 1

2 p[u∗(p,q)]2

}

≤ 1

p
lnJp,q ≤ 1

p
ln







1

p
(

q
p − 1

)e−
1
2 p[u∗(p,q)]2







.

(4.67)

We now use (4.63) to pass to the limit of (4.67), deducing

lim
p→∞

1

p
lnJp,q = −1

2
lim

p→∞
[u∗(p, q)]2 = −(γ − 1 − ln γ). (4.68)

Combining (4.61) and (4.42), we have

Q(p, q) =
1

Γ(p)

(p

e

)p

Jp,q,

and taking logarithms we have

1

p
lnQ(p, q) =

1

p
Φ(p) +

1

p
lnJp,q, (4.69)

where Φ(p) is defined in (4.44), and the result now follows by using (4.68) and Lemma 4.12 to

take limits of (4.69). �
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4.2.3 Asymptotics for the regularized incomplete beta function

Next, we obtain a proportional-dimensional asymptotic result for the regularized incomplete

beta function Ix(p, q). As (p, q) → ∞, Ix(p, q) tends to a spike at x = p/(p + q), from which

we see that exponential decay can only occur if we are in the left tail of the function, i.e.

x < p/(p+ q). We have the following result.

Theorem 4.18 (Regularized incomplete beta function). Fix 0 < x < 1 and let p, q > 0

satisfy
p

p+ q
> x. (4.70)

Let (p, q) → ∞ such that

lim
p→∞

p

p+ q
= β, (4.71)

where β > x. Then

lim
p→∞

1

p+ q
ln Ix(p, q) = −

[

β ln

(

β

x

)

+ (1 − β) ln

(

1 − β

1 − x

)]

. (4.72)

Proof: By (4.47) and simple rearrangement, we have

Bx(p, q) =

∫ x

0

tp−1(1 − t)q−1 dt =
ppqq

(p+ q)p+q

∫ x

0

1

t(1 − t)
e−{p ln[ p

t(p+q) ]+q ln[ q
(1−t)(p+q) ]} dt,

to which we may apply the change of variables

u =

√

2

p+ q

{

p ln

[

p

t(p+ q)

]

+ q ln

[

q

(1 − t)(p+ q)

]}

, (4.73)

and obtain

Bx(p, q) =
ppqq

(p+ q)p+q
Kp,q, (4.74)

where

Kp,q :=

∫ ∞

u∗(p,q)

ue−
1
2 (p+q)u2 · p+ q

p− t(p+ q)
du (4.75)

and

u∗(p, q) :=

√

2

p+ q

{

p ln

[

p

x(p+ q)

]

+ q ln

[

q

(1 − x)(p+ q)

]}

. (4.76)

Note that, by (4.71),

lim
p→∞

u∗(p, q) =

√

2

[

β ln

(

β

x

)

+ (1 − β) ln

(

1 − β

1 − x

)]

. (4.77)

Since t ≤ x, we may upper bound (4.75) as

Kp,q ≤ p+ q

p− x(p+ q)

∫ ∞

u∗(p,q)

ue−
1
2 (p+q)u2

du =
1

p− x(p+ q)
e−

1
2 (p+q)[u∗(p,q)]2 . (4.78)
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On the other hand, since p− t(p+ q) ≤ p+ q, we may lower bound (4.75) as

Kp,q ≥
∫ ∞

u∗(p,q)

ue−
1
2 (p+q)u2

=
1

p+ q
e−

1
2 (p+q)[u∗(p,q)]2 ,

which, on combination with (4.78) and taking logarithms, gives

1

p+ q
ln

{

1

p+ q
e−

1
2 (p+q)[u∗(p,q)]2

}

≤ 1

p+ q
lnKp,q ≤ 1

p+ q
ln

{

1

p− x(p+ q)
e−

1
2 (p+q)[u∗(p,q)]2

}

.

(4.79)

We may now use (4.71) and (4.77) to take limits of (4.79), deducing

lim
p→∞

1

p+ q
lnKp,q = −1

2
· lim

p→∞
[u∗(p, q)]2 = −

[

β ln

(

β

x

)

+ (1 − β) ln

(

1 − β

1 − x

)]

. (4.80)

Combining (4.74) and (4.48), we have

Ix(p, q) =
1

B(p, q)
· ppqq

(p+ q)p+q
· Kp,q =

Γ(p+ q)

Γ(p)Γ(q)
· ppqq

(p+ q)p+q
· Kp,q,

where the last step follows by Lemma 4.15. Taking logarithms, we have

1

p+ q
ln Ix(p, q) =

1

p+ q
Φ(p) +

1

p+ q
Φ(q) − 1

p+ q
Φ(p+ q) +

1

p+ q
lnKp,q, (4.81)

where Φ(p) is defined in (4.44), and the result now follows by using (4.80) and Lemma 4.12 to

take limits of (4.81). �

4.3 Large deviations for matrix-vector independence

4.3.1 Results for the χ2 distribution

The next lemma gives a standard result concerning the distribution function of the χ2-distribution

in terms of the regularized incomplete gamma function.

Lemma 4.19 (χ2 distribution function [1, 26.4.19]). Let X ∼ χ2
s. Then

P(X ≤ x) = P
(s

2
,
x

2

)

and P(X ≥ x) = Q
(s

2
,
x

2

)

, (4.82)

where P (p, q) and Q(p, q) are defined in (4.42).

By drawing upon the results in Theorems 4.16 and 4.17, we obtain the following asymptotic

tail bound result for the normalized χ2 distribution.
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Lemma 4.20. Let 0 < l ≤ n and let the random variable Xl ∼
1

l
χ2

l . Let l/n → λ ∈ (0, 1] as

n→ ∞. Then, for any ν > 0,

lim
n→∞

1

n
ln P(Xl ≥ 1 + ν) = −λ

2
[ν − ln(1 + ν)] (4.83)

and, for any ν ∈ (0, 1),

lim
n→∞

1

n
ln P(Xl ≤ 1 − ν) = −λ

2
[−ν − ln(1 − ν)]. (4.84)

Proof: We first show (4.83). We have

P(Xl ≥ 1 + ν) = P[χ2
l ≥ l(1 + ν)] = Q

[

l

2
,
l(1 + ν)

2

]

, (4.85)

where the first step follows from the definition of Xl, and the second step follows from (4.82).

Setting p = l/2 and q = l(1 + ν)/2 in Theorem 4.17, we have

lim
p→∞

q

p
= 1 + ν > 1,

and therefore we may apply Theorem 4.17 with these choices for p and q, obtaining

lim
n→∞

1

n
lnQ

[

l

2
,
l(1 + ν)

2

]

=
λ

2
· lim

n→∞

2

l
lnQ

[

l

2
,
l(1 + ν)

2

]

= −λ
2
[ν − ln(1 + ν)],

which combines with (4.85) to yield (4.83). To show (4.84), we can note that

P(Xl ≤ 1 − ν) = P[χ2
l ≤ l(1 − ν)] = P

[

l

2
,
l(1 − ν)

2

]

, (4.86)

where the first step follows from the definition of Xl, and the second step follows from (4.82).

Setting p = l/2 and q = l(1 − ν)/2 in Theorem 4.16, we have

lim
p→∞

q

p
= 1 − ν < 1,

and therefore we may apply Theorem 4.16 with these choices for p and q, obtaining

lim
n→∞

1

n
lnP

[

l

2
,
l(1 − ν)

2

]

=
λ

2
· lim

n→∞

2

l
lnP

[

l

2
,
l(1 − ν)

2

]

= −λ
2
[−ν − ln(1 − ν)],

which combines with (4.86) to yield (4.84). �

We now derive tail bounds which hold with overwhelming probability asymptotically for a

number of χ2 distributions which grows exponentially in n. We introduce a further definition.
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Definition 4.21. In the proportional-growth asymptotic, given a sequence of index sets {Sn},
let

S(δ, ρ) := lim
n→∞

1

n
ln |Sn|, (4.87)

provided the limit is well-defined.

As an example, one choice of {Sn} which will be of particular interest to us is to let Sn

be, for each (k, n,N), the set of all possible support sets of cardinality k, so that |Sn| =
(

N
k

)

.

In this case, it is straightforward to show that S(δ, ρ) = H(δρ)/δ, where H(·) is defined in

(2.34), see Lemma 5.1 for further elucidation. However, in the tree-based model, the number

of permissible support sets is much reduced, and so we will also consider other choices for {Sn}
and S(δ, ρ) in this thesis.

We define the following tail bound functions.

Definition 4.22 (χ2 tail bounds). Let δ ∈ (0, 1], ρ ∈ (0, 1) and λ ∈ (0, 1]. Let IUS(δ, ρ, λ)

be the unique solution to

ν − ln(1 + ν) =
2S(δ, ρ)

λ
for ν > 0, (4.88)

and let ILS(δ, ρ, λ) be the unique solution to

−ν − ln(1 − ν) =
2S(δ, ρ)

λ
for ν ∈ (0, 1), (4.89)

where S(δ, ρ) is defined in (4.87).

That IU is well-defined follows since the left-hand side of (4.88) is zero at ν = 0, tends to

infinity as ν → ∞, and is strictly increasing on ν > 0. Similarly, IL is well-defined since the

left-hand side of (4.89) is zero at ν = 0, tends to infinity as ν → 1, and is strictly increasing on

ν ∈ (0, 1). Our main result for the χ2 distribution follows.

Lemma 4.23 (Large deviations result for χ2). Let l ∈ {1, . . . , n} and let the random

variables Xi
l ∼ 1

l
χ2

l for all i ∈ Sn, and let ǫ > 0. In the proportional growth asymptotic, let

l/n→ λ ∈ (0, 1]. Then

P
{

∪i∈Sn
[Xi

l ≥ 1 + IUS(δ, ρ, λ) + ǫ]
}

→ 0 (4.90)

and

P
{

∪i∈Sn
[Xi

l ≤ 1 − ILS(δ, ρ, λ) − ǫ]
}

→ 0, (4.91)

exponentially in n, where IUS(δ, ρ, λ) and ILS(δ, ρ, λ) are defined in (4.88) and (4.89) respec-

tively.
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Proof: Union bounding P
(

Xi
l ≥ 1 + ν

)

over all i ∈ Sn gives

P
{

∪i∈Sn
(Xi

l ≥ 1 + ν)
}

≤
∑

i∈Sn

P
(

Xi
l ≥ 1 + ν

)

= |Sn| · P(X1
l ≥ 1 + ν). (4.92)

Taking logarithms and limits of the right-hand side of (4.92), using (4.83) and (4.87), we have

lim
n→∞

1

n
ln
[

|Sn| · P(X1
l ≥ 1 + ν)

]

= S(δ, ρ) − λ

2
[ν − ln(1 + ν)],

and so (4.92) implies that, for any η > 0,

1

n
ln P

{

∪i∈Sn
(Xi

l ≥ 1 + ν)
}

≤ S(δ, ρ) − λ

2
[ν − ln(1 + ν)] + η, (4.93)

for all n sufficiently large. By the definition of IUS(δ, ρ, λ) in (4.88), and since [ν− ln(1+ ν)] is

strictly increasing on ν > 0, then, for any ǫ > 0, setting ν := ν∗ = IUS(δ, ρ, λ)+ ǫ and choosing

η sufficiently small in (4.93) ensures

1

n
ln P

{

∪i∈Sn
(Xi

l ≥ 1 + ν∗)
}

≤ −cQ for all n sufficiently large,

where cQ is some positive constant, from which it follows that

P
{

∪i∈Sn
(Xi

l ≥ 1 + ν∗)
}

≤ e−cQ·n for all n sufficiently large,

and (4.90) follows. Combining the same union bound argument with the lower tail result of

Lemma 4.20 shows that, if we take ν∗ = ILS(δ, ρ, λ) + ǫ for some ǫ > 0, then

1

n
ln P

{

∪i∈Sn
(Xi

l ≤ 1 − ν∗)
}

≤ −cP for all n sufficiently large,

where cP is some positive constant, and (4.91) follows similarly to (4.90). �

‘Independent RIP’. We previously noted that the particular choice of S(δ, ρ) := H(δρ)/δ,

where H(·) is defined in (2.34), corresponds to counting over all possible support sets of cardi-

nality k. Making this choice and setting λ := 1 in IUS(δ, ρ, λ) and ILS(δ, ρ, λ), an interesting

comparison can be made with the RIP bounds used in Chapter 2 [4]. Suppose B ∼ Nn,N (0, 1/n)

and let Γ be an index set of cardinality k. Then, by Lemma 4.7, given a vector y ∈ R
k inde-

pendent of B,
‖BΓy‖2

‖y‖2
∼ 1

n
χ2

n, (4.94)

which is precisely the Rayleigh quotient in the definition of the RIP in (1.6). The only difference

now is that we are assuming in addition that B and y are independent. Since we are bounding

over all
(

N
k

)

possible support sets, it follows that IU H(δρ)
δ

(δ, ρ, 1) and ILH(δρ)
δ

(δ, ρ, 1) may be
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viewed as upper bounds on ‘independent RIP’ constants for Gaussian matrices.
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Figure 4.1: A comparison of standard RIP bounds and ‘independent RIP’ bounds: (a) U(δ, ρ)
(b) IU H(δρ)

δ

(δ, ρ, 1) (c) L(δ, ρ) (d) ILH(δρ)
δ

(δ, ρ, 1).

Figure 4.1 gives plots of the ‘independent RIP’ bounds for Gaussian matrices IU H(δρ)
δ

(δ, ρ, 1)

and ILH(δρ)
δ

(δ, ρ, 1) derived here, along with plots of the standard RIP bounds for Gaussian

matrices obtained in [4]. One observes empirically the inequalities

IU H(δρ)
δ

(δ, ρ, 1) < U(δ, ρ) and ILH(δρ)
δ

(δ, ρ, 1) < L(δ, ρ).

A simple interpretation is that the additional information that the matrix and vector are inde-

pendent allows us to tighten the bounds on (4.94). This consideration accounts for a large part

of the quantitative improvement that is obtained in this thesis over existing recovery results for

IHT algorithms which rely solely upon the RIP. Of course, such an analysis is only possible if

matrix-vector independence can be used, which is the case for the stable point condition (3.16).

4.3.2 Results for the F distribution

The distribution function for the F distribution may be expressed in terms of the regularized

incomplete beta function.

108



Quantitative analysis of algorithms for compressed signal recovery 109

Lemma 4.24 (F complementary distribution function [1, 26.6.2]). Let X ∼ F (s, t).

Then

P(X ≥ x) = I( s
s+tx )

(

t

2
,
s

2

)

. (4.95)

Having established the link with Section 4.2, we may derive the following proportional-

dimensional asymptotic result for the F distribution.

Lemma 4.25. Let the random variable Xn ∼ k

n− k + 1
F(k, n− k + 1). Provided

f >
ρ

1 − ρ
, (4.96)

in the proportional-growth asymptotic,

lim
n→∞

1

n
ln P(Xn ≥ f) = −1

2
[ln(1 + f) − ρ ln f −H(ρ)] , (4.97)

where H(·) is defined in (2.34).

Proof: We have

P(Xn ≥ f) = P

[

F(k, n− k + 1) ≥ (n− k + 1)f

k

]

= I 1
1+f

(

n− k + 1

2
,
k

2

)

, (4.98)

where the first step follows from the definition of Xn, and the second step follows from (4.95).

Setting p = (n− k+ 1)/2, q = k/2 and x = 1/(1 + f) in Theorem 4.18, we have β = 1− ρ, and

we may use (4.96) to deduce

x =
1

1 + f
<

1

1 + ρ
1−ρ

= 1 − ρ = β. (4.99)

Meanwhile, since p/(p+ q) = (n− k+ 1)/(n+ 1) → 1− ρ, it also follows from (4.99) that there

exists some p̃ such that x < p/(p + q) for all p ≥ p̃. Hence, using these choices of p, q and x,

and ignoring small (p, q) for which p < p̃, we may apply Theorem 4.18 to obtain

lim
n→∞

2

n+ 1
ln I 1

1+f

(

n− k + 1

2
,
k

2

)

= −
{

(1 − ρ) ln [(1 − ρ)(1 + f)] + ρ ln

[

ρ(1 + f)

f

]}

,

from which it follows that

lim
n→∞

1

n
ln I 1

1+f

(

n− k + 1

2
,
k

2

)

= −1

2

{

(1 − ρ) ln [(1 − ρ)(1 + f)] + ρ ln

[

ρ(1 + f)

f

]}

= −1

2
[ln(1 + f) − ρ ln f −H(ρ)] ,

where in the last line we used (2.34). This, together with (4.98), yields (4.97). �

We define the following tail bound function.
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Definition 4.26 (F tail bound). Let δ ∈ (0, 1] and ρ ∈ (0, 1/2]. Let IFS(δ, ρ) be the unique

solution in f to

ln(1 + f) − ρ ln f = 2S(δ, ρ) +H(ρ) for f >
ρ

1 − ρ
, (4.100)

where S(δ, ρ) is defined in (4.87) and H(·) is defined in (2.34).

That IF is well-defined follows since the left-hand side of (4.100) is equal to H(ρ) at

f = ρ/(1−ρ), tends to infinity as f → ∞, and is strictly increasing on f > ρ/(1−ρ). Our main

large deviation result, giving asymptotic tail bounds for a number of F distributed random

variables which grows exponetially in n, is given next.

Lemma 4.27 (Large deviations result for F ). Let the random variables Xi
n ∼ k

n−k+1 F(k, n−
k + 1) for all i ∈ Sn, and let ǫ > 0. In the proportional growth asymptotic,

P
{

∪i∈Sn
[Xi

n ≥ IFS(δ, ρ) + ǫ]
}

→ 0, (4.101)

exponentially in n, where IFS(δ, ρ) is defined in (4.100).

Proof: Union bounding P(Xi
n ≥ 1 + f) over all i ∈ Sn gives

P

{

⋃

i∈Sn

(Xi
n ≥ f)

}

≤
∑

i∈Sn

P
(

Xi
n ≥ f

)

= |Sn| · P(X1
n ≥ f), (4.102)

Taking logarithms and limits of the right-hand side of (4.102), using (4.97) and (4.87), we have

lim
n→∞

1

n
ln
[

|Sn| · P(X1
n ≥ f)

]

= S(δ, ρ) − 1

2
[ln(1 + f) − ρ ln f −H(ρ)] ,

which combines with (4.102) to imply that, for any η > 0,

1

n
ln P

{

∪i∈Sn
(Xi

n ≥ f)
}

≤ S(δ, ρ) − 1

2
[ln(1 + f) − ρ ln f −H(ρ)] + η, (4.103)

for all n sufficiently large. By the definition of IFS(δ, ρ) in (4.100), and since the left-hand

side of (4.100) on f >
ρ

1 − ρ
is strictly increasing in f , then, for any ǫ > 0, setting f := f∗ =

IFS(δ, ρ) + ǫ and choosing η sufficiently small in (4.103) ensures

1

n
ln P

{

∪i∈Sn
(Xi

n ≥ f∗)
}

≤ −cI for all n sufficiently large,

where cI is some positive constant, from which it follows that

P
{

∪i∈Sn
(Xi

n ≥ f∗)
}

≤ e−cI ·n for all n sufficiently large,

and (4.101) now follows. �
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Figure 4.2: A plot of IF(δ, ρ) for ρ ∈ (0, 0.1).

In Chapter 5, we will require bounds which hold over Sn :=
(

N
k

)

support sets, which gives

S(δ, ρ) = H(δρ)/δ. As an illustration, a plot of the tail bound function IFS(δ, ρ) is given in

Figure 4.2 for this choice of S(δ, ρ). Note that IFS(δ, ρ) grows rapidly for larger values of ρ.
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Chapter 5

Phase transitions for Gaussian matrices

5.1 Introduction and motivation for average case analysis

In Chapter 3, we presented a new recovery analysis which considers the fixed or stable points of

IHT algorithms. By using the RIP, we obtained worst-case recovery conditions which guarantee

that the given measurement matrix allows recovery of any k-compressible signal from noisy

measurements. We begin the present chapter by quantifying these new RIP conditions in the

phase transition framework for Gaussian matrices, to enable a comparison with the current

state-of-the-art RIP results presented in Chapter 2.

Figure 5.1 compares the recovery phase transition resulting from the RIP-based stable point

analysis in Section 3.3 with the phase transitions derived in Chapter 2 based upon Foucart’s

RIP analysis [93]. The plots have precisely the same interpretation as in Chapter 2: in the

case of zero measurement noise, recovery of all k-sparse vectors is asymptotically guaranteed in

the proportional-dimensional framework for a (δ, ρ) pair falling below the curve. For IHT, the

stable point phase transition holds over a range of stepsizes which shrinks in size as the phase

transition is approached, while the optimum phase transition based upon Foucart’s analysis

holds only for a single stepsize choice, deteriorating for other stepsize choices. For NIHT, a

shrinkage parameter of κ := 1.1 is selected in both cases.

We observe that the stable point approach yields a lower phase transition for IHT, and

therefore gives no improvement upon the current best result. On the other hand, we do observe

an improvement in the phase transition by roughly a factor of 2 in the case of NIHT, which

therefore gives the highest worst-case phase transition for NIHT yet derived. However, in

both cases, the observation of Sections 1.5 and 2.4 still applies, namely that these worst-case

results are pessimistic compared to the empirical performance of IHT algorithms. We argued in

Chapter 1 that it would be expected that IHT algorithms, like l1-minimization, would exhibit

two different phase transitions: a strong phase transition capturing worst-case behaviour (all

k-sparse signals), and a weak phase transition capturing average-case behaviour (most k-sparse
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Figure 5.1: Phase transitions from the stable point RIP analysis of Chapter 3 (unbroken), along
with current best RIP-based phase transitions from Chapter 2 [93] (dashed); (a) IHT (b) NIHT.

signals). Furthermore, it was argued that it is the weak phase transition that one would expect

to observe in practice. It is natural, therefore, to expect that improved recovery guarantees

could be obtained by relaxing worst-case assumptions and switching to average-case analysis.

Average-case analysis of l0-based algorithms is generally considered to be challenging, or

even impossible, due to the difficult probabilistic dependencies that are repeatedly introduced

at each iteration of an algorithm such as IHT. However, our stable point analysis in Chapter 3

departs, at least in part, from the usual approach of tracking the algorithm from one iteration

to the next, allowing necessary conditions for the existence of a stable point to be expressed

independently of the iterates of the algorithm, thereby removing the offending dependency.

