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Abstract

In the modern industrialized countries every year several hundred thousands of people die
due to the sudden cardiac death. The individual risk for this sudden cardiac death cannot be
defined precisely by common available, non-invasive diagnostic tools like Holter-monitoring,
highly amplified ECG and traditional linear analysis of heart rate variability (HRV). Therefore,
we apply some rather unconventional methods of nonlinear dynamics to analyse the HRV.
Especially, some complexity measures that are basing on symbolic dynamics as well as a new
measure, the renormalized entropy, detect some abnormalities in the HRV of several patients
who have been classified in the low risk group by traditional methods. A combination of these
complexity measures with the parameters in the frequency domain seems to be a promising
way to get a more precise definition of the individual risk. These findings have to be validated

by a representative number of patients.



1 Introduction

Ventricular arrhythmia, especially ventricular tachycardia (VT) and ventricular fibrillations are in
many cases the cause of sudden cardiac death of patients after myocardial infarction. The improved
identification of patients highly threatened by these severe rhythm disturbances is an important
and very actual clinical problem.

Short as well as long-range fluctuations in the heart rate are related to the autonomic nervous
system control of heart activity and vasomotion. Recent studies have shown that a low heart rate
variability (HRV) is a clear indication of an increased risk for severe ventricular arrhythmia and
sudden cardiac death. These phenomena seem to be associated with a structural change of the
beat to beat interval dynamics.

Kleiger [6] showed that a reduced HRV carries an adverse prognosis in patients who have
survived an acute myocardial infarction. Malik [9] examined HRV in those patients to find the
optimum time and duration of recording of the ambulatory ECG for the prediction of the risk of
a sudden cardiac death, or serious arrhytmic events. It has been reported that patients after an
acute myocardial infarction have a reduced parasympathetic function which causes an increased

sympathetic tonus.

Figure 1: Scheme of different techniques for the analysis of ECG



These techniques can be divided in time and frequency domain.

Therefore, several well-known techniques have been applied to detect such high risk patients
from ECG (Fig. 1). Firstly, some rather simple time domain measures of heart rate variability
have been proven useful for clinical purposes. Secondly, the spectral analysis of the RR time
series that expresses HRV in the frequency domain exhibits different oscillating sources of the
variability of heart beat generation. The different regions in the power spectrum are related to
special physiological phenomena. We have considered the following: The frequency band < 0.0033
Hz (ultra low frequancy power ULF) and the frequency band 0.0033 ...0.05 Hz (very low frequency
power VLF) represents humoral, vasomotion and thermo regulations and reflects also the activity
of the renin-angiotensin-aldosteron system. The frequency band 0.05 ...0.15 Hz (low frequency
power LF) reflects modulation of sympathetic or parasympathetic tone by baroflex activity (blood
pressure regulation) and the frequency band 0.15 ...0.45 Hz (high frequency power HF) represents
the modulation of vagal activity especially influenced by respiration. Bigger [1] showed that the
day-to-day stability of the measure of heart period variability makes it possible to detect small
changes due to progression, regression of diseases or treatment effects. Further on he pointed out
that according to Kleigers results especially the ULF of the spectrum has the strongest association
with mortality in post infarction patients.

However, the traditional techniques of data analysis in time and frequency domain are often not
sufficient to characterize the complex dynamics of heart beat generation. Hence, different attempts
have been reported to apply the concept of nonlinear dynamics to this problem [3]. After some
optimism in the 80-ies, it has become clear that the HRV cannot be generally characterized by low
fractal dimensions.

The purpose of this contribution is, therefore, to analyze the HRV by means of other methods
of nonlinear dynamics which are based on the concept of symbolic dynamics and on a renormalized
entropy.

The organization of this paper is as follows: The kind of the data and the traditional techniques
to analyze them are described in section 2. In section 3 we introduce different complexity measures.
Their efficiency to detect high risk patients is discussed in section 4 which also includes a comparison

with the results obtained from traditional techniques. Section 5 concludes the paper.
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Figure 2: Tachograms of a healthy (top) and two ill persons

2 Data and Pre-processing

2.1 Data

The ECG recording has been done as follows: A 30 to 60 min 4 channel high resolution ECG (Frank
leads and an additional diagonal lead) with a sampling frequency of 2000 Hz and 16 bit resolution
(PC system with commercial available fast digitizing board) was obtained under rest condition.
The Simson method [13] was used to calculate the sum vector magnitude from the three highly
amplified (digital high pass filter, Butterworth characteristics 40 Hz) leads X, Y and Z.