Furthermore, we saw in Chapter 4 that the stable point condition is particularly amenable to

analysis in the case of Gaussian matrices: precise distributions of its constituent terms can be

derived, and large deviations results can be obtained to derive bounds on these terms over all

permissible support sets in the proportional-dimensional asymptotic. Underlying this approach

is the average-case assumption that the original signal, measurement matrix and measurement

noise are all independent of each other, a realistic assumption in CS.

In this chapter, we combine the deterministic stable point recovery analysis of Sections 3.1

and 3.2 with the distribution results and large deviations results of Chapter 4. In so doing,

we obtain average-case recovery phase transitions for both IHT and NIHT in the context of

Gaussian matrices, thereby giving lower bounds on a particular kind of weak phase transition

for IHT algorithms. We prove our results in the context of Problem 1.3, namely in the most

general case of k-compressible signals and noisy measurements. As explained in Chapter 3,

this direct approach means we avoid the need to revert to the RIP and Lemma 2.2 in order to

extend results for k-sparse recovery to results for k-compressible recovery. In fact, we must take

a different approach out of necessity, since the independence assumption we will impose upon

the measurement noise means that Lemma 2.2 will not apply in our case. While results for
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inexactly sparse signals and noisy measurements are more likely to be practically relevant, the

most mathematical insight is gained by considering the special case of k-sparse signals and zero

measurement noise (Problem 1.1). For this reason, we will also give corollaries of our general

results in the context of Problem 1.1.

The outline of the chapter is as follows. In Section 5.2, we define our recovery phase

transitions and establish that they are well-defined. We prove our recovery results in Section 5.3,

first for IHT and then for NIHT. We illustrate our results in Section 5.4, and present a discussion,

firstly for the noiseless case of Problem 1.1, and secondly for the general case of Problem 1.3.

5.2 Definitions of recovery phase transitions

We will use the tail bound functions defined in (4.88), (4.89) and 4.100 to perform union bounds

over all possible support sets of cardinality k, of which there are
(

N
k

)

. Setting |Sn| :=
(

N
k

)

, we

have the following expression for S(δ, ρ).

Lemma 5.1 (Combinatorial limit). Let the sequence of sets Sn be such that |Sn| =
(

N
k

)

.

Let S(δ, ρ) be defined in terms of Sn as in (4.87). Then

S(δ, ρ) =
H(δρ)

δ
, (5.1)

where H(·) is defined in (2.34).

Proof: In the proportional-dimensional asymptotic,

S(δ, ρ) = lim
n→∞

1

n
ln |Sn| = lim

n→∞

N

n
· 1

N
ln

(

N

k

)

=
1

δ
·H(δρ),

where the last step follows from Stirling’s formula. �

Since we will use this expression for S(δ, ρ) throughout this chapter, we will simplify notation

by omitting the S subscript from the tail bound functions.

Definition 5.2. Let δ ∈ (0, 1], ρ ∈ (0, 1) and λ ∈ (0, 1]. Define

IU(δ, ρ, λ) := IU H(δρ)
δ

(δ, ρ, λ) and IL(δ, ρ, λ) := ILH(δρ)
δ

(δ, ρ, λ). (5.2)

Definition 5.3. Let δ ∈ (0, 1] and ρ ∈ (0, 1/2]. Define

IF(δ, ρ) := IF H(δρ)
δ

(δ, ρ). (5.3)

We define the following two asymptotic recovery phase transitions for IHT algorithms, in

terms of these large deviations bounds.
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Definition 5.4 (Recovery phase transitions). Given δ ∈ (0, 1], define ρ̂IHT
SP (δ) to be the

unique solution to

√

IF(δ, ρ)

(1 − ρ) [1 − IL(δ, ρ, 1 − ρ)]
=

1

1 + U(δ, 2ρ)
for ρ ∈ (0, 1/2], (5.4)

and define ρ̂NIHTκ

SP (δ) to be the unique solution to

√

IF(δ, ρ)

(1 − ρ) [1 − IL(δ, ρ, 1 − ρ)]
=

1

κ[1 + U(δ, 2ρ)]
for ρ ∈ (0, 1/2], (5.5)

where IF is defined in (5.3), IL is defined in (5.2) and U is defined in Definition 2.11.

We need to establish that ρ̂IHT
SP (δ) and ρ̂NIHTκ

SP (δ) are well-defined, to which we devote the

rest of this section. The proof relies upon three lemmas, which we give next. The first lemma

shows that each of the tail bound functions in Definition 5.4 is strictly increasing in ρ ∈ (0, 1/2].

Lemma 5.5. Given δ ∈ (0, 1], IF(δ, ρ), IL(δ, ρ, 1− ρ) and U(δ, ρ) are each strictly increasing

in ρ ∈ (0, 1/2].

Proof: Writing f := IF(δ, ρ), differentiating (4.100) with respect to ρ gives

∂f

∂ρ

(

1

1 + f
− ρ

f

)

= ln

[

f(1 − ρ)(1 − δρ)2

δ2ρ3

]

. (5.6)

Now f > ρ/(1 − ρ) by (4.100), which implies that

f(1 − ρ)(1 − δρ)2

δ2ρ3
>

(1 − δρ)2

(δρ)2
.

The function (1 − δρ)/(δρ) is strictly decreasing in δρ, and so takes its minimum value when

δρ = 1/2, from which it follows that the logarithm in (5.6) is strictly positive. Since f >

ρ/(1 − ρ), we also have
1

1 + f
− ρ

f
> 0,

and the result now follows for IF(δ, ρ). Similarly, writing ν := IL(δ, ρ, 1−ρ) and differentiating

(4.89) with γ = 1 − ρ gives

(1 − ρ)

(

1

1 − ν
− 1

)

∂ν

∂ρ
− [−ν − ln(1 − ν)] = 2 ln

(

1 − δρ

δρ

)

.

A further application of (4.89) followed by some rearrangement gives

∂ν

∂ρ

(

ν(1 − ρ)

1 − ν

)

= 2 ln

(

1 − δρ

δρ

)

+
2H(δρ)

δ(1 − ρ)
. (5.7)

The term on the left-hand side of (5.7) is strictly positive, as is the term involving the Shannon

entropy. The function (1− δρ)/(δρ) is strictly decreasing in δρ, and so takes its minimum value
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when δρ = 1/2, which implies that

ln

(

1 − δρ

δρ

)

≥ 0,

from which the result for IL(δ, ρ, 1 − ρ) follows. Finally, writing λ := λmax(δ, ρ; γ), Defini-

tion 2.11 gives λ as the solution to

H(δρ) − δγH

(

ρ

γ

)

+
δ

2
[(1 + γ) lnλ− γ ln γ + 1 + γ − λ] = 0,

which differentiates to give

∂λ

∂ρ

[

1 − δ(1 + γ)

2(1 + λ)

]

= δ ln

[(

1 − δρ

δρ

)(

1 − ρ

γ − ρ

)]

. (5.8)

Since λ ≥ γ, the term on the left-hand side of (5.8) is strictly positive, and by using γ ≤ δ−1 it

is straightforward to show that the right-hand side of (5.8) is also strictly positive for ρ ≤ 1/2,

from which it follows that λmax(δ, ρ; γ) is strictly increasing in ρ ∈ (0, 1/2] for fixed γ. Now

supposing 0 < ρ1 < ρ2 ≤ 1/2, we have for all γ ∈ [ρ, δ−1],

λmax(δ, ρ1) ≤ λmax(δ, ρ1; γ) < λmax(δ, ρ2; γ),

and therefore

λmax(δ, ρ1) < λmax(δ, ρ2),

and the result now follows. �

The second lemma shows that IF(δ, ρ) grows to be much greater than 1 at ρ = 1/2.

Lemma 5.6. For any δ ∈ (0, 1],

IF(δ, 1/2) ≥ 31 + 8
√

15.

Proof: Substituting ρ = 1/2 into (4.100) implies that IF(δ, 1/2) solves for f the equation

ln(1 + f) − 1

2
ln f =

2

δ
·H
(

δ

2

)

+H

(

1

2

)

for f > 1.

NowH(1/2) = ln 2, and we may lower boundH(p)/p by 2 ln 2 sinceH(p)/p is strictly decreasing

in p ∈ (0, 1/2], which implies that

ln(1 + f) − 1

2
ln f ≥ 3 ln 2,
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which may be rearranged to give

f2 − 62f + 1 ≥ 0,

which, together with f > 1, yields the required result. �

The third lemma proves that each of the tail bound functions in Definition 5.4 tends to zero

as ρ→ 0.

Lemma 5.7. Given δ ∈ (0, 1], the following limiting results hold:

lim
ρ→0

IF(δ, ρ) = 0; lim
ρ→0

IL(δ, ρ, 1 − ρ) = 0; lim
ρ→0

U(δ, ρ) = 0.

Proof: Recalling (2.34), we have

lim
p→0

H(p) = 0, (5.9)

which, together with (5.1), shows that the right-hand side of (4.100) tends to zero as ρ → 0.

Writing f = IF(δ, ρ), it now follows from (4.100) that

lim
ρ→0

[ln(1 + f) − ρ ln f ] ≤ 0. (5.10)

However, Lemma 5.6 and (4.100) imply that

−ρ ln(31 + 8
√

15) ≤ −ρ ln f ≤ −ρ ln

(

ρ

1 − ρ

)

,

from which it follows that ρ ln f → 0 as ρ→ 0, which combines with (5.10) to give ln(1+f) → 0

as ρ → 0, which yields the result for IF(δ, ρ). It also follows from (5.9) and (5.1) that the

right-hand side of (4.89) with γ = 1−ρ tends to zero as ρ→ 0, which in turn implies the result

for IL(δ, ρ). To prove the result for U(δ, ρ), note that, in Lemma 2.11, if instead of optimizing

over γ ∈ [ρ, δ−1], we instead fix γ = ρ, we obtain a function Ũ(δ, ρ) as the solution in ν of

δ

2
[(1 + ρ) ln(1 + ν) − ν + ρ− ρ ln ρ] +H(δρ) = 0 for ν ≥ ρ,

to which we may apply (5.9) to deduce that Ũ(δ, ρ) → 0 as ρ → 0. Since, in obtaining Ũ(δ, ρ),

we have not optimized over γ, we have U(δ, ρ) ≤ Ũ(δ, ρ), and the result for U(δ, ρ) now follows.�

That ρ̂IHT
SP (δ) is well-defined can now be shown as follows. Let us define ψIHT (δ, ρ) to be

ψIHT (δ, ρ) :=

√

IF(δ, ρ)

(1 − ρ) [1 − IL(δ, ρ, 1 − ρ)]
− 1

1 + U(δ, 2ρ)
.
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By Lemma 5.7, we have

lim
ρ→0

ψIHT (δ, ρ) = −1 < 0.

By Lemma 5.5, ψIHT (δ, ρ) is strictly increasing in ρ for ρ ∈ (0, 1/2]. Also, Lemma 5.6, U ≥ 0

and IL ≥ 0 together imply that ψIHT (δ, 1/2) > 0. It therefore follows that there exists a

unique ρ ∈ (0, 1/2] for which ψIHT (δ, ρ) = 0 and the definition of ρ̂IHT
SP (δ) is valid. A similar

argument applies for ρ̂NIHTκ

SP (δ).

5.3 Novel recovery results for IHT algorithms

We prove our main recovery results for IHT algorithms in this section, beginning with constant

stepsize IHT.

5.3.1 Recovery results for IHT

We begin by introducing several definitions.

Definition 5.8 (Stability factor for IHT). Consider Problem 1.3. Given δ ∈ (0, 1], ρ ∈
(0, 1/2] and α > 0, provided

α >

√

IF(δ, ρ)

(1 − ρ)[1 − IL(δ, ρ, 1 − ρ)]
, (5.11)

define

a(δ, ρ) :=
1 +

√

IF(δ, ρ) + α
√

ρ(1 − ρ)[1 + IU(δ, ρ, 1 − ρ)][1 + IU(δ, ρ, ρ)]

α(1 − ρ)[1 − IL(δ, ρ, 1 − ρ)] −
√

IF(δ, ρ)
, (5.12)

and

ξ(δ, ρ) :=

√

IF(δ, ρ) [1 + a(δ, ρ)]
2

+ 1 + [a(δ, ρ)]
2
, (5.13)

where IF is defined in (5.3), and where IU and IL are defined in (5.2).

Note that (5.11) ensures that the denominator in (5.12) is strictly positive and that a(δ, ρ)

is therefore well-defined. The function ξ(δ, ρ) will represent a stability factor in our results,

bounding the approximation error of the output of IHT as a multiple of the unrecoverable

energy Σ.

Definition 5.9 (Support set partition for IHT). Consider Problem 1.3 and suppose δ ∈
(0, 1], ρ ∈ (0, 1/2] and α > 0. Given ζ > 0, let us write

a∗(δ, ρ; ζ) := a(δ, ρ) + ζ, (5.14)

where a(δ, ρ) is defined in (5.8), let us write {Γi : i ∈ Sn} for the set of all possible support sets
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of cardinality k, and let us disjointly partition Sn := Θ1
n ∪ Θ2

n such that

Θ1
n :=

{

i ∈ Sn : ‖x∗Λ\Γi
‖ > Σ · a∗(δ, ρ; ζ)

}

; Θ2
n :=

{

i ∈ Sn : ‖x∗Λ\Γi
‖ ≤ Σ · a∗(δ, ρ; ζ)

}

,

(5.15)

where Σ is defined in (4.9), and where Λ is defined in (3.1).

We recall that Λ is defined to be the support of x∗k, the best k-sparse approximation to

x∗. Note that the partition Sn := Θ1
n ∪ Θ2

n defined in (5.15) also depends on ζ, though we

omit this dependency from our notation for the sake of brevity. Note also that if Γi = Λ, then

‖x∗Λ\Γi
‖ = 0 and i ∈ Θ2

n. In other words, the index corresponding to the support set of x∗k is

contained in Θ2
n.

Let us outline how our argument will proceed. The partition in (5.15) has been defined

in such a way that, provided (5.11) holds, an analysis of the stable point condition (3.16)

shows that there are asymptotically no α-stable points on any Γi such that i ∈ Θ1
n, and this

is proved in Lemma 5.10. On the other hand, it is also possible to use the large deviations

results of Chapter 4 to bound the error in approximating x∗ by any α-stable point on Γi such

that i ∈ Θ2
n, which is achieved by Lemma 5.12. It follows that, for any α > 0, all α-stable

points have bounded approximation error. Finally, Lemma 5.13 builds on the convergence

result in Theorem 3.9 and gives a condition on the stepsize α which asymptotically guarantees

convergence of IHT to some α-stable point. Combining all three results, we have convergence

to some α-stable point with guaranteed approximation error, provided the conditions in each

lemma hold; combining the conditions leads to the phase transition defined in (5.4).

We first show that, asymptotically, there are no α-stable points on any Γi such that i ∈ Θ1
n,

and we write NSPα for this event.

Lemma 5.10. Consider Problem 1.3 and choose ζ > 0. Suppose Assumptions 2 and 3 hold, and

suppose that (5.11) holds. Then, in the proportional-growth asymptotic, there are no α-stable

points on any Γi such that i ∈ Θ1
n, with probability tending to 1 exponentially in n.

Proof: For any Γi such that i ∈ Θ1
n, we have Γi 6= Λ, and we may therefore use Theorem 3.4

and Lemma 4.10 with Γ := Γi to deduce that a necessary condition for there to be an α-stable

point on Γi is

‖x∗Λ\Γi
‖·
√

FΓi
+‖x∗Γi\Λ

‖+σ̃Γi
·
√

GΓi
≥ α

[

(

n− k

n

)

‖x∗Λ\Γi
‖ ·RΓi

− σ̃Γi
·
√

k(n− k)

n2
· SΓi

· TΓi

]

,

(5.16)

where

FΓi
∼ k

n− k + 1
F (k, n− k + 1); GΓi

∼ k

n− k + 1
F (k, n− k + 1);

RΓi
∼ 1

n− k
χ2

n−k; SΓi
∼ 1

n− k
χ2

n−k; TΓi
∼ 1

k
χ2

k.
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But (4.9) implies σ̃Γi
≤ Σ, while ‖x∗Γi\Λ

‖ ≤ ‖x∗ΛC‖ ≤ Σ, and substituting both into (5.16) gives

‖x∗Λ\Γi
‖ ·
√

FΓi
+ Σ

(

1 +
√

GΓi

)

≥ α

[

(

n− k

n

)

‖x∗Λ\Γi
‖ ·RΓi

− Σ

√

k(n− k)

n2
· SΓi

· TΓi

]

.

(5.17)

We also have, by (5.15),

Σ ≤
‖x∗Λ\Γi

‖
a∗(δ, ρ; ζ)

(5.18)

for any Γi such that i ∈ Θ1
n. Since Γi 6= Λ, ‖x∗Λ\Γ‖ > 0, and substitution of (5.18) into (5.17),

rearrangement and division by ‖x∗Λ\Γi
‖ yields

a∗(δ, ρ; ζ)

[

α

(

n− k

n

)

·RΓi
−
√

FΓi

]

≤ 1 +
√

GΓi
+ α

√

k(n− k)

n2
· SΓi

· TΓi
.

Consequently,

P(NSPα)

= P
{

∪i∈Θ1
n
(∃ an α-stable point supported on Γi)

}

≤ P







⋃

i∈Θ1
n

[

a∗(δ, ρ; ζ)
[

α (1 − ρn) ·RΓi
−
√

FΓi

]

≤ 1 +
√

GΓi
+ α

√

ρn(1 − ρn) · SΓi
· TΓi

]







,

(5.19)

where we write ρn for the sequence of values of the ratio k/n. For brevity’s sake, let us define

Φ[ρ, F,G,R, S, T ] := 1 +
√
G+ α

√

ρ(1 − ρ)(S)(T ) − a∗(δ, ρ; ζ) ·
[

α(1 − ρ) ·R−
√
F
]

, (5.20)

so that (5.19) may be equivalently written as

P(NSPα) ≤ P
{

∪i∈Θ1
n

(Φ[ρn, FΓi
, GΓi

, RΓi
, SΓi

, TΓi
] ≥ 0)

}

. (5.21)

Given some ǫ > 0, we now define

F ∗ = G∗ := IF(δ, ρ) + ǫ; R∗ := 1 − IL(δ, ρ, 1 − ρ) − ǫ;

S∗ := 1 + IU(δ, ρ, 1 − ρ) + ǫ; T ∗ := 1 + IU(δ, ρ, ρ) + ǫ.
(5.22)

Using (5.22), we deduce from (5.21) that

P(NSPα)

≤ P
{

∪i∈Θ1
n

(Φ[ρn, FΓi
, GΓi

, RΓi
, SΓi

, TΓi
] ≥ Φ[ρn, F

∗, G∗, R∗, S∗, T ∗])
}

(5.23)

+ P {Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ǫ} (5.24)

+ P {Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ǫ ≥ 0} , (5.25)
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since the event in the right-hand side of (5.21) lies in the union of the three events in (5.23),

(5.24) and (5.25). Now (5.25) is a deterministic event, and a∗(δ, ρ; ζ) has been defined in such

a way that, for any ζ > 0, provided ǫ is taken sufficiently small, the event has probability 0.

This follows from (5.11), (5.12), (5.14), and by the continuity of Φ. The event (5.24) is also

deterministic, and by continuity and since ρn → ρ, it follows that there exists some ñ such that

P {Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ǫ} = 0 for all n ≥ ñ.

Taking limits as n→ ∞, the terms (5.24) and (5.25) are zero, leaving only (5.23), and we have

lim
n→∞

P(NSPα)

≤ lim
n→∞

P
{

∪i∈Θ1
n

(Φ[ρn, FΓi
, GΓi

, RΓi
, SΓi

, TΓi
] ≥ Φ[ρn, F

∗, G∗, R∗, S∗, T ∗])
}

≤ lim
n→∞

P
{

∪i∈Θ1
n
(FΓi

≥ F ∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(GΓi

≥ G∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(RΓi

≤ R∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(SΓi

≥ S∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(TΓi

≥ T ∗)
}

, (5.26)

where the last line follows from the monotonicity of Φ with respect to F , G, R, S and T . Since

|Θ1
n| ≤

(

N
k

)

, we may apply Lemmas 4.23 and 4.27 with |Sn| :=
(

N
k

)

and S(δ, ρ) = H(δρ)/δ to

(5.26), and we deduce P(NSPα) → 0 as n→ ∞, exponentially in n, as required. �

In the case of IHT applied to Problem 1.1, the above result has a remarkable corollary: a

condition can be given which guarantees that, with overwhelming probability, the underlying

k-sparse signal x∗ is the algorithm’s only fixed point. In other words, within some portion

of phase space, there is only one possible solution to which the IHT algorithm can converge,

namely the underlying signal x∗. This is remarkable since IHT is a gradient projection algorithm

for the nonconvex problem (1.21) which can be shown to have a combinatorially large number

of local minimizers. The conclusion is that the properties of Gaussian matrices ensure that,

within this region of phase space, the IHT algorithm will never ‘get stuck’ at an unwanted local

minimizer, thus exhibiting a behaviour one would usually only expect if a convex problem was

being solved. The result follows.

Corollary 5.11 (Single fixed point condition). Consider Problem 1.1. Suppose Assump-

tion 2 holds, and suppose that (5.11) holds. Then, in the proportional-growth asymptotic, x∗ is

the only fixed point of IHT with stepsize α, with probability tending to 1 exponentially in n.

Proof: Lemma 5.10 establishes that, if (5.11) holds, there are asymptotically no α-stable

points on any Γi such that i ∈ Θ1
n. Setting Σ := 0 in (5.15), we have i ∈ Θ2

n ⇒ Γi = Λ.

Therefore any α-stable point is supported on Λ, and Lemma 3.3 implies that it must be x∗.

However, any fixed point of IHT with stepsize α is necessarily an α-stable point, and therefore

x∗ is also the only fixed point of IHT with stepsize α. �
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Next, we show that any α-stable points on Γi such that i ∈ Θ2
n are ‘close’ to x∗.

Lemma 5.12. Consider Problem 1.3. Suppose Assumptions 2 and 3 hold, and suppose that

(5.11) holds. Then there exists ζ sufficiently small such that, in the proportional-growth asymp-

totic, any α-stable point x̄ on Γi such that i ∈ Θ2
n satisfies

‖x̄− x∗‖ ≤ ξ(δ, ρ) · Σ, (5.27)

with probability tending to 1 exponentially in n, where ξ(δ, ρ) is defined in (5.13) and Σ is

defined in (4.9).