After digitizing and extracting of RR intervals by automatic procedures all RR time series have
been checked by a technician and if necessary edited. The software RR detection algorithm is based

on the cross correlation technique.



2.2 Patients

In this preliminary study, we have included a sample of 43 patients subdivided in 3 groups. The
first group consists of 21 healthy persons. In the second group there are 9 patients after myocardial
infarction (MI) with low electrical risk (arrhytmias of low degree). Group 3 represents those 13
cardiac patients after MI for whom severe ventricular arrhytmias (sustained ventricular tachycardia)

have been documented. Three examples of RR-interval-series are to seen in Fig. 2.

2.3 Traditional Analysis

In the time domain we have calculated the following standard parameters: the quotient of mean and
standard deviation, the standard deviation of averages of NN intervals over 1 and over 5 minutes
as well as the proportion of NN-interval-differences >50 and >100 ms and the root mean square of
successive differences.

From the estimated power spectrum we have determined the power of the 4 above mentioned
frequency bands (ULF, VLF, LF, HF) and the ratios LF/whole power and LF/HF.

All these quantities that are basing on linear statistis are rather simple to calculate, but they
do not lead to a satisfying detection of high risk patients. The rapid development in the theory of
nonlinear dynamical systems has caused some optimism for a more appropriate understanding of

such complex rhythms, as expressed in the HRV.

3 Complexity Measures

In the 80-ies it came up the wide-spread hope that many complicated systems observed in nature
can be described by a few nonlinear coupled modes. The properties of these systems are charac-
terized by fractal dimensions, Lyapunov exponents, or Kolmogorov-Sinai-entropy [2]. However, we
now know that such a low dimensionality can be expected only for rather coherent phenomena,
such as observed in laser systems. Physiological data, as studied here, seem to have a more complex
structure, may be due to high-dimensional processes or due to the influence of random-like fluctu-
ations. In this chapter, we present rather unconventional approaches to find some characteristics

in these records.



3.1 Symbolic Dynamics

Symbolic dynamics is based on a coarse-graining of the measurements, i.e. the data ¢, are trans-
formed into a pattern whose elements are only a few symbols (letters from some alphabet). This
way, the study of the dynamics simplifies to the description of symbol sequences. In doing so one
loses some amount of detailed information, but some of the invariant, robust properties of the
dynamics may be kept (Hao, 1991).

The first step is to find a suitable symbolic description. If we do not know a generating partition,
there is no straightforward procedure for this problem, but it is context dependent (Kurths et al.,
1994). Hence, we have to look for a coding procedure which is suitable for our purpose. From
various tests we have found that for our purpose at least 4 different symbols are necessary. This
leads to use two different kinds to transform the HRV records into symbol sequences. The first

transformation refers to three given levels.

Jift, > (14 a)p
Jift, > pand t, < (14 a)p
Jift, > (1 —a)pand t, < p
Jift, < (1 —a)p

(1)

W N = O

where p1 denotes the mean RR-interval and a is a special parameter specified in section 4. The
second transformation considers the kind of difference between two adjacent measurement values;

it especially reflects dynamical properties of the record:

, i A, > 1.50

, 1 At, > 0 and At, < 1.504

, i At, > —1.50a and At, <0
Jif AL, < —1.504

(2)

W N = O

with At, = t,01 — t, and o is the variance of At,. In the following we check, which of these

transformations is more appropriate for our purpose.

Next, some classical parameters, which quantify different aspects of the behaviour of such a
symbolic string s,, are presented.
The first approach is to calculate the frequencies of occurring symbols. To investigate a rather

broad range of dynamics, one should analyze long words. However, our data sets only contain



about 2000 RR-intervals and the number of all possible words of length | basing on the alphabet,
as introduced in eq. 1, is 4'. We, therefore, count length-3 words as a good compromise between
including some dynamics and the reliability in estimating the frequencies. With these frequencies
one can distinguish rather uniform distributions from more complicated ones. This leads to the
first measure of complexity which simply counts the number of forbidden words. For statistical
reasons, we modify this idea somewhat and test for the number of words with a low probability of
occurrence (probability less than 0.001).

A classical measure of symbol sequences is the Shannon entropy. From the probabilities p(s*)

of words of length k& we get the Shannon entropy of k' order as follows

Hy=— > p(s")logyp(s"). (3)

sk p(sk)>0
This Hp measures the average number of bits needed to specify an arbitrary word of length k in
the symbolic string.
The concept of Renyi [12] entropy was introduced as a generalization of Shannon’s ansatz
HE = (1= q) ogy(Xp(s")") (4
sk

(9)

where ¢ is a real number and ¢ # 1. It includes different averaging of probabilities. H,"' converges
to Shannon entropy Hj as ¢ — 1. Both, the Shannon entropy and the spectrum of Renyi entropies

are measures of complexity which characterize systems as follows [17, 18]:

1. The complexity is zero for constant sequences.
2. In case of periodicity with prime period m,m < k one gets H = log, m.

3. For uniform distributions it takes its maximum value H = klog, o where « is the number of

symbols.
4. H,gq) decreases with growing gq.

5. If ¢ > 1 those words of length k with large probability dominantly influence the Renyi entropy.

This behaviour is strengthened for larger ¢ values. Vice versa, if 0 < ¢ < 1 then words with

(9)

small probability mainly determine the value of H;".



In order to get reliable estimates of these H,,, which are also based on counting the frequencies of
substrings, we calculate here entropy of order 3 only. A possible inhomogeneous structure inherent
the data is checked by determining the Renyi entropies for ¢ = 4 and ¢ = 0.25.

It is important to note that all special complexity measures mentioned above do not include

long-range correlations.

3.2 Renormalized Entropy

The main purpose of this paper is the comparison of the HRV of different persons to get some
judgement of their risk for sudden cardiac death. As is well-known, the underlying system that
generates the HRV is not closed, but an open one. From the viewpoint of general system theory,
this means that different persons may have different mean energy. In such a case the immediate
comparison of measures, such as Shannon entropy, may lead to some difficulties. Basing on a
recent suggestion of Klimontovich [7], we, therefore, introduce here another complexity measure,
the renormalized entropy. This approach, losely speaking, renormalizes the entropy obtained from
a time series (%) of a certain person in such a manner that the mean effective energy coinsides
with that of a reference person x,(1).

Starting from these two time series, we can easily estimate the corresponding probability dis-
tributions f(z) and f.(z). By using formal arguments from thermodynamics the effective energy is

defined as:
heps(2) = —log f.(2) (5)

The renormalization of f, into fT is constructed such that the mean effective energies < h.ss >
of f and f, are equal. To make this idea operational, we first represent the distribution in terms
of the canonical Gibbs distribution

P(Tepf)—herr(z)

fey=e T (6)

which can be rewritten as
heps(2)

fo(z) = C(Tegg) e Teti (7)

where T.ss and ®(T.ss) are the effective temperature resp. the free effective energy. Because h.y¢
can be calculated from eq. (5), there are two unknowns in eq. (7): C(T.ss) and Tess. They are

determined from the following two conditions.
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Figure 3: renormalization of distributions in the power spectrum: top - original distribution of the
reference person, bottom - original (solid line) and renormalized (dashed) distribution of another

person

a) normalization:
/fT(Z)dZ =1

b) equality of mean effective energy:

[ hess(2)0 20z = [ hegg(2)f(2)dz

Hence, fT fulfils the properties wanted. Consequently, we can compare the Shannon entropies of f
and f,
H = —/f(z) log f(2)dz and H, = —/fT(Z) log fT(Z)d:L' (8)

For that the renormalized entropy difference
AH=H - H, (9)
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is introduced. It is important to note that AH is a relative measure that depends on the refer-
ence person (system) chosen. Applying it to the logistic map, we have recently found that this
renormalized entropy is the only complexity measure which clearly indicates all transitions between
different regimes which are caused by this map (Saparin et al., 1994). Therefore, this new measure

can also be a good tool to detect high risk patients.

4 Results and Discussion

We calculate all characteristics of the three main different approaches mentioned above from the
HRYV records described in section 2. The parameters in the time and in the frequency domain are
determined as usually, i.e. 5 parameters in the time domain and 6 parameters in the frequency
domain (as described in 2.3).