Proof: Suppose x̄ is a minimum-norm solution on Γ, so that x̄Γ = A†
Γb. Then, using

A†
ΓAΓ = I, we have

(x̄− x∗)Γ = A†
Γ(AΓx

∗
Γ +AΓCx∗ΓC + e) − x∗Γ

= x∗Γ +A†
Γ(AΛ\Γx

∗
Λ\Γ +A(Λ∪Γ)Cx∗(Λ∪Γ)C + e) − x∗Γ

= A†
Γ(AΛ\Γx

∗
Λ\Γ + ẽΓ) + x∗Γ − x∗Γ

= A†
Γ(AΛ\Γx

∗
Λ\Γ + ẽΓ), (5.28)

while

(x̄− x∗)ΓC = −x∗ΓC . (5.29)

Combining (5.28) and (5.29) using the triangle inequality, we may bound

‖x̄− x∗‖2 = ‖(x̄− x∗)Γ‖2 + ‖(x̄− x∗)ΓC‖2

= ‖A†
Γ(AΛ\Γx

∗
Λ\Γ + ẽΓ)‖2 + ‖x∗ΓC‖2

≤
[

‖A†
ΓAΛ\Γx

∗
Λ\Γ‖ + ‖A†

ΓẽΓ‖
]2

+ ‖x∗Λ\Γ‖2 + ‖x∗(Λ∪Γ)C‖2 (5.30)

We may deduce, by (4.10) of Lemma 4.10,

‖A†
ΓAΛ\Γx

∗
Λ\Γ‖2 = ‖x∗Λ\Γ‖2 · PΓ, where PΓ ∼ k

n− k + 1
F (k, n− k + 1), (5.31)

and by (4.12) of Lemma 4.10,

‖A†
ΓẽΓ‖2 = σ̃2

Γ ·QΓ ≤ Σ2 ·QΓ, where QΓ ∼ k

n− k + 1
F (k, n− k + 1). (5.32)

Substituting (5.31) and (5.32) into (5.30), and using ‖x∗(Λ∪Γ)C‖ ≤ ‖x∗ΛC‖ ≤ Σ, we have

‖x̄− x∗‖2 ≤
[

‖x∗Λ\Γ‖ ·
√

PΓ + Σ ·
√

QΓ

]2

+ ‖x∗Λ\Γ‖2 + Σ2, (5.33)
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and we may use (5.15) to further deduce

‖x̄− x∗‖2 ≤ Σ2
[

a∗(δ, ρ; ζ) ·
√

PΓ +
√

QΓ

]2

+ [a∗(δ, ρ; ζ)]
2 · Σ2 + Σ2

= Σ2

{

[

a∗(δ, ρ; ζ) ·
√

PΓ +
√

QΓ

]2

+ 1 + [a∗(δ, ρ; ζ)]
2

}

. (5.34)

For the sake of brevity, let us define

Ψ(P,Q) :=

√

(

a∗(δ, ρ; ζ) ·
√
P +

√

Q
)2

+ 1 + a∗(δ, ρ; ζ)2, (5.35)

so that (5.34) may equivalently be written as

‖x̄− x∗‖ ≤ Σ · Ψ [PΓ, QΓ] . (5.36)

Given ζ > 0, let us define

P ∗ = Q∗ := IF(δ, ρ) + ζ. (5.37)

Now we use (5.36) to perform a union bound over all Γi such that i ∈ Θ2
n, writing x̄i for the

minimum-norm solution on Γi, giving

P
{

∃ some Γi such that i ∈ Θ2
n and ‖x̄i − x∗‖ > Σ · Ψ [P ∗, Q∗]

}

= P







⋃

i∈Θ2
n

(‖x̄i − x∗‖ > Σ · Ψ [P ∗, Q∗])







(5.38)

≤ P







⋃

i∈Θ2
n

(‖x̄i − x∗‖ > Σ · Ψ [PΓi
, QΓi

])







(5.39)

+ P







⋃

i∈Θ2
n

(Σ · Ψ [PΓi
, QΓi

] ≥ Σ · Ψ [P ∗, Q∗])







,

(5.40)

since the event in (5.38) lies in the union of the two events in (5.39) and (5.40). It is an

immediate consequence of (5.36) that the event in (5.39) has probability 0. Taking limits of

(5.40) as n→ ∞, and cancelling Σ, we have

lim
n→∞

P
{

∃ some Γi such that i ∈ Θ2
n and ‖x̄i − x∗‖ > Σ · Ψ [P ∗, Q∗]

}

≤ lim
n→∞

P







⋃

i∈Θ2
n

(Ψ [PΓi
, QΓi

] ≥ Ψ [P ∗, Q∗])







≤ lim
n→∞

P
{

∪i∈Θ2
n
(PΓi

≥ P ∗)
}

+ lim
n→∞

P
{

∪i∈Θ2
n
(QΓi

≥ Q∗)
}

, (5.41)

where we used the monotonicity of Ψ with respect to P and Q in the last line. Since |Θ2
n| ≤

(

N
k

)

,
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and using (5.31) and (5.32), we may apply Lemma 4.27 with |Sn| :=
(

N
k

)

and S(δ, ρ) = H(δρ)/δ

to (5.41), yielding that each of the limits in the right-hand side of (5.41) converges to zero

exponentially in n, and so finally

lim
n→∞

P
{

∃ some Γi such that i ∈ Θ2
n and ‖x̄i − x∗‖ > Σ · Ψ [a∗(δ, ρ; ζ), P ∗, Q∗]

}

= 0,

exponentially in n. Since by Lemma 3.3, any stable point is necessarily a minimum-norm solu-

tion, and recalling the definition of a∗(δ, ρ; ζ) in (5.14), Ψ(a, P,Q) in (5.35), and the definitions

of P ∗, Q∗ in (5.37), we have

lim
n→∞

P







∃ some α-stable point x̄i on Γi such that i ∈ Θ2
n and

‖x̄i − x∗‖ > Σ

√

IF(δ, ρ) [1 + a(δ, ρ) + ζ]
2

+ 1 + [a(δ, ρ) + ζ]
2







= 0, (5.42)

with convergence exponential in n. Finally, by continuity,

‖x̄i − x∗‖ > Σ

√

IF(δ, ρ) [1 + a(δ, ρ)]
2

+ 1 + [a(δ, ρ)]
2

=⇒ ‖x̄i − x∗‖ > Σ

√

IF(δ, ρ) [1 + a(δ, ρ) + ζ]
2

+ 1 + [a(δ, ρ) + ζ]
2
,

for some ζ suitably small, and the result now follows from the definition of ξ(δ, ρ) in (5.13). �

In the context of IHT, we obtain the following convergence result in the proportional-

dimensional asymptotic framework.

Lemma 5.13. Consider Problem 1.3. Suppose Assumption 2 holds, suppose that the stepsize

α of IHT is chosen to satisfy

α <
1

1 + U(δ, 2ρ)
. (5.43)

Then, in the proportional-growth asymptotic, IHT converges to an α-stable point with probability

tending to 1 exponentially in n.

Proof: Given (5.43), we may apply Theorem 2.12 with ǫ sufficiently small to deduce

α(1+U2k) < 1, with probability tending to 1 exponentially in n. Under Assumption 2, we may

then apply Theorem 3.9 and deduce convergence of IHT to an α-stable point. �

We now combine Lemmas 5.10, 5.12 and 5.13 and prove a recovery result for IHT, one of

the main results of the thesis.
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Theorem 5.14 (Recovery result for IHT). Consider Problem 1.3. Suppose Assumptions 2

and 3 hold, suppose that

ρ < ρ̂IHT
SP (δ), (5.44)

where ρ̂IHT
SP (δ) is defined in (5.4), and suppose that the IHT stepsize α satisfies

√

IF(δ, ρ)

(1 − ρ) [1 − IL(δ, ρ, 1 − ρ)]
< α <

1

1 + U(δ, 2ρ)
. (5.45)

Then, in the proportional-growth asymptotic, IHT converges to x̄ such that (5.27) holds with

probability tending to 1 exponentially in n.

Proof: First note that (5.44) implies that the interval in (5.45) is well-defined. Provided α

is chosen to satisfy (5.45), (5.43) holds, and under Assumption 2, we may apply Lemma 5.13 to

deduce convergence of IHT to an α-stable point. On the other hand, Lemma 5.10 establishes

that there are asymptotically no α-stable points on any Γi such that i ∈ Θ1
n, while we may

apply Lemma 5.12 to deduce that any α-stable points on any Γi such that i ∈ Θ2
n satisfy (5.27).�

In the special case of Problem 1.1, the same phase transition guarantees exact recovery of

the underlying signal x∗.

Corollary 5.15 (Noiseless case). Consider Problem 1.1. Suppose Assumption 2 holds, sup-

pose that (5.44) holds, and suppose that α satisfies (5.45). Then, in the proportional-growth

asymptotic, IHT converges to x∗ with probability tending to 1 exponentially in n.

Proof: The result follows by setting Σ := 0 in Theorem 5.14. �

5.3.2 Recovery results for NIHT

In the case of NIHT, it is possible to prove convergence to an α(δ, ρ; ǫ)-stable point, where

α(δ, ρ; ǫ) := {κ[1 + U(δ, 2ρ) + ǫ]}−1, (5.46)

for some ǫ > 0. Due to the dependence of α(δ, ρ; ǫ) upon (δ, ρ), we need new versions of

Definitions 5.8 and 5.9 for NIHT.

Definition 5.16 (Stability factor for NIHT). Consider Problem 1.3. Given δ ∈ (0, 1] and

ρ ∈ (0, 1/2], provided

ρ < ρ̂NIHTκ

SP (δ) (5.47)

define

a(δ, ρ) :=
1 +

√

IF(δ, ρ) + {κ[1 + U(δ, 2ρ)]}−1
√

ρ(1 − ρ)[1 + IU(δ, ρ, 1 − ρ)][1 + IU(δ, ρ, ρ)]

(1 − ρ){κ[1 + U(δ, 2ρ)]}−1[1 − IL(δ, ρ, 1 − ρ)] −
√

IF(δ, ρ)
,

(5.48)
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and

ξ(δ, ρ) :=

√

IF(δ, ρ) [1 + a(δ, ρ)]
2

+ 1 + [a(δ, ρ)]
2
, (5.49)

where IF is defined in (5.3), where IU and IL are defined in (5.2), and where U is defined in

Definition 2.11.

Note that (5.47) ensures that the denominator in (5.48) is strictly positive and that a(δ, ρ)

is therefore well-defined.

Definition 5.17 (Support set partition for NIHT). Consider Problem 1.3 and suppose

δ ∈ (0, 1] and ρ ∈ (0, 1/2]. Given ζ > 0, let us write

a∗(δ, ρ; ζ) := a(δ, ρ) + ζ, (5.50)

where a(δ, ρ) is defined in (5.48), let us write {Γi : i ∈ Sn} for the set of all possible support

sets of cardinality k, and let us disjointly partition Sn := Θ1
n ∪ Θ2

n such that

Θ1
n :=

{

i ∈ Sn : ‖x∗Λ\Γi
‖ > Σ · a∗(δ, ρ; ζ)

}

; Θ2
n :=

{

i ∈ Sn : ‖x∗Λ\Γi
‖ ≤ Σ · a∗(δ, ρ; ζ)

}

,

(5.51)

where Σ is defined in (4.9) and Λ is defined in (3.1).

The reader may verify by comparison with Definitions 5.8 and 5.9 that, essentially, the α

terms have been replaced by the term {κ[1 + U(δ, 2ρ)]}−1.

The proof of recovery results for NIHT corresponding to those for IHT in Section 5.3.1 takes

broadly the same approach. However, in order to finally eliminate the dependence upon ǫ in

α(δ, ρ; ǫ), the results corresponding to Lemmas 5.10 and 5.13 for IHT need to be combined to-

gether. This is accomplished by Lemma 5.18, which establishes that, provided (5.47) holds and

ǫ is taken sufficiently small, NIHT converges to an α(δ, ρ; ǫ)-stable point on some Γi such that

i ∈ Θ2
n. Lemma 5.19 corresponds to Lemma 5.12 for IHT, giving bounds on the approximation

error of an α(δ, ρ; ǫ)-stable point on some Γi such that i ∈ Θ2
n, for any ǫ > 0. Combining

the two lemmas leads us to conclude that NIHT converges to some limit point with bounded

approximation error. We write NSPα for the event that there is no α(δ, ρ; ǫ)-stable point on

any Γi such that i ∈ Θ1
n.

Lemma 5.18. Consider Problem 1.3 and choose ζ > 0. Suppose Assumptions 2 and 3 hold, and

suppose that (5.47) holds. Then there exists ǫ such that, in the proportional-growth asymptotic,

NIHT with shrinkage parameter κ converges to an α(δ, ρ; ǫ)-stable point on some Γi such that

i ∈ Θ2
n, with probability tending to 1 exponentially in n.

Proof: Under Assumption 2, we have by Theorem 3.10 convergence of NIHT to a [κ(1 +

U2k)]−1-stable point. By Definition 3.2, for any α1 < α2, the set of α1-stable points includes the

set of α2-stable points, and this observation combines with Theorem 2.12 to imply convergence
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to an α(δ, ρ; ǫ)-stable point, where α(δ, ρ; ǫ) is defined in (5.46), with probability tending to 1

exponentially in n. We now rehearse the argument of Lemma 5.10 to show that, provided ǫ is

taken sufficiently small, this stable point must be on Γi such that i ∈ Θ2
n. For any Γi such that

i ∈ Θ1
n, we have Γi 6= Λ, and we may therefore use Theorem 3.4 and Lemma 4.10 with Γ := Γi

to deduce that, given some ǫ > 0, a necessary condition for there to be an α(δ, ρ; ǫ)-stable point

on Γi is

‖x∗Λ\Γi
‖ ·
√

FΓi
+ ‖x∗Γi\Λ

‖ + σ̃Γi
·
√

GΓi

≥ α(δ, ρ; ǫ)

[

(

n−k
n

)

‖x∗Λ\Γi
‖ ·RΓi

− σ̃Γi
·
√

k(n−k)
n2 · SΓi

· TΓi

]

,
(5.52)

where

FΓi
∼ k

n− k + 1
F (k, n− k + 1); GΓi

∼ k

n− k + 1
F (k, n− k + 1);

RΓi
∼ 1

n− k
χ2

n−k; SΓi
∼ 1

n− k
χ2

n−k; TΓi
∼ 1

k
χ2

k.

But (4.9) implies σ̃Γi
≤ Σ, while ‖x∗Γi\Λ

‖ ≤ ‖x∗ΛC‖ ≤ Σ, and substituting both into (5.52) gives

‖x∗Λ\Γi
‖·
√

FΓi
+Σ

(

1 +
√

GΓi

)

≥ α(δ, ρ; ǫ)

[

(

n− k

n

)

‖x∗Λ\Γi
‖ ·RΓi

− Σ

√

k(n− k)

n2
· SΓi

· TΓi

]

.

(5.53)

We also have, by (5.51),

Σ ≤
‖x∗Λ\Γi

‖
a∗(δ, ρ; ζ)

(5.54)

for any Γi such that i ∈ Θ1
n. Since Γi 6= Λ, ‖x∗Λ\Γ‖ > 0, and substitution of (5.54) into (5.53),

rearrangement and division by ‖x∗Λ\Γi
‖ yields

a∗(δ, ρ; ζ)

[

α(δ, ρ; ǫ)

(

n− k

n

)

·RΓi
−
√

FΓi

]

≤ 1 +
√

GΓi
+ α(δ, ρ; ǫ)

√

k(n− k)

n2
· SΓi

· TΓi
,

and consequently

P(NSPα) = P
{

∪i∈Θ1
n
(∃ an α(δ, ρ; ǫ)-stable point supported on Γi)

}

≤ P
{

∪i∈Θ1
n

(Φ[ρn, FΓi
, GΓi

, RΓi
, SΓi

, TΓi
] ≥ 0)

}

, (5.55)

where we write ρn for the sequence of values of the ratio k/n, and where

Φ[ρ, F,G,R, S, T ] := 1+
√
G+α(δ, ρ; ǫ)

√

ρ(1 − ρ)(S)(T )−a∗(δ, ρ; ζ)·
[

α(δ, ρ; ǫ)(1 − ρ) ·R−
√
F
]

.

(5.56)

We now define

F ∗ = G∗ := IF(δ, ρ) + ǫ; R∗ := 1 − IL(δ, ρ, 1 − ρ) − ǫ;

S∗ := 1 + IU(δ, ρ, 1 − ρ) + ǫ; T ∗ := 1 + IU(δ, ρ, ρ) + ǫ.
(5.57)
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Using (5.57), we deduce from (5.55) that

P(NSPα)

≤ P
{

∪i∈Θ1
n

(Φ[ρn, FΓi
, GΓi

, RΓi
, SΓi

, TΓi
] ≥ Φ[ρn, F

∗, G∗, R∗, S∗, T ∗])
}

(5.58)

+ P {Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ǫ} (5.59)

+ P {Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ǫ ≥ 0} , (5.60)

since the event in (5.55) lies in the union of the three events in (5.58), (5.59) and (5.60). Now

(5.60) is a deterministic event, and a∗(δ, ρ; ζ) has been defined in such a way that, for any

ζ > 0, provided ǫ is taken sufficiently small, the event has probability 0. This follows from

(5.47), (5.48), (5.50), and by the continuity of Φ. The event (5.59) is also deterministic, and by

continuity and since ρn → ρ, it follows that there exists some ñ such that

P {Φ[ρn, F
∗, G∗, R∗, S∗, T ∗] ≥ Φ[ρ, F ∗, G∗, R∗, S∗, T ∗] + ǫ} = 0 for all n ≥ ñ.

Taking limits as n→ ∞, the terms (5.59) and (5.60) are zero, leaving only (5.58), and we have

lim
n→∞

P(NSPα)

≤ lim
n→∞

P
{

∪i∈Θ1
n

(Φ[ρn, FΓi
, GΓi

, RΓi
, SΓi

, TΓi
] ≥ Φ[ρn, F

∗, G∗, R∗, S∗, T ∗])
}

≤ lim
n→∞

P
{

∪i∈Θ1
n
(FΓi

≥ F ∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(GΓi

≥ G∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(RΓi

≤ R∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(SΓi

≥ S∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(TΓi

≥ T ∗)
}

, (5.61)

where the last line follows from the monotonicity of Φ with respect to F , G, R, S and T . Since

|Θ1
n| ≤

(

N
k

)

, we may apply Lemmas 4.23 and 4.27 with |Sn| :=
(

N
k

)

and S(δ, ρ) = H(δρ)/δ to

(5.61), and we deduce P(NSPα) → 0 as n→ ∞, exponentially in n, as required. �

Lemma 5.19. Consider Problem 1.3. Suppose Assumptions 2 and 3 hold, and suppose that

(5.47) holds. Given any ǫ > 0, there exists ζ sufficiently small such that, in the proportional-

growth asymptotic, any α(δ, ρ; ǫ)-stable point on Γi such that i ∈ Θ2
n satisfies

‖x̄− x∗‖ ≤ ξ(δ, ρ) · Σ, (5.62)

with probability tending to 1 exponentially in n, where ξ(δ, ρ) is defined in (5.49) and Σ is

defined in (4.9).
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Proof: Suppose x̄ is a minimum-norm solution on Γ, so that x̄Γ = A†
Γb. Then we may

follow the argument of Lemma 5.12 to deduce (5.33), where

PΓ ∼ k

n− k + 1
F (k, n− k + 1); QΓ ∼ k

n− k + 1
F (k, n− k + 1). (5.63)

Combining (5.33) with (5.51), we may further deduce

‖x̄− x∗‖2 ≤ Σ2
[

a∗(δ, ρ; ζ) ·
√

PΓ +
√

QΓ

]2

+ [a∗(δ, ρ; ζ)]
2 · Σ2 + Σ2

= Σ2

{

[

a∗(δ, ρ; ζ) ·
√

PΓ +
√

QΓ

]2

+ 1 + [a∗(δ, ρ; ζ)]
2

}

. (5.64)

For the sake of brevity, let us define

Ψ[P,Q] :=

√

(

a∗(δ, ρ; ζ) ·
√
P +

√

Q
)2

+ 1 + a∗(δ, ρ; ζ)2, (5.65)

so that (5.64) may equivalently be written as

‖x̄− x∗‖ ≤ Σ · Ψ [PΓ, QΓ] . (5.66)

Given ζ > 0, let us define

P ∗ = Q∗ := IF(δ, ρ) + ζ. (5.67)

Now we use (5.66) to perform a union bound over all Γi such that i ∈ Θ2
n, writing x̄i for the

minimum-norm solution on Γi, giving

P
{

∃ some Γi such that i ∈ Θ2
n and ‖x̄i − x∗‖ > Σ · Ψ [P ∗, Q∗]

}

= P







⋃

i∈Θ2
n

(‖x̄i − x∗‖ > Σ · Ψ [P ∗, Q∗])







(5.68)

≤ P







⋃

i∈Θ2
n

(‖x̄i − x∗‖ > Σ · Ψ [PΓi
, QΓi

])







(5.69)

+ P







⋃

i∈Θ2
n

(Σ · Ψ [PΓi
, QΓi

] ≥ Σ · Ψ [P ∗, Q∗])







,

(5.70)

since the event in (5.68) lies in the union of the two events in (5.69) and (5.70). It is an

immediate consequence of (5.66) that the event in (5.69) has probability 0. Taking limits of
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(5.70) as n→ ∞, and cancelling Σ, we have

lim
n→∞

P
{

∃ some Γi such that i ∈ Θ2
n and ‖x̄i − x∗‖ > Σ · Ψ [P ∗, Q∗]

}

≤ lim
n→∞

P







⋃

i∈Θ2
n

(Ψ [PΓi
, QΓi

] ≥ Ψ [P ∗, Q∗])







≤ lim
n→∞

P
{

∪i∈Θ2
n
(PΓi

≥ P ∗)
}

+ lim
n→∞

P
{

∪i∈Θ2
n
(QΓi

≥ Q∗)
}

, (5.71)

where we used the monotonicity of Ψ with respect to P and Q in the last line. Since |Θ2
n| ≤

(

N
k

)

,

and using (5.63), we may apply Lemma 4.27 with |Sn| :=
(

N
k

)

and S(δ, ρ) = H(δρ)/δ to (5.71),

yielding that each of the limits in the right-hand side of (5.71) converges to zero exponentially

in n, and so finally

lim
n→∞

P
{

∃ some Γi such that i ∈ Θ2
n and ‖x̄i − x∗‖ > Σ · Ψ [P ∗, Q∗]

}

= 0,

with convergence at a rate exponential in n also by Lemma 4.27. Since by Lemma 3.3, any

stable point is necessarily a minimum-norm solution, and recalling the definition of Ψ(P,Q) in

(5.35), and the definitions of P ∗, Q∗ in (5.67), we have

lim
n→∞

P







∃ some α-stable point x̄i on Γi such that i ∈ Θ2
n and

‖x̄i − x∗‖ > Σ

√

IF(δ, ρ) [1 + a(δ, ρ) + ζ]
2

+ 1 + [a(δ, ρ) + ζ]
2







= 0, (5.72)

with convergence exponential in n. Finally, by continuity,

‖x̄i − x∗‖ > Σ

√

IF(δ, ρ) [1 + a(δ, ρ)]
2

+ 1 + [a(δ, ρ)]
2

=⇒ ‖x̄i − x∗‖ > Σ

√

IF(δ, ρ) [1 + a(δ, ρ) + ζ]
2

+ 1 + [a(δ, ρ) + ζ]
2
,

for some ζ suitably small, and the result now follows from the definition of ξ(δ, ρ) in (5.49). �

Combining Lemmas 5.18 and 5.19, we have the following recovery result for NIHT.

Theorem 5.20 (Recovery result for NIHT). Consider Problem 1.3. Suppose Assump-

tions 2 and 3 hold and suppose that (5.47) holds. Then, in the proportional-growth asymptotic,

NIHT converges to x̄ such that (5.62) holds with probability tending to 1 exponentially in n.

Proof: By Lemma 5.18, there exists ǫ > 0 such that NIHT with shrinkage parameter κ

converges to an α(δ, ρ; ǫ)-stable point on some Γi such that i ∈ Θ2
n, and for this choice of ǫ, we

can apply Lemma 5.19 to deduce the result. �

In the case of Problem 1.1, Theorem 5.20 simplifies to an exact recovery result.
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Corollary 5.21 (Noiseless case). Consider Problem 1.1. Suppose Assumption 2 holds and

suppose that (5.47) holds. Then, in the proportional-growth asymptotic, NIHT with shrinkage

parameter κ converges to x∗ with probability tending to 1 exponentially in n.

Proof: The result follows by setting Σ := 0 in Theorem 5.14. �

5.4 Illustration and discussion of recovery results

5.4.1 Noiseless case

Exact recovery results. Let us first consider the simplified case of Problem 1.1, where we

seek to recover an exactly k-sparse signal x∗ from noiseless measurements. Corollaries 5.15

and 5.21 establish that, given a sequence of k-sparse signals x∗ and independently drawn n ×
N Gaussian measurement matrices A, provided the ratio ρ = k/n falls below ρ̂IHT

SP (δ) or

ρ̂NIHTκ

SP (δ), defined in (5.4) and (5.5) respectively, the probability of exact recovery of the

original signal x∗ approaches 1 exponentially fast in n. The functions ρ̂IHT
SP (δ) and ρ̂NIHTκ

SP (δ)

define curves in the (δ, ρ)-plane, which are plotted in Figure 5.2. Also plotted in Figure 5.2 to

enable a comparison are the current best phase transitions derived from an RIP analysis. We

plot both the results obtained in Chapter 2 based upon Foucart’s analysis [93] and the results

derived in Chapter 3 from our own stable point analysis. As in previous plots in this thesis, a

shrinkage parameter of κ := 1.1 is selected for NIHT in both cases. We observe in both cases an

improvement in comparison with the RIP-based phase transitions, by a factor of approximately

1.7 for IHT, and by around an even larger factor of approximately 5 for NIHT. It should also

be added that our result for IHT holds for a continuous stepsize range, while the result based

upon [93], in keeping with all other similar RIP-based results for IHT surveyed in Section 2.4,

holds true only if the stepsize is optimized to a particular value.
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Figure 5.2: Our average-case phase transitions for IHT algorithms (unbroken) compared with
the best-known RIP-based phase transitions based on our stable point analysis (dashed) and
the analysis in [93] (dash-dot): (a) IHT (b) NIHT.
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Figure 5.3 displays the inverse of ρ̂IHT
SP (δ) and ρ̂NIHT1.1

SP (δ). RIP analysis requires a lower

bound of n ≥ 234k measurements to guarantee recovery using IHT (see Section 2.4), and

n ≥ 785k using NIHT. By comparison, we reduce these lower bounds to n ≥ 138k for IHT and

n ≥ 154k for NIHT.
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Figure 5.3: Inverse of the phase transitions in Figure 5.2: (a) IHT (b) NIHT.

Interpretation as lower bounds on a weak phase transition. It is important to point

out the average-case nature of these results, in contrast to the RIP-based results presented in

Chapters 2 and 3, and in Section 5.1 of the present chapter. Worst-case RIP results prove that,

with exponentially high probability on the draw of a Gaussian measurement matrix, IHT/NIHT

will recover any k-sparse vector from measurements generating by this matrix. The results in

Section 5.3 do not provide such strong statements: rather, it is asymptotically guaranteed that,

given some k-sparse signal and independent Gaussian measurements, IHT/NIHT will recover

this signal from its measurements with exponentially high probability. In other words, we prove

results concerning the recovery probability for an independently-chosen k-sparse signal, rather

than for all possible k-sparse signals.

There is a strong parallel between the results presented in this chapter and the weak phase

transitions for l1-l0 equivalence of Donoho and Tanner [77] discussed in Section 1.5. We recall

that, below the strong phase transition, it is asymptotically guaranteed that, given a randomly

chosen Gaussian measurement matrix, l1-l0 equivalence holds for any instance of Problem 1.1

in which that Gaussian matrix is used to generate the measurements. On the other hand,

below the weak phase transition, it is asymptotically guaranteed that, given a randomly chosen

Gaussian measurement matrix A and a signal x∗ with randomly (or independently) chosen

support and sign pattern, l1-l0 equivalence holds for that particular instance of Problem 1.1

with original signal x∗ and measurement matrix A. Our results may be viewed as lower bounds

on a particular kind of weak phase transition for recovery using IHT algorithms, in which the

signal is assumed to be statistically independent of the measurement matrix, The notions are
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comparable but not identical: in the case of l1-l0 equivalence, some dependency between the

signal and measurement matrix is permitted: it is only required that the support set and sign

pattern of the signal are chosen independently of the matrix. However, independence is the

only assumption we place upon the signal, and beyond this there is no further restriction upon

the signal’s coefficients.

We also recall that it is the weak phase transition that is observed empirically for l1-l0

equivalence, and the same is also to be expected for IHT algorithms. While we obtain a signif-

icant improvement, our lower bound is still pessimistic compared to the weak phase transition

observed empirically, though we have succeeded in narrowing the gap between the two. It is

no surprise that our results do not give the precise weak phase transition, due to the continued

use of worst-case techniques, such as the RIP and large deviations analysis. However, the use

of the average-case independence assumption to analyse the stable point condition has allowed

us to break free in part from the restrictions of worst-case analysis.

Choice of stepsize for IHT. Corollary 5.15 guarantees exact recovery using IHT provided

the stepsize α falls within the interval given in (5.45), provided this interval is well-defined. In

fact, an inspection of the proof of these two results reveals that the lower bound in (5.45) arises

from the stable point condition, while the upper bound in (5.45) arises from the convergence

condition. Figure 5.4.1 illustrates these bounds for the case δ = 0.5. We see that, as ρ is

increased, the admissible stepsize range contracts, until a critical ρ-value is reached at which

the interval is no longer well-defined.
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Figure 5.4: Lower bound (unbroken) and upper bound (dashed) on the IHT stepsize for δ = 0.5.

It has been observed empirically [72] that care must be taken to ensure that the IHT stepsize

is neither too small or too large. Our analysis gives theoretical insight into this observation:
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the stepsize must be small enough to ensure that the algorithm converges, but large enough to

ensure that it does not converge to fixed points other than the underlying sparse signal.

5.4.2 General case

Stability factors. In the case of Problem 1.3, where signals are no longer exactly k-sparse

and measurements are contaminated by noise, exact recovery of the original signal is impossible.

However, Theorem 5.14 guarantees that, under the same condition guaranteeing exact recovery

for Problem 1.1, the approximation error of the output of IHT/NIHT is asymptotically bounded

by some known stability factor ξ(δ, ρ) multiplied by the unrecoverable energy Σ. More precisely,

consider a sequence of k-compressible signals x∗ and independently drawn n × N Gaussian

measurement matrices A. Provided the ratio ρ = k/n falls below ρ̂IHT
SP (δ), then the probability

that IHT with stepsize satisfying (5.45) satisfies (5.27) with α := α approaches 1 exponentially

fast in n. Similarly, provided the ratio ρ = k/n falls below ρ̂NIHTκ

SP (δ), then the probability that

NIHT with shrinkage parameter κ satisfies (5.62) with α := {κ[1 + U(δ, 2ρ)]}−1 approaches 1

exponentially fast in n.

Plots of the stability factor ξ(δ, ρ) for both IHT and NIHT (κ := 1.1) are displayed in

Figure 5.5. For IHT, there is some freedom in the choice of the stepsize: for these plots we

select a stepsize at the upper limit of the permissible interval (5.45) since this minimizes the

stability factor. In keeping with the plots in Chapter 2, we observe that the stability factor

tends to infinity as the transition point is reached.
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Figure 5.5: Plots of the stability factor ξ(δ, ρ) for (a) IHT (b) NIHT.

Comparison with previous stability results. Let us now compare these stability results

with those presented in Chapter 2 for the previous RIP-based analysis. The stability factors

plotted in Figure 2.2 are in the context of Problem 1.2, where the underlying signal is assumed

to be k-sparse, and therefore we must first interpret these results in the context of Problem 1.3

before we can make a comparison. In this case, we see from Lemma 2.2 that the stability factor
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in Figure 2.2 multiplies a different measure of the unrecoverable energy Σ̃, namely

Σ̃ := ‖e‖ +
√

1 + Uk

(

‖x∗ΛC‖ +
1√
k
‖x∗ΛC‖1

)

. (5.73)

It follows from (5.73) that the corresponding stability factor for Problem 1.3 is necessarily

greater than the corresponding factor for Problem 1.2, due to amplification by the RIP term.

Furthermore, the l1-norm term is dependent upon the decay properties of the tail of the under-

lying signal. In the very worst case in which there is negligible decay, the l1 term is bounded by
√

N
k

∥

∥x∗ΛC

∥

∥. Translated into the proportional-dimensional framework, this would give a much

worsened bound for small values of ρ. In practice, it may be realistic to expect that a signal

exhibits faster decay, in which case the l1 term could become negligible, for example in the case

where the signal coefficients decay according to a power law [7]. Nonetheless, we make the point

that quantitative results for Problem 1.3 obtainable from RIP analysis are dependent upon the

decay properties of the tail of the signal, which is not the case for our results.

A comparison of Figure 5.5 with Figure 2.2 shows that, for both IHT and NIHT, in the

region for which the stability factors derived in this chapter are defined, they are everywhere

lower than the corresponding stability factors derived from the previous analysis in Chapter 2.

Furthermore, the discussion in the previous paragraph shows that, if a fair comparison of

stability factors is made in the context of Problem 1.3, the improvement is even greater than

appears at first glance from the plots.

We obtain our results without having to make any implicit assumptions about the decay of

the tail of the signal. On the other hand, we do impose additional restrictions upon the noise,

namely that the noise is Gaussian distributed and independent of the signal and measurement

matrix. This assumption is in keeping with our aim of performing average-case analysis. Our

analysis could, however, be altered to deal with the case of non-independent noise by making

more use of the RIP, though this would lead to larger stability constants.
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Chapter 6

ITP algorithms for tree-based recovery

We now shift our focus to the extension of CS recovery analysis to tree-based signal models.1

In Section 6.1 of this chapter, we describe in more technical detail the tree-based sparsity

model and the Iterative Tree Projection (ITP) algorithm [24, 7], both of which were described

in Section 1.9. ITP may be viewed as the extension of IHT to the tree-based setting. We

also introduce a variable stepsize variant called Normalised Iterative Tree Projection (NITP),

which is the extension of NIHT [27] to the tree-based setting. A crucial question for algorithms

such as ITP and NITP is how to perform the tree projection, and in Section 6.2 we propose a

dynamic programming (DP) algorithm which is guaranteed to perform an exact tree projection

in polynomial time. To the best of our knowledge, it is the only current tree projection algorithm

with sub-exponential complexity which is guaranteed to exactly perform the projection. Then,

in Section 6.3, we extend the stable point recovery analysis of Chapter 3 to ITP algorithms.

The final goal is to quantify these results for Gaussian matrices within a simplified proportional-

growth asymptotic framework, which is the focus of Chapter 7.

6.1 Tree-based models and Iterative Tree Projection (ITP)

We recall from Section 1.8 that more refined sparsity models are appropriate for many signals.

One such model, which was introduced in Section 1.9, and which applies to the wavelet rep-

resentation of piecewise smooth signals, is the tree-based model. Let us begin by giving some

background on wavelets and explaining why the wavelet coefficients of piecewise smooth signals

have an inherent tree structure.

Wavelet transforms arrived on the scene in the 1980s as an alternative to the Fourier trans-

form and, as the name suggests, consist of small pieces of a wave. In particular, a wavelet

transform consists in convolving a signal with particular instances of a given wavelet function

(often called the mother wavelet) at different scales and positions. The theory of wavelets,

1Material in the following two chapters is in preparation for submission in [43], which is a joint authorship
with C. Cartis whose permission has been obtained for the inclusion of the material.
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first developed in the context of continuous signals, also gave rise to the discrete wavelet trans-

form (DWT), which is where our interest lies. We refer the reader to [123] and [59] for more

background on the theory of wavelets.

The origins of the DWT can in fact be traced back to the proposal of the Haar wavelet

in 1909 in Haar’s PhD thesis [104], a long time before wavelets became popular in signal

processing. The late 1980s saw an explosion of research into DWTs, pioneered by the work

of Strömberg [144], Daubechies [58], Meyer [125] and Mallat [122]. There is now a rich bank

of DWTs available, for example the family of Daubechies wavelets (which can be viewed as a

generalization of the Haar wavelet), Coiflets, Legendre wavelets, and many more.

Despite their differences, all these DWTs have in common a dyadic multi-scale tree structure

in which the signal is represented at progressively finer scales by repeatedly dividing the support

of the signal in two. This induces a natural tree structure on the wavelet coefficients, and a

parent-child relationship between wavelet coefficients at different scales. For 1-dimensional

wavelets, a binary tree structure results in which each parent node has precisely two children.

More general D-dimensional wavelets give rise to a 2D-ary tree structure: for example, 2-

dimensional wavelets have a quad-tree structure in which each parent node has precisely four

children [7].

By exploiting their nested-support tree structure, many DWTs can be implemented as

fast transforms which have complexity O(N), which improves upon the Fast Fourier Transform

(FFT) that requires O(N logN) operations [123]. In addition, some DWTs are also orthogonal,

which means that the inverse transform can be computed equally fast [123]. We will assume the

use of an orthogonal DWT in our analysis in Chapter 7, so that we may model the measurement

matrix as Gaussian.

The great advantage of wavelets is their ability to locally detect features of interest. For

example, the Haar mother wavelet is a step-function, which leads to large wavelet coefficients

in regions in which there is a discontinuity in the signal. Other wavelets are designed so that

the first few derivatives vanish (vanishing moments), and so detect discontinuities in higher

derivatives of the signal. Since wavelets essentially work as local discontinuity detectors, signal

discontinuities give rise to a chain of large coefficients along a single branch of the tree. For

this reason, if a particular wavelet coefficient is large, its parent wavelet coefficient is also likely

to be large, which means that the large wavelet coefficients of piecewise smooth signals can be

modelled as forming a connected subset of the whole tree which is itself a rooted tree [7].

Let us frame this alternative simplicity model within the notational framework of Section 1.3.

We now choose to expand our signal z∗ in a wavelet basis {ψ1, ψ2, . . . , ψN}. Letting x∗ be the

coefficients with respect to this basis, we may write this transformation as the matrix equation

z∗ = Ψx∗, (6.1)
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where Ψ is the N × N matrix with ψ1, ψ2, . . . , ψN as its columns. By analogy with the case

of simple sparsity, we consider both exact and approximate tree-based models: either x∗ is

k-tree sparse for some k < N , meaning that it is supported on a rooted tree of cardinality k;

or x∗ is k-tree compressible, meaning that it is well-approximated by a k-tree sparse vector.

See Section 6.2 in which we make the concept of tree-sparsity more precise in the context of a

canonical model for dyadic wavelets.

The tree-based model. We continue to make the same assumption concerning the measure-

ment scheme, namely that we obtain the noisy linear measurements b ∈ R
n as

b = Φz∗ + e, (6.2)

where e ∈ R
n is measurement noise. Defining the measurement matrix to be A := ΦΨ ∈ R

n×N ,

we may combine (6.2) and (6.1) and write

b = Ax∗ + e. (6.3)

We consider two variants of this problem below.

Problem 6.1 (Tree-sparse recovery from exact measurements). Recover exactly a k-tree

sparse x∗ ∈ R
N from the noiseless measurements b = Ax∗ ∈ R

n, where 2k ≤ n ≤ N .

Problem 6.2 (Tree-compressible recovery from noisy measurements). Recover an ap-

proximation to a k-tree compressible x∗ ∈ R
N from the noisy measurements b = Ax∗ + e ∈ R

n,

where 2k ≤ n ≤ N .

Writing Tk for the set of supports which form a rooted tree of cardinality k, we can frame

signal recovery as the optimization problem (1.30). See Section 6.2 for a more precise definition

of Tk in the context of dyadic wavelet trees. The generic family of ITP algorithms, which solves

(1.30) by gradient projection, has already been described in Section 1.9, but we now summarize

it more formally in Algorithm 6.1 below. In Section 1.9, we also introduced the notation Pk(·)
for the projection onto the set of vectors with support in Tk, which we now define more formally.

Pk(x) := arg min
{z∈RN :supp(z)∈Tk}

‖z − x‖. (6.4)

In Section 6.2, we show that this projection is well-defined in the context of a canonical

model for dyadic wavelets. For the moment, we will simply assume that Pk(·) is well-defined.

The next lemma establishes a property of Pk(·) which is shared with the hard threshold operator

Hk(·), namely that it preserves the value of selected coefficients.
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Lemma 6.1. Let Pk(·) be defined as in (6.4). Then

{Pk(x)}i :=







xi i ∈ Γ

0 i /∈ Γ
where Γ := arg max

Γ∈Tk

‖xΓ‖ . (6.5)

Proof: We argue similarly to in the proof of Lemma 1.10. Let supp(z) = Γ ∈ Tk. Then

‖z − x‖2 = ‖(z − x)Γ‖2
+ ‖xΓC‖2

,

and ‖(z − x)Γ‖2
is minimized by setting zi = xi for all i ∈ Γ. Meanwhile, ‖xΓC‖ is minimized

by choosing Γ to be the set in Tk which maximizes ‖xΓ‖, and the result now follows. �

Algorithm 6.1 Generic ITP [24, 7]

Inputs: A, b, k.
Initialize x0 = 0, m = 0.
While some termination criterion is not satisfied, do:

1. Compute a stepsize αm.

2. Compute xm+1 := Pk

{

xm + αmAT (b−Axm)
}

,
where Pk(·) is defined in (6.4).

3. Set m := m+ 1.

End; output x̂ = xm.

The comments concerning practical termination criteria for IHT algorithms given in Sec-

tion 2.1 also apply for ITP algorithms. For Algorithm 2.1 to be well-defined, it remains to define

a stepsize scheme {αm}. We will consider the same two options as for IHT algorithms, which

give rise to the ITP (constant stepsize) and NITP (normalised stepsize) variants respectively.

Algorithm 6.2 ITP [24, 7]

Given some α > 0, on step 1 of each iteration m ≥ 0 of generic ITP, set

αm := α. (6.6)

The comments concerning the choice of the shrinkage parameter κ for NIHT given in Sec-

tion 2.1 also applies to NITP. We will make use of a refinement to the notion of the RIP in the

tree-based context, which we next define.

Definition 6.2 (Tree-based RIP [24, 7]). For a given matrix A, define TLs and TUs, the

lower and upper tree-based RIP constants of order s, to be, respectively,

TLs := 1 − min
∅6=supp(y)⊆Γ∈Ts

‖Ay‖2

‖y‖2
and TUs := max

∅6=supp(y)⊆Γ∈Ts

‖Ay‖2

‖y‖2
− 1. (6.8)

Since tree-based RIP considers only certain support sets of cardinality k, it represents a

tightening of the standard notion of the RIP, so that, for a given measurement matrix, TLk ≤ Lk
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Algorithm 6.3 NITP

Given some c ∈ (0, 1) and κ > 1/(1− c), on step 1 of each iteration m ≥ 0 of generic ITP, do:

1.1. Exact linesearch.

(a) Set Γm := supp(xm).

(b) Compute

αm :=
‖AT

Γm(b−Axm)‖2

‖AΓmAT
Γm(b−Axm)‖2

. (6.7)

(c) Let x̃m+1 := Pk

{

xm + αmAT (b−Axm)
}

.

1.2. Backtracking. If supp(x̃m+1) = supp(xm), end; output αm.

Else, while αm ≥ (1 − c) ‖x̃m+1−xm‖2

‖A(x̃m+1−xm)‖2 , do:

(a) αm := αm/(κ(1 − c)).

(b) x̃m+1 := Pk

{

xm + αmAT (b−Axm)
}

.

End; output αm.

and TUk ≤ Uk for all k.

By analogy with (2.3), we have the following bound on the NITP stepsize.