Next, we describe some details of the estimate of the complexity measures introduced in section
3. It comes out that the first transformation (eq. 1) into a symbol sequence is for our purpose
more appropriate than the dynamical transformation (eq. 2). The optimum value of a in eq. 1
is about 0.1. For persons with cardiac risk, the distribution of length-3 words is concentrated on
about 10 words (of 64 possible ones), whereas healthy persons are characterized by a more uniform
distribution. An efficient criterion to distinguish both is then: persons have a risk if there are
more than 44 words which seldom occur. As expected, the Shannon entropy is not so useful as
the generalized Renyi entropies. Due to the higher variability of healthy persons, we expect that
Renyi entropies for a rather small ¢ is much higher for this group than for the high risk group. The
special criterion reads then: HY-*® < 3.6 is an indication for cardiac risk. We also apply this kind of
complexity measure for strings obtained from transformation eq. 2.

Our calculation of the renormalized entropy A H is based on the distribution of the trigonometric
components, i.e. especially the power spectrum in the range 0 — 0.25 Hz. We have tested several
healthy probands as reference persons and have chosen that with the largest renormalized entropy.
The corresponding power spectrum is shown in Fig. 3a. Note that this choice of a reference subject
does not sensitively influence the results. Fig. 3b demonstrates how the renormalization procedure
influences a distribution. After choosing this reference person, the AH of all healthy persons under
consideration is in the interval (-0.75,0). Hence, an indication for cardiac risk is if AH is outside of

this interval. We indeed find values in both directions; a very low AH expresses a strongly reduced
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Figure 4: Comparison of the detection rate for high cardiac risk by means of different techniques.
The subjects are subdivided in 3 groups classified by usual methods. NLD refers to comlexity

measures obtained from nonlinear dynamics.

variability.

It is important to note that no healthy proband is misinterpreted by means of these complexity
measures. To determine, on the other hand, the individual cardiac risk, it is more suitable if we
consider an integrated risk that includes all 4 criteria discussed above. This is in accordance with
the use of the special parameters in the time and frequency domain. Hence, we can compare three

different risk estimates (Fig. 4):

a) Asexpected, the parameters in the time domain are less efficient than the other ones. By means
of this risk, about 40 % of the high risk patients are detected only. Therefore, this approach

will not be further included.

b) The analysis in the frequency domain leads to a rather good distinction of the three groups.

This seems to be due to the physiological meaning of some bands in the power spectrum.
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¢) Therisk basing on the complexity measures gives the best detection rate of the high risk patients.

Because the persons detected in the frequency domain and by complexity measures are not com-
pletely overlapping, we combine both. This way, a very good detection rate of high risk patients is

obtained.

The evaluation of persons for whom only a low risk has so far been reported is an open problem.
Here, we get an important difference between both kinds of tools. To check which techniques better
fit to find high risk patients from this group, a more sophisticated medical characterization than

the electric risk (LOWN4) is necessary..

5 Summary

We have applied the concept of complexity measures to determine the risk for sudden cardiac death
from the HRV, a very actual clinical problem. By means of classical methods, especially parameters
in the time domain, the individual risk cannot be defined precisely enough.

We have found some indications that two kinds of complexity measures are very promising:

a) Renyi entropies and the number of forbidden words which both are basing on the notion of

symbolic dynamics as well as

b) a renormalized entropy which we have recently analyzed in the framework of complexity mea-

sures [14].

In combination with some parameters in the frequency domain, these quantities seem to define
a rather precise definition of the individual risk. In contrast to this, the parameters in the time
domain which are in broad use do not improve the detection rate.

It is important to note that one cannot find an optimum complexity measure. We guess that
a combination of some such quantities which refers to different aspects, such as structural or
dynamical properties, seems to be the most promising way. The complexity measure proposed by
Pincus [11] as well as the criteria that are based on the description of long-range correlations (cf.
Peng et al. [10]) should also be included to define the individual risk.

Finally, we would like to emphasize that our findings have to be validated by a larger and more

representative number of patients, especially to check our optimized non-standard techniques. We
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also think that the study of the heart rhythms are in its infancy and should by continued by

modeling the underlying processes and further analyses of measurements.

Table 1: Number of subjects found as risk by different techniques (chapter 2.3, 3)

group | No. of subjects | time | frequency Renyi frequency | AS
subjects domain | domain || information | of words
healthy 21 0 1 0 0 0
low risk 9 3 4 6 5 6
high risk 13 6 9 7 11 8
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