Lemma 6.3 (NITP stepsize bounds). Let αm be chosen according to Algorithm 6.1. Then

1

κ(1 + TU2k)
≤ αm ≤ 1

1 − TLk
. (6.9)

Proof: If (6.7) is accepted, then αm ≤ 1/(1− TLk) by (6.8). On the other hand, if (6.7) is

rejected, the backtracking phase can only reduce the stepsize further, which proves the upper

bound in (6.9). To prove the lower bound, we also distinguish two cases. If (6.7) is accepted,

then αm ≥ 1/(1 + TUk) by (6.8). Since κ > 1, and since TU2k ≥ TUk by the nonincreasing

property of tree-based RIP constants, the lower bound in (6.9) holds in this case. On the other

hand, if (6.7) is rejected, the penultimate stepsize calculated in the backtracking phase must

also have been rejected. Writing α̃m for the penultimate stepsize, since α̃m was rejected, we

have

α̃m ≥ (1 − c)
‖x̃m+1 − xm‖2

‖A(x̃m+1 − xm)‖2
≥ 1 − c

1 + TU2k
, (6.10)

where the last step follows from (6.8). But αm = α̃m/[κ(1− c)], which combines with (6.10) to

give the lower bound in (6.9) in this case also. �

It follows that, for both ITP and NITP, there exist lower and upper bounds on the stepsize,

α > 0 and α > 0 respectively, such that α ≤ αm ≤ α for all m ≥ 0, by (6.9) in the case of

NITP, and trivially in the case of ITP.
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6.2 An algorithm for Exact Tree Projection (ETP)

Worst-case recovery guarantees were obtained for ITP with unit stepsize in [7] in terms of tree-

based RIP. These results assume that the exact projection Pk onto the set of all rooted trees

of cardinality k is performed in each iteration of ITP. In Section 6.3, we will perform our own

recovery analysis of ITP algorithms, in which we will also make the same assumption that the

projection is computed exactly. Since theoretical results assume an exact projection, a crucial

question is whether it is in fact feasible to perform such a projection. In this section, we first

survey the algorithms that have already been proposed in this regard, and argue that none of

them is guaranteed to return an exact tree projection for a given sparsity k (Section 6.2.1).

In Section 6.2.2, we propose a dynamic programming (DP) algorithm which does give such a

guarantee. In Section 6.2.3, we obtain a complexity bound for this algorithm, demonstrating

that it has low-order polynomial complexity (in fact O(Nk) for binary trees). We frame the

discussion in terms of standard D-dimensional Cartesian-product dyadic wavelets, which have a

particular canonical 2D-ary tree structure. The DP algorithm described could also be applied,

however, to any tree structure, so could equally be used for other tree-based representations

such as shearlets [118] and curvelets [33]. We first establish some notation.

A canonical tree structure. We suppose a tree structure in which each coefficient has a

maximum of d children, where d is the tree order. Assuming the dyadic tree structure of DWTs,

we suppose that d = 2D, where the transform dimension D is some fixed positive integer, so

that d is a fixed integer with d ≥ 2. Constrained by the d-ary tree structure, we will require

that N = dJ for some J ≥ 2, where J is the number of levels in the tree structure. We assign a

numbering to the nodes of the tree starting with the root node and proceeding from coarse to

fine levels. We consider the following tree structure on {i : 1 ≤ i ≤ N}, which would cover any

dyadic DWT. Let the root node i = 1 be at level 0, and have d− 1 children at level 1, namely

{2, . . . , d}. Let each of the remaining nodes except those in level J (the finest level), that is

{i : 2 ≤ i ≤ dJ−1 = N/d}, each have d children, namely {d(i − 1) + 1, . . . , di} respectively.

Let the nodes in the finest level J , that is {i : i > dJ−1 = N/d}, each have no children. It

follows that every node except the root node has precisely one parent, and we have a d-ary tree

structure. Figure 6.2 illustrate this tree structure and numbering scheme for the case of d = 2

(binary tree) and J = 4.

We may now define a rooted tree of cardinality k to be some subtree consisting of k nodes of

the full tree just described, subject to the restrictions that it must include the root node, and

if any node other than the root node is included then its parent node must also be included.

Now consider a vector y ∈ R
N , whose coefficient indices have the tree structure just outlined.

We are interested in finding the projection Pk(y) of a vector y ∈ R
N onto Tk, the set of rooted

trees of cardinality k, where Pk(·) is defined in (6.4). Provided some prior ordering is used to
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Figure 6.1: An illustration of the canonical dyadic tree structure considered in this section, for
the case of d = 2 (binary tree) and J = 4.

distinguish between vectors which have precisely the same approximation error, having made

Tk concrete, it is now clear that Pk(·) is well-defined.

An Integer Programming formulation. The problem of projecting a vector y ∈ R
N onto

the set of rooted d-ary trees may be formulated as the following Integer Program (IP).

max
τ∈ZN

N
∑

i=1

y2
i τi subject to

τ ≥ 0

{τi} tree-nonincreasing
∑

τi = k

τ1 = 1.

(6.11)

Denoting the optimal solution of (6.11) by τ∗, the coefficients of the best tree approximation

are then yiτ
∗
i . Here tree-nonincreasing means that the coefficients do not increase along the

branches, a condition which may be translated into a series of linear constraints. Note that the

assumption of integrality together with the constraints in fact forces τi ∈ {0, 1} for each i, so

that τ may be viewed as a mask for the nonzero coefficients. To see that (6.11) leads to an

exact tree projection, note that the feasible set of (6.11) is precisely the set of vectors which

are supported on a rooted tree of cardinality k and whose nonzero coefficients are equal to one.

Meanwhile, the objective function of (6.11) is maximized by choosing Γ, the support of τ , so

as to maximize ‖yΓ‖2
, and it now follows from Lemma 6.1 that yiτ

∗
i = {Pk(y)}i for all i.
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6.2.1 Tree projection algorithms: a brief survey

In [5], Baraniuk presents a survey of three possible algorithms for tree projection: greedy

tree approximation, the Condensing Sort and Select Algorithm (CSSA) [8] and a Lagrangian

relaxation DP approach due to Donoho [63, 69]. We here present a brief overview, referring the

reader to [5] for more details.

Greedy tree approximation. This simple approach involves applying a hard threshold of

order k̃ to y for some k̃ ≤ k, and then forming the smallest rooted tree containing all these k̃

coefficients. One then increases k̃ steadily until the size of the resulting tree is approximately

equal to k. While this simple algorithm may yield a good approximation in some circum-

stances [5], in general there is no reason to expect that it would give anything other than an

approximate tree projection.

Condensing Sort and Select Algorithm (CSSA). This algorithm, proposed originally

by Baraniuk and Jones in the slightly different context of optimal kernel design [8], solves

the following Linear Programming (LP) relaxation of (6.11), in which one dispenses with the

assumption of integrality while retaining all other constraints:

max
τ∈RN

N
∑

i=1

y2
i τi subject to

τ ≥ 0

{τi} tree-nonincreasing
∑

τi = k

τ1 = 1.

(6.12)

The authors observe that the two solutions are sometimes equal, but not always: a value of

τi = 1 may be assigned to all but a few coefficients, which are each assigned a value τ̄ for some

0 < τ̄ < 1. In this case, the result is a tree of size strictly greater than k. Moreover, there

appears to be no straightforward method for ‘adjusting’ the solution a posteriori to obtain the

optimal k-sparse tree projection. Our own numerical experimentation suggests that the CSSA

often identifies an exact tree projection for an approximate value of the sparsity. However, for

a given sparsity k, it is not guaranteed to find that particular tree approximation.

Lagrangian relaxation DP approach. Rather than imposing a hard constraint on the

required sparsity of the tree projection, Donoho et al. [63, 69] proposed penalizing sparsity

using a Lagrangian relaxation. More precisely, the equality constraint
∑

τi = k is removed and

instead penalized in the objective, giving the relaxation

max
τ∈ZN

N
∑

i=1

y2
i τi − λ · #{τi = 1} subject to

τ ≥ 0

{τi} tree-nonincreasing

τ1 = 1.

(6.13)
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This reformulation can be solved using fine-to-coarse dynamic programming on the tree [69].

The drawback is the non-obvious relationship between the Lagrange multiplier λ and the re-

quired sparsity, which means that at best it can only find tree projections for an approximate

value of the required sparsity. Because (6.11) is an IP, it is not guaranteed to share the same

optimal solution as (6.13). Indeed, our experimentation suggests that the Lagrangian approach

finds, like CSSA, an exact tree projection for an approximate value of the sparsity, but not

necessarily for a specific required sparsity.

Summary. Greedy tree approximation generally only gives approximate tree projections,

while both CSSA and the Lagrangian approach give exact tree projections for an approximation

to the sparsity. The underlying reason in the latter two cases is that both approaches rely upon

solving a relaxation of the original problem which does not necessarily share the same solution.

The solution to the IP (6.11) could be obtained by means of an exhaustive search, which has

combinatorial complexity. However, the question of how to calculate exact tree projections

in polynomial time remains unanswered. We next propose a DP algorithm of our own which

achieves this goal.

6.2.2 An algorithm for exact tree projection

Our algorithm (Algorithm 6.4) falls into the broad category of dynamic programming (DP)

algorithms which optimize on directed graphs by utilizing a principle of optimality, namely

that optimal solutions at a given node may be determined entirely from optimal solutions at

‘preceding’ nodes [13]. Our algorithm makes two passes through the tree: firstly, a fine-to-coarse

pass finds optimal subtrees at each node for all k̃ ≤ k. Secondly, a coarse-to-fine pass tracks

back to identify the optimal choices at each stage.

In Algorithm 6.4, we use the notation Q(l, d) for the set of all partitions of l into d positive

integers, viewed as vectors in Z
d
+, where we must consider different orderings to be distinct.

More formally

Q(l, d) =







G ∈ Z
d
+ :

0 ≤ Gr ≤ l ∀r
∑d

r=1Gr = l







.

The algorithm starts at the finest level and moves up the tree, finding optimal subtrees rooted at

each node, each decision requiring only the information already obtained within that particular

subtree. Optimal subtrees are found at each node for all cardinalities which could possibly

contribute to a rooted tree of cardinality k, which imposes two restrictions. Firstly, by summing

the appropriate geometric series, the maximum cardinality of a subtree rooted at a node in level

j is dJ+1−j−1
d−1 . Secondly, any subtree rooted at a node in level j of cardinality greater than k− j

would necessarily contribute to a rooted tree of cardinality greater than k. Therefore, for nodes

at level j, we need only find optimal subtrees for cardinalities up to min
(

dJ+1−j−1
d−1 , k − j

)

.
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Algorithm 6.4 Exact tree projection (ETP)

Inputs:

{

y ∈ R
N (N = dJ ;J ≥ 2; d ≥ 2)

k ∈ N (k ≤ N)
Initializations:

for i = dJ−1 + 1 : dJ do
F (i, 0) = 0
F (i, 1) = y2

i

end for

Find all optimal subtrees:

for j = J − 1 : −1 : 1 do
for i = dj−1 + 1 : dj do
F (i, 0) = 0
G(i, 0) = 0
F (i, 1) = y2

i

G(i, 1) = 0
for l = 2 : min(dJ+1−j − 1, k − j) do

F (i, l) = y2
i + max

G∈Q(l−1,d)

d
∑

r=1

F [d(i− 1) + r,Gr]

G(i, l) = arg max
G∈Q(l−1,d)

d
∑

r=1

F [d(i− 1) + r,Gr]

end for
end for

end for

F (1, k) = y2
1 + max

G∈Q(k−1,d)

d
∑

r=2

F (r,Gr)

G(1, k) = y2
1 + arg max

G∈Q(k−1,d)

d
∑

r=2

F (r,Gr)

Backtrack to identify optimal tree of size k:

Ω = [1]
Γ1 = k
for j = 1 : J − 1 do

for i = dj−1 + 1 : dj do
if i ∈ Ω then

for r = 1 : d do
if Gr(i,Γi) > 0 then

Ω = Ω ∪ {d(i− 1) + r}
Γd(i−1)+r = Gr(i,Γi)

end if
end for

end if
end for

end for

Outputs:

{

ŷΩ = yΩ
ŷΩC = 0

End
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F (i, l) denotes the total energy of the optimal subtree rooted at node i, of size l. G(i, l) ∈ R
d

is a vector of positive integers, giving the number of nodes contributing to this optimal solution

from the subtree rooted at each of the children of node i. Storing this precedence information is a

crucial step in many DP algorithms, allowing the optimal path to be determined by backtracking

through the graph at the end. We then proceed recursively and eventually determine F (1, k),

the energy of the optimal tree of size k. Finally, we use the precedence information to trace the

optimal solution back along the branches.

That the algorithm does indeed calculate optimal subtrees at each node follows since we

have a principle of optimality, namely that the optimal subtree of size l at a given node i is

found by searching through all possible combinations of optimal subtrees of the children of i,

such that the sum of the sizes of these subtrees is equal to l − 1. More formally,

F (i, l) = y2
i + max

G∈Q(l−1,d)

d
∑

r=1

F [d(i− 1) + r,Gr] , (6.14)

which is precisely how optimal subtrees are calculated in the algorithm.

The algorithm actually does more than is asked for: by the time the root node is reached at

the end of the first pass, enough information has been obtained to determine optimal trees for

all k̃ ≤ k. An important question to ask is how its complexity compares with other approximate

methods, which we address next.

6.2.3 Complexity analysis

The first observation to make is that the second (backtracking) pass through the tree simply

entails a fixed number of operations per node of the tree, and therefore has complexity O(N).

We will see that the leading order complexity is in fact determined by the first pass. The com-

plexity of the first pass is essentially determined by the aggregated cardinality of the candidate

sets Q(l, d) over which we maximize for each node, since for each we perform a fixed number of

operations (d− 1 additions and a comparison). Fortunately, |Q(l, d)| is nothing other than the

number of weak compositions (ordered partitions) of l into d nonnegative integer addends [108],

which has a simple closed-form expression.

Lemma 6.4 (Weak compositions [142, p.18]). Let l and d be positive integers. Then

|Q(l, d)| =

(

l + d− 1

d− 1

)

. (6.15)

The next lemma gives a simple bound on |Q(l, d)|.

Lemma 6.5 (Weak composition bound).

|Q(l, d)| ≤ (l + 1)d−1.
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Proof : Starting from (6.15), we deduce

|Q(l, d)| =
(l + d− 1)!

l!(d− 1)!
=

(l + 1)(l + 2) . . . (l + d− 1)

1 · 2 . . . (d− 1)

=

d−1
∏

i=1

(

l + i

i

)

=

d−1
∏

i=1

(

l

i
+ 1

)

≤ (l + 1)d−1. �

We now proceed to our complexity result.

Theorem 6.6 (Complexity of ETP). The ETP algorithm has complexity O(Nkd−1).

Proof : We bound the aggregrated cardinality of all candidate sets Q(l, d) in the first pass

of the algorithm. In each level j with 1 ≤ j ≤ J − 1, there are (d− 1) · dj−1 nodes. Writing l(j)

for the number of evaluations of F that are required for a node in level j, each evaluation of F

involves the optimization over a candidate set Q(l(j)− 1, d), the cardinality of each of which is

bounded, by means of Lemma 6.5, by |Q(l(j)−1, d)| ≤ [l(j)]
d−1

. It follows that the aggregated

cardinality Q of all Q(l, d) sets for levels 1 to J − 1 is given by

Q =

J−1
∑

j=1

{

(d− 1)dj−1 · l(j) [l(j)]
d−1
}

, (6.16)

while, in addition, Algorithm 6.4 guarantees that

l(j) ≤ min

(

dJ+1−j − 1

d− 1
, k − j

)

≤ min(dJ+1−j , k). (6.17)

To determine which of dJ+1−j or k gives a tighter bound, let 1 ≤ p ≤ J − 1 be the unique

positive integer such that

dp−1 ≤ k ≤ dp. (6.18)

First let us assume p > 2. We have

k ≤ dJ+1−j ⇐⇒ dp ≤ dJ+1−j ⇐⇒ p ≤ J + 1 − j ⇐⇒ j ≤ J + 1 − p,

which we may combine with (6.16) and (6.17) to deduce

Q ≤
J+1−p
∑

j=1

(d− 1)dj−1 · k · kd−1 +

J−1
∑

J+2−p

(d− 1)dj−1 · dJ+1−j · (dJ+1−j)d−1 (6.19)

= (d− 1)







kd

J+1−p
∑

j=1

dj−1 +

J−1
∑

J+2−p

ddJ−(d−1)(j−1)







= (d− 1)

{

kd

(

dJ+1−p − 1

d− 1

)

+ dJ+(d−1)(p−1)

[

1 −
(

1
dd−1

)p−1

1 −
(

1
dd−1

)

]}

. (6.20)

148



Quantitative analysis of algorithms for compressed signal recovery 149

Since

(d− 1)

[

1 −
(

1
dd−1

)p−1

1 −
(

1
dd−1

)

]

≤
(

d− 1

1 − 1
d

)

= d,

and since dJ+1−p − 1 ≤ dJ+1−p holds trivially, we can further deduce from (6.20) that

Q ≤ kd · dJ+1−p + dJ+(d−1)(p−1)+1,

to which we can make the substitution N = dJ and apply the bounds (6.18) to conclude that

Q ≤ kd · dN
k

+ dNkd−1 = 2dNkd−1 = O(Nkd−1).

On the other hand, if p ≤ 2, then k ≤ d2 ≤ dJ+1−j for all j ≤ J − 1, and so the second summa-

tion in (6.19) is empty. We may then follow the same argument to bound the first summation,

obtaining Q = O(Nkd−1) in this case also. Finally, the observations at the start of this section,

that the aggregated cardinality bounded here determines the order of complexity of the forward

pass through the tree, and that the backward pass through the tree is O(N), now lead us to

the desired conclusion. �

The result assumes d to be fixed, and we should draw attention to the dependence upon d,

and in particular the linear growth of the exponent in d. For a binary tree (d = 2), for example,

the ETP algorithm is O(Nk); whereas for quad-trees (d = 4) we obtain O(Nk3).

We may compare the complexity of ETP with that of the other approximate tree projection

methods: greedy tree approximation and CSSA are both O(N logN) while the Lagrangian

approach is O(N). Provided logN ≪ k, we can see that the price we pay for guaranteeing

an exact tree projection is an increased order of complexity, with the change being especially

marked for trees of higher order.

In this thesis, we require an exact tree projection for the theoretical results to hold. However,

in practice, one of the approximate solutions to the tree projection problem may be considered

quite satisfactory, and in fact to be preferred due to it likely being faster. In particular,

the CSSA appears to be a good practical choice when an accurate approximation to a tree

projection for a given sparsity is required. This having been said, our ETP algorithm is the

only one guaranteed to perform the task of tree projection exactly, thereby clarifying an issue

of some ambiguity in the literature. In the recovery analysis that follows in the next section,

we assume that the tree projection Pk is computed exactly.

6.3 A new recovery analysis of ITP algorithms

In this section, we define and analyse the notion of an α-stable point for ITP algorithms (Sec-

tion 6.3.1), and we prove conditions guaranteeing the convergence of both ITP and NITP
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variants to a stable point (Section 6.3.2). We follow a similar approach to Chapter 3, prov-

ing our results in the most general setting of noisy measurements and k-compressible signals

(Problem 6.2). We next adapt some of the notation introduced for the standard sparsity model

at the start of Chapter 3 to the tree-based setting.

Notation. We now redefine x∗k to be the best k-tree sparse approximation to x∗, so that

x∗k := arg min
{z∈RN :supp(z)∈Tk}

‖z − x∗‖. (6.21)

We define Λ ∈ Tk to be the support of the best k-tree sparse approximation to x∗, namely

Λ := supp(x∗k). (6.22)

We will assume that x∗ itself is at least k-tree sparse (it may not be tree sparse at all), so that

x∗k is exactly k-tree sparse and Λ has cardinality |Λ| = k. The combined noise due both to

compression error and noise in the measurements, E, may be written as

E := A(x∗ − x∗k) + e = AΛCx∗ΛC + e. (6.23)

Given some index set Γ ∈ Tk, we also define

ẽΓ := e+A(Γ∪Λ)Cx∗(Γ∪Λ)C . (6.24)

6.3.1 Stable point analysis

As in Section 3.1, we begin our considerations with ITP, the constant stepsize variant. Recalling

the algorithm summary in Algorithm 6.1, let us write

φ(x) := Pk{x+ αAT (b−Ax)}, (6.25)

so that the ITP iteration can be expressed as xm+1 = φ(xm). Then a fixed point of ITP is

defined as any x̄ ∈ R
N such that φ(x̄) = x̄.

We have the following necessary conditions for some x̄ to be a fixed point of ITP.

Lemma 6.7 (ITP fixed point necessary condition). Suppose x̄ ∈ R
N is a fixed point of

ITP with stepsize α > 0. Then there exist some set Γ with supp(x̄) ⊆ Γ and |Γ| = k such that

the following two conditions hold.

{

AT (b−Ax̄)
}

Γ
= 0; (6.26)

‖x̄Γ\Ω‖ ≥ α‖AT
Ω\Γ(b−Ax̄)‖ ∀ Ω ∈ Tk. (6.27)
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Proof: We can follow the argument of Lemma 3.1 to deduce (6.26), since all that is assumed

in the argument about the projection Hk(·) is that it preserves the value of selected coefficients,

which is also the case for Pk(·) by (6.5). To prove (6.27), let us suppose that x̄ is a fixed point

of ITP with stepsize α > 0, and that supp(x̄) ⊆ Γ with |Γ| = k, and let us write

ā := x̄+ αAT (b−Ax̄) (6.28)

so that φ(x̄) = Pk(ā). Then it follows from (6.5) that, for any Ω ∈ Tk,

‖āΓ‖2 ≥ ‖āsupp(x̄)‖2 ≥ ‖āΩ‖2,

which may be simplified to give

‖āΓ\Ω‖2 ≥ ‖āΩ\Γ‖2. (6.29)

Now āΩ\Γ = αAT
Ω\Γ(b − Ax̄) using (6.28), while (6.26) implies that āΓ\Ω = x̄Γ\Ω, and these

observations may be combined with (6.29) to deduce (6.27). �

Like the corresponding conditions for IHT, the conditions (6.26) and (6.27) have a simple

intuitive interpretation. If a further iteration of ITP is applied at x̄, there is no change in the

support set, and it follows from (6.5) that we then require

‖
{

x̄+ αAT (b−Ax̄)
}

Γ
‖2 ≥ ‖

{

x̄+ αAT (b−Ax̄)
}

Ω
‖2,

which simple manipulation shows to be equivalent to (6.27). Meanwhile, the coefficients on the

support of x̄ remain unchanged, for which we require the gradient on the support of x̄ be zero,

namely (6.26) must hold.

If the inequality in (6.27) is replaced by a strict inequality, then it can be shown that the

conditions in Lemma 6.7 are also sufficient for x̄ to be a fixed point of ITP.

Recall from Section 3.1 that the initial stepsize choice for NIHT is not well-defined, forcing

the introduction of the concept of an α-stable point. Since the NITP stepsize initialization

(6.7) is the same as for NIHT, we must also introduce the equivalent concept in the tree-based

setting.

Definition 6.8 (Stable points of generic ITP). Given α > 0 and an index set Γ ∈ Tk, we

say x̄ ∈ R
N is an α-stable point of generic ITP on Γ if supp(x̄) ⊆ Γ and

{

AT (b−Ax̄)
}

Γ
= 0 and (6.30)

‖x̄Γ\Ω‖ ≥ α‖AT
Ω\Γ(b−Ax̄)‖ ∀ Ω ∈ Tk. (6.31)

For brevity’s sake, we will often drop the ‘of generic ITP’ label, and at times we will also
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drop the reference to the support set Γ. We can also view an α-stable point as a generalization

of the notion of a fixed point for ITP. In particular, note that, by Lemma 6.7, any fixed point

of ITP with stepsize α > 0 is an α-stable point of generic ITP.

An α-stable point of generic ITP may also be characterized as a minimum-norm solution

on some k-subspace.

Lemma 6.9. Suppose Assumption 1 holds and suppose x̄ is an α-stable point of generic ITP

on Γ for some α > 0. Then x̄Γ = A†
Γb, where the Moore-Penrose pseudoinverse A†

Γ is defined

in (2.7).

Proof : It follows from (6.30) that AT
Γ (b − AΓx̄Γ) = 0 where supp(x̄) ⊆ Γ and |Γ| = k.

Under Assumption 1, the pseudoinverse A†
Γ in (2.7) is well-defined and we may rearrange to

give x̄Γ = A†
Γb. �

The next result, which translates Theorem 3.4 to the tree-based setting, gives a necessary

condition for a stable point on a given support in terms of only x∗, A and e and their restrictions

to certain support sets.

Theorem 6.10 (Stable point condition). Consider Problem 6.2. Suppose Assumption 1

holds and suppose there exists an α-stable point on some Γ such that Γ 6= Λ. Then

∥

∥

∥
A†

ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥
+
∥

∥

∥
x∗Γ\Λ

∥

∥

∥
+
∥

∥

∥
A†

ΓẽΓ

∥

∥

∥
≥ α

{∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)AΛ\Γx

∗
Λ\Γ

∥

∥

∥
−
∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)ẽΓ

∥

∥

∥

}

,

(6.32)

where Λ is defined in (6.22) and ẽΓ is defined in (6.24).

Proof: Supposing that x̄ is an α-stable point on Γ, choosing Ω := Λ in (6.31) yields

‖x̄Γ\Λ‖2 ≥ α2‖AT
Λ\Γ(b−Ax̄)‖2.

We may now follow the argument of Theorem 3.4 to deduce (6.32). �

In the case of Problem 6.1, Theorem 6.10 simplifies to the following corollary.

Corollary 6.11 (Noiseless case). Consider Problem 6.1. Suppose Assumption 1 holds and

suppose there exists an α-stable point on some Γ such that Γ 6= Λ. Then

∥

∥

∥
A†

ΓAΛ\Γx
∗
Λ\Γ

∥

∥

∥
≥ α

∥

∥

∥
AT

Λ\Γ(I −AΓA
†
Γ)AΛ\Γx

∗
Λ\Γ

∥

∥

∥
, (6.33)

where Λ is defined in (6.22).

Proof: Since x∗ΛC = 0 and e = 0, we have ẽΓ = 0 and x∗Γ\Λ = 0 for all Γ, and making both

these substitutions in (6.32) yields the required result. �
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6.3.2 Convergence analysis

In this section, we derive convergence conditions for both ITP and NITP. Some useful properties

of the iterates of ITP are given in the next lemma, which is the counterpart of Lemma 3.7.

Lemma 6.12. The iterates of generic ITP satisfy (3.25) and (3.26) for all m ≥ 0, where Ψ(·)
is defined in (1.24) and gm is defined in (3.24).

Proof: Using (6.4) and (3.24), we may rewrite the generic ITP iteration (1.29) as

xm+1 = arg min
{z∈RN :supp(z)∈Tk}

‖z − {xm − αmgm} ‖2,

from which we may deduce

‖xm+1 − (xm − αmgm)‖2 ≤ ‖xm − (xm − αmgm)‖2 = (αm)2‖gm‖2,

which expands to give

‖xm+1 − xm‖2 + 2αm(gm)T (xm+1 − xm) + (αm)2‖gm‖2 ≤ (αm)2‖gm‖2,

and so (3.25) holds. We may follow the argument of Lemma 3.7 to deduce (3.26). �

A sufficient condition for convergence of generic ITP is given next.

Lemma 6.13 (Sufficient condition for convergence). Consider Problem 6.2. Suppose

Assumption 1 holds, and suppose the iterates of generic ITP satisfy (3.27) for some d > 0 which

does not depend upon m, where Ψ(·) is defined in (1.24). Assume that there exist α ≥ α > 0

such that (3.28) holds. Then xm → x̄ as m→ ∞, where x̄ is an α-stable point of generic ITP.

Proof : We may follow the proof of Lemma 3.8 to deduce that xm → x̄ , where x̄Γ = A†
Γb

and x̄ΓC = 0, for some Γ such that |Γ| = k. The proof still holds since all that is assumed

about the hard threshold projection Hk(·) is that it preserves the value of selected coefficients,

a property which is also shared by the tree projection Pk(·) by (6.5). Since Γ = Γm for some

m ≥ 0, it follows that, in the case of ITP, Γ ∈ Tk. Therefore (6.30) holds for x̄.

It remains to establish that x̄ satisfies (6.31). Defining

Γ1 = {i ∈ Γ : x̄i 6= 0}, (6.34)

it follows that Γ1 ⊆ Γm for all m sufficiently large. It follows from (6.5) that, for any Ω ∈ Tk,

‖xm+1
Γm+1‖2 ≥ ‖{xm − αmgm}Ω‖2, for all m ≥ 0.
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and therefore, for all m sufficiently large,

‖xm+1
Γ1

‖2 + ‖xm+1
Γm+1\Γ1

‖2 ≥ ‖xm+1
Ω∩Γ1

‖2 + ‖{xm − αmgm}Ω\Γ1
‖2,

which cancels to

‖xm+1
Γ1\Ω

‖2 + ‖xm+1
Γm+1\Γ1

‖2 ≥ ‖{xm + αmgm}Ω\Γ1
‖2. (6.35)

Furthermore, it follows from (6.34) that

‖xm+1
Γm+1\Γ1

‖2 → 0. (6.36)

By (3.28), there exists a convergent subsequence of stepsizes,

αmr → α̃ ≥ α as r → ∞ (6.37)

Passing to the limit in (6.35) on the subsequence mr for which (6.37) holds, we deduce that

‖x̄Γ1\Ω‖ ≥ α‖{AT (b−Ax̄)}Ω\Γ1
‖, from which it follows trivially that

‖x̄Γ\Ω‖ ≥ α‖{AT (b−Ax̄)}Ω\Γ‖. (6.38)

Since (6.38) holds for any Ω ∈ Tk, x̄ satisfies (6.31), and the result is proved. �

Theorem 6.14 (ITP convergence). Consider Problem 6.2. Suppose that Assumption 1

holds, and suppose that the stepsize in ITP satisfies

α <
1

1 + TU2k
. (6.39)

Then ITP with stepsize α converges to an α-stable point x̄ of generic ITP.

Proof: We mimic the proof of Theorem 3.9. Let m ≥ 0. Since the support size of the

change to the iterates xm+1 − xm is at most 2k, and since a union of two rooted trees is also a

rooted tree, (6.8) with s = 2k provides ‖A(xm+1 − xm)‖2 ≤ (1 + TU2k)‖xm+1 − xm‖2. Using

this bound, and (3.25) with the choice (6.39), in (3.26), we obtain

Ψ(xm+1) − Ψ(xm) ≤ − 1
2α‖xm+1 − xm‖2 + 1

2 (1 + TU2k)‖xm+1 − xm‖2

=
α(1 + TU2k) − 1

2α
‖xm+1 − xm‖2,

which, due to (6.39), implies that (3.27) holds with d := 2α/[1 − α(1 + TU2k)]. Due to (6.39),

(3.28) trivially holds with α = α = α. Thus Lemma 6.13 applies, and the ITP iterates xm

converge to an α-stable point. �

We next obtain a convergence result for NITP. In this case, there is no explicit requirement
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for a tree-based RIP condition to be satisfied; however, tree-based RIP this time appears in the

choice of α.

Theorem 6.15 (NITP convergence). Suppose Assumption 1 holds. Then NITP with shrink-

age parameter κ converges to a [κ(1 + TU2k)]−1-stable point x̄ of generic ITP.

Proof: We mimic the proof of Theorem 3.10. Firstly, we consider the case when the exact

linesearch choice is accepted, so that αm is given by (6.7). Then (3.24) implies Γm+1 = Γm,

and (1.29) implies

xm+1
Γm = xm

Γm − αmgm
Γm . (6.40)

Using (6.40), (6.7) becomes

αm =
‖gm

Γm‖2

‖AΓmgm
Γm‖2

=
‖xm+1 − xm‖2

‖A(xm+1 − xm)‖2
. (6.41)

Using that xm+1 − xm is supported on Γm, expressing gm
Γm from (6.40) and substituting into

(3.26), we deduce that

Ψ(xm+1) − Ψ(xm) = − 1

αm
(xm+1

Γm − xm
Γm)T (xm+1

Γ − xm
Γ ) +

1

2
‖A(xm+1 − xm)‖2

= − 1

αm
‖xm+1 − xm‖2 +

1

2αm
‖xm+1 − xm‖2 = − 1

2αm
‖xm+1 − xm‖2,

(6.42)

where to obtain the second equality, we also used (6.41). Alternatively, when αm is computed

by shrinkage, we deduce that

‖A(xm+1 − xm)‖2 ≤ 1 − c

2αm
‖xm+1 − xm‖2.

Substituting this and (3.25) into (3.26), we obtain

Ψ(xm+1)−Ψ(xm) ≤ − 1

2αm
‖xm+1−xm‖2+

1 − c

2αm
‖xm+1−xm‖2 = − c

2αm
‖xm+1−xm‖2. (6.43)

Thus (6.42), (6.43) and c ∈ (0, 1) imply that, for all m ≥ 0,

‖xm+1 − xm‖2 ≤ 2αm

c
[Ψ(xm) − Ψ(xm+1)] ≤ 2(1 − c)

c(1 − TL2k)
[Ψ(xm) − Ψ(xm+1)],

due to (6.9). Hence (3.27) holds with d := 2(1 − c)/[c(1 − TL2k)], and so does (3.28) due to

(6.9). Lemma 6.13 applies and, together with (6.9), provides the required conclusion. �

The final goal is to translate the results of the present chapter into quantitative asymptotic

results for Gaussian measurement matrices, towards which we now direct our attention in

Chapter 7.
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Oversampling thresholds for ITP algorithms

In this chapter, we extend the analysis of Chapter 5 to the tree-based setting, and obtain

average-case recovery guarantees for ITP algorithms in the case of Gaussian measurement ma-

trices. In Section 7.1, by making use of tree counting results, we obtain special cases of the

large deviations bounds of Chapter 4 for the tree-based model. We show that these results can

be expressed within a simplified proportional-growth asymptotic, and we also prove bounds on

the upper tree-based RIP constant within this simplified framework. Section 7.2 contains the

recovery analysis and main results for the tree-based model, which combines the results from

Chapter 6 and Section 7.1. In Section 7.2.1, we define our recovery phase transitions and estab-

lish that they are well-defined. We prove our oversampling thresholds for ITP in Section 7.2.2,

and for NITP in Section 7.2.3. We illustrate our results in Section 7.3, and present a discussion,

firstly for the noiseless case of Problem 6.1, and secondly for the general case of Problem 6.2.

7.1 Large deviations results in the tree-based setting

In order to prove quantitative recovery conditions for ITP algorithms, we need to apply the

large deviations results in Chapter 4 to the tree-based model. We also need to obtain a bound

on the upper tree-based RIP constant for Gaussian matrices by extending the analysis in [21].

We accomplish both of these two tasks in this section. The assumption of a rooted tree struc-

ture means that the number of permissible support sets for iterates of the algorithm is much

diminished in comparison with the standard sparsity model, which means that union bound

arguments can be tightened.

In what follows, consider d to be some fixed integer with d ≥ 2. We need to count |Tk|, the

number of permissible support sets in the d-ary tree-based framework, which is bounded above

by T (k), the total number of ordered, rooted d-ary trees of cardinality k. Fortunately, there is

a simple answer to this question, which is given in the following lemma.
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Lemma 7.1 (Tree counting result [115, Note 12]). The total number of ordered, rooted

d-ary trees of cardinality k is

T (k) =
1

(d− 1)k + 1

(

dk

k

)

. (7.1)

These numbers are also known in the literature as the Pfaff-Fuss-Catalan numbers and the

k-Raney numbers [115, Note 12]. In the special case of d = 2, we obtain

T (k) =
1

k + 1

(

2k

k

)

,

which is the Catalan number [115, Note 6].

A similar result was proved in [7, Proposition 1] for the case of binary trees (d = 2),

though the result given above represents a generalization to any d > 2, and in fact also gives

a tightening of the result in [7] in the case where log2(N) > k. Note also that we have an

upper bound on |Tk| which is independent of N . This is in contrast to the total number of

supports, which is
(

N
k

)

. However, |Tk| may not attain this upper bound, for two reasons.

Firstly, if additional structure is imposed upon the tree structure (for example, in the dyadic

wavelet tree model of Section 6.2, the root node has only d − 1 children), then some trees are

excluded from consideration. Secondly, the number of levels in the tree structure is limited

to J = logd(N), which means that if logd(N) < k, there is a further significant restriction.

Indeed, this restriction is likely to be in force, for example in the high-dimensional limit as k

and N grow proportionally. It follows that |Tk| may well exhibit dependence upon both k and

N , while it is still possible to give an upper bound which is valid for any N .

The tail bounds given in Section 4.3 depend upon the quantity S(δ, ρ), which is defined in

(4.87). By setting |Sn| := T (k) in (4.87), we obtain the following expression for S(δ, ρ).

Lemma 7.2 (Tree counting limit). Let the sequence of sets {Sn} be such that |Sn| = T (k),

where T (k) is defined in (7.1). Let S(δ, ρ) be defined in terms of Sn as in (4.87). Then

S(δ, ρ) = dρ ·H(d−1), (7.2)

where H(·) is defined in (2.34).

Proof :

lim
k→∞

1

k
lnT (k) = lim

k→∞

1

k
ln

[

1

(d− 1)k + 1

(

dk

k

)]

= lim
k→∞

1

k
ln

[

1

(d− 1)k + 1

]

+ lim
k→∞

1

k
ln

(

dk

k

)

= 0 + lim
k→∞

d · 1

dk
ln

(

dk

k

)

= d ·H(d−1), (7.3)
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where the last step follows from Stirling’s formula. Setting |Sn| := T (k), where T (k) is defined

in (7.1), it follows from (4.87) and (7.3) that

S(δ, ρ) = lim
n→∞

1

n
ln |Sn| = lim

n→∞

k

n
· 1

k
lnT (k) = dρ ·H(d−1), (7.4)

as required. �

The most striking aspect of the expression in (7.2) is that S(δ, ρ) has no dependence upon

δ. Since, in the definitions of the tail bound functions in Definitions 4.22 and 4.26, the only de-

pendence upon δ arises from the S(δ, ρ) term, it follows that the tail bound functions IUS(δ, ρ),

ILS(δ, ρ) and IFS(δ, ρ) themselves have no dependence upon δ. It is therefore legitimate to

omit the δ variable in the following definitions.

Definition 7.3 (Tree-based χ2 tail bounds). Let ρ ∈ (0, 1) and λ ∈ (0, 1]. Let T IU(ρ, λ)

be the unique solution to

ν − ln(1 + ν) =
2dρ ·H(d−1)

λ
for ν > 0, (7.5)

and let T IL(ρ, λ) be the unique solution to

−ν − ln(1 − ν) =
2dρ ·H(d−1)

λ
for ν ∈ (0, 1), (7.6)

where H(·) is defined in (2.34).

Definition 7.4 (Tree-based F tail bound). Let ρ ∈ (0, 1/2]. Let T IF(ρ) be the unique

solution in f to

ln(1 + f) − ρ ln f = 2dρ ·H(d−1) +H(ρ) for f >
ρ

1 − ρ
, (7.7)

where H(·) is defined in (2.34).

That these tail bounds are well-defined follows since they are a special case of the tail

bounds originally given in Definitions 4.22 and 4.26. The tail bounds in Definitions 7.3 and 7.4

suggest that results in the tree-based setting can be captured within a simplified proportional-

dimensional asymptotic framework in which we retain the ρ variable but dispense with the δ

variable. Let us then formally define the simplified proportional-growth asymptotic.

Definition 7.5 (Simplified proportional-growth asymptotic). We say that a sequence

of problem sizes (k, n,N), where 0 < k ≤ n ≤ N , obeys the simplified proportional-growth

asymptotic if, for some ρ ∈ (0, 1],

k

n
→ ρ as (k, n,N) → ∞.
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Note that the only restriction that the simplified proportional-growth asymptotic places

upon N is that we must have N → ∞ such that N ≥ n. We argued in Section 1.9 that

the simplified proportional-growth asymptotic is also suggested by the results for ITP in [7],

where the tree-based RIP was used to show that n = C · k measurements guarantees recovery

using random matrices, for some constant C. In this chapter, we will determine conditions of

the form ρ < ρ̂ which asymptotically guarantee recovery using ITP algorithms and Gaussian

measurement matrices, thereby quantifying the constant C. As was noted in Section 1.5, the

factor ρ may be interpreted as an oversampling factor, revealing how many measurements

must be taken as a multiple of the sparsity to guarantee recovery. We therefore refer to our

results as oversampling thresholds. Framing the results within the simplified proportional-

growth asymptotic, we have the following tail bound results in the tree-based setting.

Lemma 7.6 (Tree-based large deviations result for χ2). Let l ∈ {1, . . . , n} and let the

random variables Xi
l ∼ 1

l
χ2

l for all i ∈ Sn, where |Sn| = T (k), and let ǫ > 0. In the simplified

proportional growth asymptotic, let l/n→ λ ∈ (0, 1]. Then

P
{

∪i∈Sn
[Xi

l ≥ 1 + T IU(ρ, λ) + ǫ]
}

→ 0 (7.8)

and

P
{

∪i∈Sn
[Xi

l ≤ 1 − T IL(ρ, λ) − ǫ]
}

→ 0, (7.9)

exponentially in n, where T IU(ρ, λ) and T IL(ρ, λ) are defined in (7.5) and (7.6) respectively.

Proof: The result follows by combining Lemma 4.23, Lemma 7.2 and Definition 7.3. �

Lemma 7.7 (Tree-based large deviations results for F ). Let the random variables Xi
n ∼

k
n−k+1 F(k, n − k + 1) for all i ∈ Sn, where |Sn| = T (k), and let ǫ > 0. In the simplified

proportional growth asymptotic,

P
{

∪i∈Sn
[Xi

n ≥ T IF(ρ) + ǫ]
}

→ 0, (7.10)

exponentially in n, where T IF(ρ) is defined in (7.7).

Proof: The result follows by combining Lemma 4.27, Lemma 7.2 and Definition 7.7. �

We next obtain a bound on the upper tree-based RIP constant for Gaussian matrices, within

the simplified proportional-growth asymptotic. We define the following bound, which extends

to the tree-based setting the RIP bounds derived in [21].

Definition 7.8 (Tree-based RIP bound). Define

ψmax(λ, ρ) =
1

2
[(1 + ρ) lnλ+ 1 + ρ− ρ ln ρ− λ] . (7.11)
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Define λmax(ρ) as the solution to

ψmax[λmax(ρ), ρ] + dρ ·H(d−1) = 0 for λmax(ρ) > 1 + ρ, (7.12)

and define T U(ρ) = λmax(ρ) − 1.

In order to prove the validity of the bound in Definition 7.8, we will require the following

two lemmas concerning the pdf of the largest eigenvalue of a Wishart matrix.

Lemma 7.9 (Pdf of the largest eigenvalue of a Wishart matrix [85, Lemma 4.2]).

Let A ∼ Nn,N (0, 1/n) and let AΓ ∈ R
n×k be the restriction of A to the k columns indexed by

Γ. Let fmax(k, n;λ) denote the pdf of the largest eigenvalue of the k×k Wishart matrix AT
ΓAΓ.

Then fmax(k, n;λ) satisfies

fmax(k, n;λ) ≤
[

(2π)1/2(nλ)−3/2

(

nλ

2

)(n+k)/2
1

Γ(k
2 )Γ(n

2 )

]

· e−nλ/2 := gmax(k, n;λ). (7.13)

Lemma 7.10 (Exponent of the pdf [21, Lemma 2.5]). Given ρ = k
n ∈ (0, 1),

fmax(k, n;λ) ≤ pmax(n, λ) exp [n · ψmax(λ, ρ)] , (7.14)

where pmax(n, λ) is a polynomial in (n, λ).

We now establish that T U(ρ) is indeed an asymptotic bound on the upper tree-based RIP

constant.

Theorem 7.11 (Validity of tree-based RIP bound). Let A ∼ Nn,N (0, 1/n) and let ǫ > 0.

In the simplified proportional-growth asymptotic,

P (TUk < T U(ρ) + ǫ) → 1, (7.15)

exponentially in n.

Proof: We follow closely the method of proof in [21, Proposition 2.6]. That there is a

unique solution to (7.12) follows entirely as in the proof of [21, Proposition 2.6]. Select ǫ > 0

and let (k, n) be such that k/n = ρn. Then

P [TUk ≥ T U(ρn) + ǫ] = P [TUk ≥ λmax(ρn) − 1 + ǫ]

= P [1 + TUk ≥ λmax(ρn) + ǫ] (7.16)

Equivalent to (7.16) is the requirement that the maximum eigenvalue of at least one of the

k × k Wishart matrices AT
ΓAΓ ∼ Wk(n; 0, , 1/n) is greater than or equal to λmax(ρn) + ǫ,

considering all Γ ∈ Tk. Writing fmax(k, n;λ) for the pdf of a k × k Wishart matrix distributed
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as Wk(n; 0, 1/n), we may therefore perform a union bound over all Γ ∈ Tk and write

P [TUk ≥ T U(ρn) + ǫ] ≤ |Tk|
∫ ∞

λmax(ρn)+ǫ

fmax(k, n;λ)dλ. (7.17)

Using Lemma 7.9, we may write

fmax(k, n;λ) ≤ gmax(k, n;λ) = φ(n, ρn)λ−
3
2λ

n
2 (1+ρn)e−

n
2 λ (7.18)

where

φ(n, ρn) = (2π)1/2n−3/2
(n

2

)
n
2 (1+ρn) 1

Γ(n
2 ρn)Γ(n

2 )
.

Since λmax(ρn) > 1+ρn, the quantity λ
n
2 (1+ρn)e−

n
2 λ is strictly decreasing in λ on [λmax(ρn),∞).

Combining with (7.18), we therefore have

∫ ∞

λmax(ρn)+ǫ

fmax(k, n;λ)dλ

≤ φ(n, ρn) [λmax(ρn) + ǫ]
n
2 (1+ρn)

e−
n
2 [λmax(ρn)+ǫ]

∫ ∞

λmax(ρn)+ǫ

λ−
3
2 dλ

= [λmax(ρn) + ǫ]
3
2 gmax [k, n;λmax(ρn) + ǫ]

∫ ∞

λmax(ρn)+ǫ

λ−
3
2 dλ

= 2 [λmax(ρn) + ǫ] gmax [k, n;λmax(ρn) + ǫ] ,

which may be substituted into (7.17) to obtain

P [TUk ≥ T U(ρn) + ǫ] ≤ 2|Tk| [λmax(ρn) + ǫ] gmax [k, n;λmax(ρn) + ǫ] ,

and we furthermore apply Lemma 7.10 to give

P [TUk ≥ T U(ρn) + ǫ]

≤ 2|Tk| [λmax(ρn) + ǫ] pmax [n, λmax(ρn) + ǫ] exp {n · ψmax [λmax(ρn) + ǫ, ρ]} ,
(7.19)

where pmax(n, λ) is a polynomial in (n, λ). Taking logarithms and limits of the right-hand side

of (7.19), using (7.2), we have

lim
n→∞

1

n
ln 2|Tk| [λmax(ρn) + ǫ] pmax [n, λmax(ρn) + ǫ] exp {n · ψmax [λmax(ρn) + ǫ, ρ]}

= dρ ·H(d−1) + ψmax [λmax(ρ) + ǫ, ρ] ,

from which it follows that, for any η > 0,

1

n
ln P [TUk ≥ T U(ρn) + ǫ] ≤ dρ ·H(d−1) + ψmax [λmax(ρ) + ǫ, ρ] + η, (7.20)

for all n sufficiently large. By the definition of T U(ρ) in Definition 7.8, and since ψmax(λ, ρ) is
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strictly decreasing in λ, then, for any ǫ > 0, we may choose η sufficiently small to ensure

1

n
ln P [TUk ≥ T U(ρn) + ǫ] ≤ −cT for all n sufficiently large,

where cT is some positive constant, from which it follows that

P [TUk ≥ T U(ρn) + ǫ] ≤ e−cT ·n for all n sufficiently large,

and (7.15) now follows. �

7.2 Recovery oversampling thresholds

As in Chapter 5, we will obtain recovery results in the case where the measurement matrix is

i.i.d. Gaussian, and independent of the underlying signal x∗, as formalized in Assumption 2.

Recalling the notational framework for the tree-based model given in Section 6.1, suppose we

obtain Gaussian measurements b = Φx∗+e with Φ ∼ Nn,N (0, 1/n). Then, provided the wavelet

transform matrix Ψ ∈ R
N×N is orthogonal, it follows from Lemma 4.3 that A := ΦΨ also follows

the same Gaussian distribution. Provided we consider an orthogonal DWT, Assumption 2 is

therefore sensible. We will also follow Chapter 5 in assuming the noise vector e to be Gaussian

distributed and independent of both A and x∗, as formalized in Assumption 3. Recalling (6.21)

and (6.22), we adapt the definition of the unrecoverable energy Σ of the problem introduced in

Section 4.1.2 to the tree-based setting, as follows.

Definition 7.12 (Unrecoverable energy). Given some index set Γ ∈ Tk, define

σ̃Γ :=
√

σ2 + ‖x∗
(Γ∪Λ)C‖2, (7.21)

and define

Σ := σ + ‖x∗ΛC‖. (7.22)

7.2.1 Definitions of oversampling thresholds

We define the following two asymptotic recovery oversampling thresholds for ITP algorithms,

in terms of the large deviations bounds developed in the previous section.

Definition 7.13 (Recovery oversampling thresholds). Define ρ̂NITP
SP to be the unique

solution to
√

T IF(ρ)

(1 − ρ) [1 − T IL(ρ, 1 − ρ)]
=

1

1 + T U(2ρ)
for ρ ∈ (0, 1/2], (7.23)
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and define ρ̂NITPκ

SP to be the unique solution to

√

T IF(ρ)

(1 − ρ) [1 − T IL(ρ, 1 − ρ)]
=

1

κ[1 + T U(2ρ)]
for ρ ∈ (0, 1/2], (7.24)

where T IF is defined in (7.7), T IL is defined in (7.6) and T U is defined in Definition 7.11.

It remains to establish that ρ̂ITP
SP and ρ̂NITPκ

SP are well-defined, to which we devote the rest

of this section. The proof, which follows the same approach as the well-definedness proofs for

the phase transitions in Section 5.2, relies upon three lemmas, which we give next. The first

lemma shows that each of the tail bound functions in Definition 7.13 is strictly increasing in

ρ ∈ (0, 1/2].

Lemma 7.14. For any ρ ∈ (0, 1), T IF(ρ), T IL(ρ, 1 − ρ) and T U(ρ) are strictly increasing

in ρ.

Proof : Writing f = T IF(ρ) and differentiating (7.7) with respect to ρ gives

∂f

∂ρ

(

1

1 + f
− ρ

f

)

= 2d ·H(d−1) + ln

[

f(1 − ρ)

ρ

]

. (7.25)

Now f > ρ/(1 − ρ) by (7.7), which implies that

1

1 + f
− ρ

f
> 0 and

f(1 − ρ)

ρ
> 1,

making the logarithm in (7.25) strictly positive, and the result now follows for T IF(ρ). Simi-

larly, writing l = T IL(ρ, 1 − ρ) and differentiating (7.6) with γ = 1 − ρ gives

(1 − ρ)

(

1

1 − l
− 1

)

∂l

∂ρ
− [−l − ln(1 − l)] = 2d ·H(d−1).

A further application of (7.6) followed by some rearrangement gives

∂l

∂ρ

(

l(1 − ρ)

1 − l

)

=
2d ·H(d−1)

1 − ρ
. (7.26)

The result for T IL(ρ, 1 − ρ) now follows since all terms are strictly positive. Finally, differen-

tiating (7.11) with respect to ρ gives

∂ψmax[λmax(ρ), ρ]

∂ρ
=

1

2

[

ln

(

λmax

ρ

)

− ∂λmax

∂ρ

(

1 − 1 + ρ

λmax

)]

,

and we may then differentiate (7.12) to obtain, after a little rearrangement,

∂λmax

∂ρ

(

1 − 1 + ρ

λmax

)

= ln

(

λmax

ρ

)

+ 2d ·H(d−1).
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Now, since λmax > 1 + ρ,

1 − 1 + ρ

λmax
> 1 − 1 + ρ

1 + ρ
= 0 and

λmax

ρ
>

1 + ρ

ρ
≥ 2 > 0,

and the result now follows for T U(ρ). �

The second lemma shows that T IF(ρ) grows to be much greater than 1 at ρ = 1/2.

Lemma 7.15.

T IF(1/2) ≥ 31 + 8
√

15.

Proof : Substituting ρ = 1/2 into (7.7) implies that T IF(1/2) solves for f the equation

ln(1 + f) − 1

2
ln f =

d

2
·H(d−1) +H

(

1

2

)

; f > 1.

Now H(1/2) = ln 2, and we may lower bound d ·H(d−1) by 2 ln 2 for any d ≥ 2, which implies

that

ln(1 + f) − 1

2
ln f ≥ 3 ln 2,

which may be rearranged to give

f2 − 62f + 1 ≥ 0,

which, together with f > 1, yields the required result. �

The third lemma proves that each of the tail bound functions in Definition 7.13 tends to

zero as ρ→ 0.

Lemma 7.16. The following limiting results hold:

lim
ρ→0

T IF(ρ) = 0; lim
ρ→0

T IL(ρ, 1 − ρ) = 0; lim
ρ→0

T U(ρ) = 0.

Proof: By (5.9) and (7.2), the right-hand side of (7.7) tends to zero as ρ → 0. Writing

f = T IF(ρ), it follows from (4.100) that

lim
ρ→0

[ln(1 + f) − ρ ln f ] ≤ 0. (7.27)

However, Lemma 7.15 and (7.7) imply that

−ρ ln(31 + 8
√

15) ≤ −ρ ln f ≤ −ρ ln

(

ρ

1 − ρ

)

,

from which it follows that ρ ln f → 0 as ρ→ 0, which combines with (7.27) to give ln(1+f) → 0

as ρ→ 0, which yields the result for T IF(ρ). It also follows from (5.9) and (7.2) that the right-
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hand side of (7.6) with γ = 1−ρ also tends to zero as ρ→ 0, which in turn implies the result for

T IL(ρ). Finally, taking limits of (7.12) as ρ → 0, we see that ψmax[λmax(ρ), ρ] → 0 as ρ → 0.

It then follows from (7.11) that λmax(ρ) → 1 as ρ→ 0, from which the result for T U(ρ) follows.�

That ρ̂ITP
SP is well-defined may now be shown as follows. Let us define ψITP (ρ) to be

ψITP (ρ) :=

√

T IF(ρ)

(1 − ρ) [1 − T IL(ρ, 1 − ρ)]
− 1

1 + T U(2ρ)
.

By Lemma 7.16, we have

lim
ρ→0

ψITP (ρ) = −1 < 0.

By Lemma 7.14, ψITP (ρ) is strictly increasing in ρ for ρ ∈ (0, 1/2]. Also, Lemma 7.15, T U ≥ 0

and T IL ≥ 0 together imply that ψIHP (1/2) > 0. It therefore follows that there exists a unique

ρ ∈ (0, 1/2] for which ψITP (ρ) = 0 and the definition of ρ̂ITP
SP is valid. A similar argument

applies for ρ̂NITPκ

SP .

We proceed next to proving our main recovery results for ITP algorithms, beginning with

(constant stepsize) ITP in the next section.

7.2.2 Recovery results for ITP

We will follow closely the argument in Section 5.3.1. The only change is that we now switch

to using the tree-based tail bounds defined in Section 7.1. Since there is now no dependence

upon δ, we also switch to proving results in the simplified proportional-growth asymptotic. We

begin by introducing several definitions.

Definition 7.17 (Stability factor for ITP). Consider Problem 6.2. Given ρ ∈ (0, 1/2] and

α > 0, provided

α >

√

T IF(ρ)

(1 − ρ)[1 − T IL(ρ, 1 − ρ)]
, (7.28)

define

a(ρ) :=
1 +

√

T IF(ρ) + α
√

ρ(1 − ρ)[1 + T IU(ρ, 1 − ρ)][1 + T IU(ρ, ρ)]

α(1 − ρ)[1 − T IL(ρ, 1 − ρ)] −
√

T IF(ρ)
, (7.29)

and

ξ(ρ) :=

√

T IF(ρ) [1 + a(ρ)]
2

+ 1 + [a(ρ)]
2
, (7.30)

where T IF is defined in (7.7), and where T IU and T IL are defined in (7.5) and (7.6) respec-

tively.

Note that (7.28) ensures that the denominator in (7.29) is strictly positive and that a(ρ) is

therefore well-defined. The function ξ(ρ) will represent a stability factor in our results, bounding

the approximation error of the output of IHT as a multiple of the unrecoverable energy Σ.
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Definition 7.18 (Support set partition for ITP). Consider Problem 6.2 and suppose ρ ∈
(0, 1/2] and α > 0. Given ζ > 0, let us write

a∗(ρ; ζ) := a(ρ) + ζ, (7.31)

let us write {Γi : i ∈ Tk} for the set of all possible support sets which form a rooted tree of

cardinality k, and let us disjointly partition Tk := Θ1
n ∪ Θ2

n such that

Θ1
n :=

{

i ∈ Tk : ‖x∗Λ\Γi
‖ > Σ · a∗(ρ; ζ)

}

and Θ2
n :=

{

i ∈ Tk : ‖x∗Λ\Γi
‖ ≤ Σ · a∗(ρ; ζ)

}

,

(7.32)

where Σ is defined in (7.22), and where Λ is defined in (6.22).

We proceed by means of three lemmas which mimic Lemmas 5.10, 5.12 and 5.13. Combining

all three results, we have convergence to some α-stable point with guaranteed approximation

error, provided the conditions in each lemma hold, and combining the conditions leads to the

oversampling threshold defined in (7.13). Where the argument is identical except for the use of

different tail bound functions, we will merely state what replacements need to be made.

We first show that there are asymptotically no α-stable points on any Γi such that i ∈ Θ1
n,

and we write NSPα for this event.

Lemma 7.19. Consider Problem 6.2 and choose ζ > 0. Suppose Assumptions 2 and 3 hold,

and suppose that (7.28) holds. Then, in the simplified proportional-growth asymptotic, there

are no α-stable points on any Γi such that i ∈ Θ1
n, with probability tending to 1 exponentially

in n.

Proof: In the proof of Lemma 5.10, we replace a(δ, ρ) by a(ρ), which is defined in (7.29),

and we replace a∗(δ, ρ; ζ) by a∗(ρ; ζ), which is defined in (7.31). We also now let Θ1
n and Θ2

n

be defined as in (7.32). Then, with these replacements, and replacing the condition (5.11) with

the condition (7.28), we may follow the argument of Lemma 5.10 to deduce the equivalent of

(5.26), namely that, in the simplified proportional-growth asymptotic,

limn→∞ P(NSPα)

≤ lim
n→∞

P
{

∪i∈Θ1
n
(FΓi

≥ F ∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(GΓi

≥ G∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(RΓi

≤ R∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(SΓi

≥ S∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(TΓi

≥ T ∗)
}

,

(7.33)

where

FΓi
∼ k

n− k + 1
F (k, n− k + 1); GΓi

∼ k

n− k + 1
F (k, n− k + 1);

RΓi
∼ 1

n− k
χ2

n−k; SΓi
∼ 1

n− k
χ2

n−k; TΓi
∼ 1

k
χ2

k.

and

F ∗ = G∗ := T IF(ρ) + ǫ; R∗ := 1 − T IL(ρ, 1 − ρ) − ǫ;

S∗ := 1 + T IU(ρ, 1 − ρ) + ǫ; T ∗ := 1 + T IU(ρ, ρ) + ǫ.
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Since |Θ1
n| ≤ T (k), we may apply Lemmas 7.6 and 7.7 to (7.33), and the result now follows. �

We may deduce from Lemma 7.19 that, in the case of an exactly tree-sparse signal and

noiseless measurements (Problem 6.1), a condition can be given guaranteeing that ITP has a

single fixed point, namely the underlying tree-sparse signal x∗.

Corollary 7.20 (Single fixed point condition for ITP). Consider Problem 6.1. Suppose

Assumption 2 holds, and suppose that (7.28) holds. Then, in the simplified proportional-growth

asymptotic, x∗ is the only fixed point of ITP with stepsize α, with probability tending to 1

exponentially in n.

Proof: Lemma 7.19 establishes that, if (7.28) holds, there are asymptotically no α-stable

points on any Γi such that i ∈ Θ1
n, while, setting Σ := 0 in (7.32), we have i ∈ Θ2

n ⇒ Γi = Λ.

Therefore any α-stable point is supported on Λ, and Lemma 6.9 implies that it must be x∗.

However, any fixed point of ITP with stepsize α is necessarily an α-stable point, and therefore

x∗ is also the only fixed point of ITP with stepsize α. �

Next, we show that any α-stable points on Γi such that i ∈ Θ2
n have bounded approximation

error.

Lemma 7.21. Consider Problem 6.2. Suppose Assumptions 2 and 3 hold, and suppose that

(7.28) holds. Then there exists ζ sufficiently small such that, in the simplified proportional-

growth asymptotic, any α-stable point x̄ on Γi such that i ∈ Θ2
n satisfies

‖x̄− x∗‖ ≤ ξ(ρ) · Σ, (7.34)

with probability tending to 1 exponentially in n, where ξ(ρ) is defined in (7.30) and Σ is defined

in (7.22).

Proof: In the proof of Lemma 5.12, we replace a(δ, ρ) by a(ρ), which is defined in (7.29), we

replace ξ(δ, ρ) by ξ(ρ), which is defined in (7.30), and we replace a∗(δ, ρ; ζ) by a∗(ρ; ζ), which

is defined in (7.31). We also now let Θ1
n and Θ2

n be defined as in (7.32). Then, with these

replacements, and replacing the condition (5.11) with the condition (7.28), and denoting by x̄i

the minimum-norm solution on Γi, we may follow the argument of Lemma 5.12 to deduce the

equivalent of (5.41), namely that, in the simplified proportional-growth asymptotic,

limn→∞ P
{

∃ some Γi such that i ∈ Θ2
n and ‖x̄i − x∗‖ > Σ · Ψ [a∗(ρ; ζ), P ∗, Q∗]

}

≤ limn→∞ P
{

∪i∈Θ2
n
(PΓi

≥ P ∗)
}

+ limn→∞ P
{

∪i∈Θ2
n
(QΓi

≥ Q∗)
}

,

(7.35)

where

PΓi
∼ k

n− k + 1
F (k, n− k + 1); QΓi

∼ k

n− k + 1
F (k, n− k + 1),
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Ψ(a, P,Q) :=

√

(

a ·
√
P +

√

Q
)2

+ 1 + a2,

and

P ∗ = Q∗ := T IF(ρ) + ζ.

Since |Θ1
n| ≤ T (k), we may apply Lemmas 7.6 and 7.7 to (7.35), and we may now follow the

remainder of the argument of the proof of Lemma 5.12 to deduce the result. �

In the context of ITP, we obtain the following convergence result in the simplified proportional-

dimensional asymptotic framework.

Lemma 7.22. Consider Problem 6.2. Suppose Assumption 2 holds, suppose that the stepsize

α of ITP is chosen to satisfy

α <
1

1 + T U(2ρ)
. (7.36)

Then, in the simplified proportional-growth asymptotic, ITP converges to an α-stable point with

probability tending to 1 exponentially in n.

Proof: Given (7.36), we may apply Lemma 7.11 with ǫ sufficiently small to deduce α(1 +

U2k) < 1, with probability tending to 1 exponentially in n. Under Assumption 2, we may then

apply Theorem 6.14 and deduce convergence of ITP to an α-stable point. �

We now combine Lemmas 7.19, 7.21 and 7.22 and prove the main recovery result for ITP.

Theorem 7.23 (Recovery result for ITP). Consider Problem 6.2. Suppose Assumptions 2

and 3 hold, suppose that

ρ < ρ̂ITP
SP , (7.37)

where ρ̂ITP
SP is defined in (7.23), and suppose that α satisfies

√

T IF(ρ)

(1 − ρ) [1 − T IL(ρ, 1 − ρ)]
< α <

1

1 + T U(2ρ)
. (7.38)

Then, in the simplified proportional-growth asymptotic, ITP converges to x̄ such that (7.34)

holds with probability tending to 1 exponentially in n.

Proof: First note that (7.37) implies that the interval in (7.38) is well-defined. Provided α

is chosen to satisfy (7.38), (6.39) holds, and under Assumption 2, we may apply Lemma 7.22 to

deduce convergence of ITP to an α-stable point. On the other hand, Lemma 7.19 establishes

that there are asymptotically no α-stable points on any Γi such that i ∈ Θ1
n, while we may

apply Lemma 7.21 to deduce that any α-stable points on any Γi such that i ∈ Θ2
n satisfy (7.34).�
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In the special case of Problem 6.1, the same oversampling threshold guarantees exact recov-

ery of the underlying signal x∗.

Corollary 7.24 (Noiseless case). Consider Problem 6.1. Suppose Assumption 2 holds, sup-

pose that (7.37) holds, and suppose that α satisfies (7.38). Then, in the simplified proportional-

growth asymptotic, ITP converges to x∗ with probability tending to 1 exponentially in n.

Proof: The result follows by setting Σ := 0 in Theorem 7.23. �

7.2.3 Results for NITP

We will follow closely the argument in Section 5.3.2, with the only changes being the switch to

tree-based tail bounds and the simplified proportional-growth asymptotic. We begin with some

definitions.

Definition 7.25 (Stability factor for NITP). Consider Problem 6.2. Given ρ ∈ (0, 1/2],

provided

ρ < ρ̂NITPκ

SP , (7.39)

define

a(ρ) :=
1 +

√

T IF(ρ) + {κ[1 + T U(2ρ)]}−1
√

ρ(1 − ρ)[1 + T IU(ρ, 1 − ρ)][1 + T IU(ρ, ρ)]

(1 − ρ){κ[1 + T U(2ρ)]}−1[1 − T IL(ρ, 1 − ρ)] −
√

T IF(ρ)
,

(7.40)

and

ξ(ρ) :=

√

T IF(ρ) [1 + a(ρ)]
2

+ 1 + [a(ρ)]
2
, (7.41)

where T IF is defined in (7.7), where T IU and T IL are defined in (7.5) and (7.6) respectively,

and where T U is defined in Definition 7.11.

Definition 7.26 (Support set partition for NITP). Consider Problem 6.2 and suppose

ρ ∈ (0, 1/2] and α > 0. Given ζ > 0, let us write

a∗(ρ; ζ) := a(ρ) + ζ, (7.42)

let us write {Γi : i ∈ Tk} for the set of all possible support sets which form a rooted tree of

cardinality k, and let us disjointly partition Tk := Θ1
n ∪ Θ2

n such that

Θ1
n :=

{

i ∈ Tk : ‖x∗Λ\Γi
‖ > Σ · a∗(ρ; ζ)

}

and Θ2
n :=

{

i ∈ Tk : ‖x∗Λ\Γi
‖ ≤ Σ · a∗(ρ; ζ)

}

,

(7.43)

where Σ is defined in (7.22), and where Λ is defined in (6.22).

We proceed by means of two lemmas which mimic Lemmas 5.18 and 5.19. Where the

argument is identical except for the use of different tail bound functions, we will merely state

what replacements need to be made.
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We first show that, provided the condition (7.39) holds, NITP is asymptotically guaranteed

to converge to an α(ρ; ǫ)-stable point on some Γi such that i ∈ Θ2
n, where

α(ρ; ǫ) := {κ[1 + T U(2ρ) + ǫ]}−1, (7.44)

for some ǫ > 0. We write NSPα for the event that there is no α-stable point on any Γi such

that i ∈ Θ1
n.

Lemma 7.27. Consider Problem 6.2 and choose ζ > 0. Suppose Assumptions 2 and 3 hold,

and suppose that (7.39) holds. Then there exists ǫ such that, in the simplified proportional-

growth asymptotic, NITP with shrinkage parameter κ converges to an α(ρ; ǫ)-stable point on

some Γi such that i ∈ Θ2
n, with probability tending to 1 exponentially in n.

Proof: Under Assumption 2, we have by Theorem 6.15 convergence of NITP to a [κ(1 +

TU2k)]−1-stable point. By Definition 6.8, for any α1 < α2, the set of α1-stable points includes

the set of α2-stable points, and this observation combines with Theorem 7.11 to imply conver-

gence to an α(ρ; ǫ)-stable point, where α(ρ; ǫ) is defined in (7.44), with probability tending to 1

exponentially in n. We now show that, provided ǫ is taken sufficiently small, this stable point

must be on Γi such that i ∈ Θ2
n. In the proof of Lemma 5.18, we replace α(δ, ρ; ǫ) by α(ρ; ǫ),

which is defined in (7.44), we replace a(δ, ρ) by a(ρ), which is defined in (7.40), and we replace

a∗(δ, ρ; ζ) by a∗(ρ; ζ), which is defined in (7.42). We also now let Θ1
n and Θ2

n be defined as in

(7.43). Then, with these replacements, and replacing the condition (5.47) with the condition

(7.39), we may follow the argument of Lemma 5.18 to deduce the equivalent of (5.61), namely

that, in the simplified proportional-growth asymptotic,

limn→∞ P(NSPα)

≤ lim
n→∞

P
{

∪i∈Θ1
n
(FΓi

≥ F ∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(GΓi

≥ G∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(RΓi

≤ R∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(SΓi

≥ S∗)
}

+ lim
n→∞

P
{

∪i∈Θ1
n
(TΓi

≥ T ∗)
}

,

(7.45)

where

FΓi
∼ k

n− k + 1
F (k, n− k + 1); GΓi

∼ k

n− k + 1
F (k, n− k + 1);

RΓi
∼ 1

n− k
χ2

n−k; SΓi
∼ 1

n− k
χ2

n−k; TΓi
∼ 1

k
χ2

k.

and

F ∗ = G∗ := T IF(ρ) + ǫ; R∗ := 1 − T IL(ρ, 1 − ρ) − ǫ;

S∗ := 1 + T IU(ρ, 1 − ρ) + ǫ; T ∗ := 1 + T IU(ρ, ρ) + ǫ.

Since |Θ1
n| ≤ T (k), we may apply Lemmas 7.6 and 7.7 to (7.45), and the result now follows. �

Next, we show that any α(ρ; ǫ)-stable points on Γi such that i ∈ Θ2
n have bounded approx-

imation error.
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Lemma 7.28. Consider Problem 6.2. Suppose Assumptions 2 and 3 hold, and suppose that

(7.39) holds. Given any ǫ > 0, there exists ζ sufficiently small such that, in the simplified

proportional-growth asymptotic, any α(ρ; ǫ)-stable point on Γi such that i ∈ Θ2
n satisfies

‖x̄− x∗‖ ≤ ξ(ρ) · Σ, (7.46)

with probability tending to 1 exponentially in n, where ξ(ρ) is defined in (7.41) and Σ is defined

in (7.22).

Proof: In the proof of Lemma 5.19, we replace α(δ, ρ; ǫ) by α(ρ; ǫ), which is defined in

(7.44), we replace a(δ, ρ) by a(ρ), which is defined in (7.40), we replace ξ(δ, ρ) by ξ(ρ), which

is defined in (7.41), and we replace a∗(δ, ρ; ζ) by a∗(ρ; ζ), which is defined in (7.42). We also

now let Θ1
n and Θ2

n be defined as in (7.43). Then, with these replacements, and replacing the

condition (5.47) with the condition (7.39), and denoting by x̄i the minimum-norm solution on

Γi, we may follow the argument of Lemma 5.19 to deduce the equivalent of (5.71), namely that,

in the simplified proportional-growth asymptotic,

limn→∞ P
{

∃ some Γi such that i ∈ Θ2
n and ‖x̄i − x∗‖ > Σ · Ψ [a∗(ρ; ζ), P ∗, Q∗]

}

≤ limn→∞ P
{

∪i∈Θ2
n
(PΓi

≥ P ∗)
}

+ limn→∞ P
{

∪i∈Θ2
n
(QΓi

≥ Q∗)
}

,

(7.47)

where

PΓi
∼ k

n− k + 1
F (k, n− k + 1); QΓi

∼ k

n− k + 1
F (k, n− k + 1),

Ψ(a, P,Q) :=

√

(

a ·
√
P +

√

Q
)2

+ 1 + a2,

and

P ∗ = Q∗ := T IF(ρ) + ζ.

Since |Θ1
n| ≤ T (k), we may apply Lemmas 7.6 and 7.7 to (7.47), and, we may now follow the

remainder of the argument of the proof of Lemma 5.19 to deduce the result. �

Combining Lemmas 7.27 and 7.28, we have the following recovery result for NITP.

Theorem 7.29 (Recovery result for NITP). Consider Problem 6.2. Suppose Assumptions 2

and 3 hold and suppose that (7.39) holds. Then, in the simplified proportional-growth asymp-

totic, NITP converges to x̄ such that (7.46) holds with probability tending to 1 exponentially in

n.

In the case of Problem 6.1, Theorem 7.29 simplifies to an exact recovery result.

Corollary 7.30 (Noiseless case). Consider Problem 6.1. Suppose Assumption 2 holds and

suppose that (7.39) holds. Then, in the simplified proportional-growth asymptotic, NITP with

shrinkage parameter κ converges to x∗ with probability tending to 1 exponentially in n.
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Figure 7.1: (a) Critical ρ-values for different tree orders: ITP – unbroken; NITP – dashed. (b)
Corresponding oversampling factors (reciprocals of ρ̂).

7.3 Illustration and discussion of recovery results

7.3.1 Noiseless case

Oversampling thresholds for exact recovery. In the simplified case of Problem 6.1, where

we seek to recover an exactly k-tree sparse signal x∗ from noiseless measurements, Corollar-

ies 7.24 and 7.30 establish that, given a sequence of k-tree sparse signals x∗ and independently

drawn n×N Gaussian measurement matrices A, provided the ratio ρ = k/n falls below ρ̂ITP
SP

or ρ̂NITPκ

SP , the probability of exact recovery of the original signal x∗ approaches 1 exponen-

tially fast in n. These oversampling thresholds also depend on the value of d, the order of the

tree structure. For binary trees (d = 2), for example, we have ρ̂ITP
SP ≈ 0.0201 for ITP and

ρ̂NITP1.1

SP ≈ 0.0183 for NITP. Figure 7.1(a) plots these oversampling thresholds for different tree

orders, taking κ = 1.1 in each case for NITP. Figure 7.1(b) shows the inverse of the oversampling

ratio, which indicates the number of measurements required by the analysis as a multiple of the

sparsity. For binary trees, we find that n ≥ 49.86k measurements guarantees recovery by ITP,

while n ≥ 54.78k measurements guarantees recovery by NITP. We see a measured deterioration

in the results for higher tree orders.

Comparison with results for IHT algorithms. While in the present chapter we have

dispensed with the undersampling ratio δ = n/N , we may also frame our results in the (δ, ρ)

asymptotic in order to make a comparison with the recovery phase transitions derived for IHT

and NIHT presented in Section 5.4. Since there is no dependence upon δ, the phase transitions

we obtain are simply horizontal lines in the (δ, ρ)-plane. Phase transitions for binary trees are

displayed in Figure 7.2 alongside the phase transitions for IHT algorithms given in Section 5.4,

with recovery asymptotically guaranteed beneath the respective curves. We observe that the

switch to the tree-based setting leads to significantly improved results, especially for small δ.

An improvement is to be expected since we are considering a more refined model in which
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Figure 7.2: (a) Phase transitions in the (δ, ρ) framework for binary trees (ITP – unbroken;
NITP – dashed) and non-tree-based (IHT – dash-dot; NIHT – dotted). (b) Corresponding
inverses of the phase transition.

a smaller number of support sets are permissible, which allowed us to tighten union bound

arguments.

Interpretation as lower bounds on a weak phase transition. Like in Chapter 5, the

recovery results presented in this chapter assume independence between the underlying signal

and the measurement matrix. The results of this chapter are therefore also average-case results.

The phase transitions given in Figure 7.2 are therefore lower bounds on a particular kind of

weak phase transition for ITP algorithms, in which the signal is assumed to be statistically

independent of the measurement matrix.

Our average-case guarantees are in contrast to worst-case guarantees which apply to all

possible signals for a given measurement matrix. Worst-case recovery guarantees for ITP with

unit stepsize were obtained in [7] in terms of the tree-based RIP, and the approach of Sec-

tion 3.3 could be followed to obtain a worst-case recovery condition for NITP. Furthermore,

we have seen that the upper tree-based RIP constant can be analysed within the simplified

proportional-growth asymptotic framework, and unsurprisingly the same is also true for the

lower tree-based RIP constant. It follows that worst-case oversampling thresholds could also be

obtained for ITP algorithms in the case of Gaussian measurement matrices. Viewed in the (δ, ρ)

asymptotic framework, these results would give lower bounds on the strong phase transition for

ITP algorithms and Gaussian matrices. Though we omit details of proofs, we have computed

these phase transitions, and they are lower than those displayed in Figure 7.2 based upon the

results in this chapter. We saw in Section 5.4 that the switch from RIP to average-case analysis

leads to improved phase transitions in the case of IHT algorithms, and so it is not surprising

that our results for ITP also outperform those based upon tree-based RIP.

To the best of our knowledge, little is currently known about empirical weak phase transi-

tions for ITP algorithms, though it is expected that they would be at least as high as those for
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Figure 7.3: Plot of the stability factor ξ(ρ) for binary trees: (a) ITP; (b) NITP.

IHT algorithms since the model is more refined. Indeed, due to our continued use of worst-case

techniques, such as the tree-based RIP and large deviations analysis, it should be expected that

our phase transitions presented here are far from sharp and are pessimistic compared to the

average-case behaviour of ITP algorithms in practice. However, as we noted in the context of

IHT algorithms in Section 5.4, the use of the average-case independence assumption to analyse

the stable point condition has allowed us to break free in part from the restrictions of worst-case

analysis.

7.3.2 General case

Stability factors. In the case of Problem 6.2, where signals are only k-tree compressible and

measurements are contaminated by noise, exact recovery of the original signal is impossible.

However, Theorem 7.23 guarantees that, under the same condition guaranteeing exact recovery

for Problem 6.1, the approximation error of the output of ITP/NITP is asymptotically bounded

by some known stability factor ξ(ρ) multiplied by the unrecoverable energy Σ. More precisely,

consider a sequence of k-tree compressible signals x∗ and independently drawn n×N Gaussian

measurement matrices A. Provided the ratio ρ = k/n falls below ρ̂ITP
SP , then the probability

that ITP with stepsize satisfying (7.38) satisfies (7.34) with α := α approaches 1 exponentially

fast in n. Similarly, provided the ratio ρ = k/n falls below ρ̂NITPκ

SP , then the probability that

NITP with shrinkage parameter κ satisfies (7.46) with α := {κ[1 + T U(2ρ)]}−1 approaches 1

exponentially fast in n.

In the case of binary trees, plots of the stability factor ξ(ρ) for both ITP and NITP (κ := 1.1)

are displayed in Figure 7.3. For ITP, there is some freedom in the choice of the stepsize: for

these plots we select a stepsize at the upper limit of the permissible interval (7.38) since this

minimizes the stability factor. In keeping with the plots in Section 5.4, we observe that the

stability factor tends to infinity as the transition point is reached.

In [7], it was observed that the tree-based RIP is not sufficient to give amplification bounds
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on the tail of an inexactly sparse signal (as in Lemma 2.2). Consequently, the authors introduce

a further Restricted Amplification Property (RAmP), and show that it holds with overwhelming

probability for random matrices with n = O(k). In comparison, our results do not require

this additional property. We are able to entirely circumvent the use of the RAmP due to the

assumption of independence between signal and measurement matrix, which allows us to bound

the amplification of the tail of the signal using the tail bounds derived in this thesis.
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Chapter 8

Conclusions and future directions

CS theory was first developed within the framework of l1-l0 equivalence, a phenomenon which

means that sparse solutions to appropriately designed underdetermined linear systems can be

found using l1-minimization techniques. However, there is growing empirical evidence that other

algorithms which do not rely upon l1-minimization can be equally effective in finding sparse

solutions to underdetermined systems (Sections 1.5 and 1.11). In particular, the gradient-based

IHT and NIHT algorithms [26, 27] have favourable computational efficiency compared to many

other CS algorithms, and therefore represent a competitive alternative to soft-thresholding

based gradient methods for l1-minimization (Section 1.6).

It is important that a CS recovery algorithm is supported by theory which quantitatively

determines the degree of undersampling that the algorithm permits. Such results now exist for

l1-minimization, where precise phase transitions have been determined within a proportional-

growth asymptotic framework in the case of Gaussian matrices (Section 1.5) [77]. By contrast,

both the worst-case and average-case sparse recovery properties of l0-based algorithms such as

IHT and NIHT are much less well understood. In this thesis (Chapter 2), we quantified existing

state-of-the-art RIP-based recovery analysis for IHT algorithms within the phase transition

framework for Gaussian matrices. Our phase transitions demonstrate that current RIP analysis

of IHT algorithms is pessimistic compared to empirically observed performance.

To address this issue, we introduced a new method of recovery analysis for IHT algorithms

in which we analysed the algorithms’ stable points, a generalization of the notion of fixed points

(Chapter 3). Our approach consists of two parts: we analyse necessary conditions for the exis-

tence of a stable point on a given support (the stable point condition), and meanwhile we derive

conditions ensuring convergence to one of its stable points. By analysing the stable point con-

dition in the case of Gaussian matrices under the realistic assumption of independence between

the signal and measurement matrix (Chapter 4), we obtained the first average-case recovery

guarantees for IHT algorithms in the phase transition framework (Chapter 5). In contrast to

RIP analysis, which leads to lower bounds on the strong phase transition (Section 1.5), we ob-

tained lower bounds on a weak phase transition for recovery using IHT algorithms, which is the

notion of practical interest. By breaking free in part from the restrictions of worst-case analysis,
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we have obtained the highest phase transitions yet guaranteeing exact recovery of sparse signals

by means of IHT and NIHT. Our results extend to the realistic model of noisy measurements

of compressible signals, guaranteeing an improved robustness to these inaccuracies.

The ultimate remaining goal of the work is to fully close the gap between theoretical guar-

antees and empirical performance for IHT algorithms. Recalling that our analysis consists of

two parts, one of the main reasons for the pessimism of our results is the continued use of the

RIP in the convergence analysis. A research direction for the future would be to improve upon

the convergence analysis, ideally by making use of average-case assumptions in this case also.

More generally, the continued use of worst-case methods of analysis such as union bounds over

combinatorially many support sets is at present a hindrance to significant further improvements

in phase transitions. For example, such union bounds are required by the present analysis of in

order to show that, in the idealized noiseless case, IHT has no spurious fixed points. This raises

the question as to whether such a strong requirement is necessary for ensuring signal recovery

in practice, which also represents a potential research direction for the future. Though we have

obtained quantitative results only for Gaussian matrices here, many other families of random

or randomized measurement matrices exhibit similar empirical behaviour and are important

to practitioners. Obtaining quantitative guarantees for IHT algorithms applied to such CS

measurement schemes is yet another possible future direction.

Interest continues to grow in the CS community in more refined sparsity models, such as

the tree-based model for wavelet-based signals. IHT algorithms can be easily adapted to solve

the tree-based problem by replacing the hard threshold with a tree projection, leading to ITP

algorithms (Section 6.1) [24, 7]. However, none of the tree projection algorithms in the current

literature is guaranteed to calculate an exact tree projection for a given sparsity, which is

an assumption underpinning all current recovery analysis of ITP algorithms. We proposed a

dynamic programming (DP) algorithm which is the first to have such a guarantee, and we also

showed that it has low-order polynomial complexity (Section 6.2). By extending our stable

point approach to the tree-based setting (Chapter 6), we obtained quantitative average-case

results for ITP algorithms in the context of Gaussian matrices (Chapter 7). Since the number

of support sets is much reduced, union bound arguments were tightened, leading to improved

results. We obtained results in a simplified proportional-growth asymptotic, in which recovery

depends only upon the oversampling factor ρ = k/n.

To the best of our knowledge, little is currently known empirically about average-case over-

sampling thresholds for ITP algorithms, and indeed it is not obvious what would be an ap-

propriate signal model on which to base numerical tests. The empirical investigation of the

benefits of switching to the tree-based setting remains an area for future investigation. This

thesis illustrates the transferability of recovery analysis for algorithms for sparse and tree-based

recovery, and it is likely that future advances in theoretical analysis of IHT algorithms will also

translate into corresponding advances for ITP algorithms.

178



Bibliography

[1] M. Abramowitz and I. Stegun. A handbook of mathematical functions, with formulas,

graphs and mathematical tables. Dover, 9th edition, 1964.

[2] F. Affentrager and R. Schneider. Random projections of regular simplices. Discrete

computational geometry, 7(3):219–226, 1992.

[3] W. Ambarzumyan. Uber eine frage der eigenwerttheorie. Zeitschrift fur Physik, 53(9–

10):690–695, 1929.

[4] B. Bah and J. Tanner. Improved bounds on restricted isometry constants for gaussian

matrices. SIAM Journal on Matrix Analysis, 31(5):2882–2898, 2010.

[5] R. Baraniuk. Optimal tree approximation with wavelets. In Proceedings of the SPIE

Technical Conference on Wavelet Applications in Signal Processing VII, 1999.

[6] R. Baraniuk. More is less: signal processing and the data deluge. Science, 331(6018):717–

719, 2011.

[7] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive sensing.

IEEE Transactions in Information Theory, 56(4):1982–2001, 2010.

[8] R. Baraniuk and D. Jones. A signal-dependent time-frequency representation: Fast algo-

rithm for optimal kernel design. IEEE Transactions on Signal Processing, 42(12):3530–

3535, 1994.

[9] Y. Baryshnikov and R. Vitale. Regular simplices and gaussian samples. Discrete Com-

putational Geometry, 11(2):141–147, 1994.

[10] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs, with ap-

plications to compressed sensing. IEEE Transactions on Information Theory, 57(2):764–

785, 2011.

[11] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

179



Quantitative analysis of algorithms for compressed signal recovery 180

[12] S. Becker, J. Bobin, and E. Candès. A fast and accurate first-order method for sparse

recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

[13] R. Bellman. Dynamic Programming. Courier Dover Publications, 2003.

[14] C. Berger, Z. Wang, J. Huang, and S. Zhou. Application of compressive sensing to sparse

channel estimation. IEEE Communications Magazine, 48(11):164–174, 2010.

[15] J. Bioucas-Dias and M. Figueiredo. A new twist: two-step iterative shrink-

age/thresholding algorithms for image restoration. IEEE Transactions on Image Pro-

cessing, 16(12):2992–3004, 2007.

[16] J. Blanchard, C. Cartis, J. Tanner, and A. Thompson. Phase transitions for greedy sparse

approximation algorithms; extended technical report. Technical Report ERGO 09-010,

School of Mathematics, University of Edinburgh, 2009.

[17] J. Blanchard, C. Cartis, J. Tanner, and A. Thompson. Phase transitions for greedy sparse

approximation algorithms. Applied and Computational Harmonic Analysis, 30(2):188–

203, 2011.

[18] J. Blanchard and J. Tanner. Gpu accelerated greedy algorithms for compressed sensing.

http://ecos.maths.ed.ac.uk/publications.shtml, 2012.

[19] J. Blanchard and A. Thompson. On support sizes of restricted isometry constants. Applied

and Computational Harmonic Analysis, 29(3):382–390, 2010.

[20] J. Blanchard and A. Thompson. Pushing the rip phase transition in compressed sensing.

In Proceedings of the European Signal Processing Conference, 2010.

[21] Jeffrey. D. Blanchard, Coralia Cartis, and Jared Tanner. Compressed sensing: How sharp

is the restricted isometry property? SIAM Review, 53(1):105–125, 2011.

[22] T. Blumensath and M. Davies. Gradient pursuits. IEEE Transactions on Signal Process-

ing, 56(6):2370–2382, 2008.

[23] T. Blumensath and M. Davies. Iterative hard thresholding for compressed sensing. Applied

and Computational Harmonic Analysis, 27(3):265–274, 2009.

[24] T. Blumensath and M. Davies. Sampling theorems for signals from the union of finite-

dimensional linear subspaces. IEEE Transactions on Information Theory, 55(4), 2009.

[25] T. Blumensath and M. Davies. Stagewise weak gradient pursuits. IEEE Transactions on

Signal Processing, 57(11):4333–4346, 2009.

[26] T. Blumensath and M.E. Davies. Iterative thresholding for sparse approximations. Jour-

nal of Fourier Analysis and Applications, 14(5):629–654, 2008.

180



Quantitative analysis of algorithms for compressed signal recovery 181

[27] T. Blumensath and M.E. Davies. Normalized iterative hard thresholding: guaranteed sta-

bility and performance. IEEE Journal of Selected Topics in Signal Processing, 4(2):298–

309, 2010.

[28] J. Bobin, J. Starck, and R. Ottensamer. Compressed sensing in astronomy. IEEE Journal

of Selected Topics in Signal Processing, 2(5):718–726, 2008.
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[41] C. Caratheodory. über den varaibilitätsbereich der fourierschen konstanten von positiven

harmonischen funktionen. Rendiconti del Circolo Matematico di Palermo, 32:193–217,

1911.

[42] C. Cartis and A. Thompson. A new and improved recovery analysis for iterative hard

thresholding algorithms in compressed sensing. in preparation, 2012.

[43] C. Cartis and A. Thompson. Quantitative recovery guarantees for iterative tree projection

algorithms. in preparation, 2012.
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