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ABSTRACT 

 
QUANTITATIVE ANALYSIS OF INFRARED 

CONTRAST ENHANCEMENT ALGORITHMS 
 

This thesis examines a quantitative analysis of infrared contrast enhancement 

algorithms found in literature and developed by the author. Four algorithms were studied, 

three of which were found in literature and one developed by the author: tail-less plateau 

equalization (TPE), adaptive plateau equalization (APE), the method according to Aare 

Mallo (MEAM), and infrared multi-scale retinex (IMSR). Engineering code was 

developed for each algorithm. From this engineering code, a rate of growth analysis was 

conducted to determine each algorithm’s computational load. From the analysis, it was 

found that all algorithms with the exception of IMSR have a desirable linear nature. 

Once the rate of growth analysis was complete, sample infrared imagery was 

collected. Three scenes were collected for experimentation: a low-to-high thermal 

variation scene, a low-to-mid thermal variation scene, and a natural scene. After 

collecting sample imagery and processing it with the engineering code, a paired 

comparison psychophysical trial was executed using local firefighters, common users of 

the infrared imaging system. From this trial, two metrics were formed: an average rank 

and an interval scale. From analysis of both metrics plus an analysis of the rate of growth, 

MEAM was declared to be the best algorithm overall. 



Chapter 1 

 

INTRODUCTION 

 

 Remote sensing is defined as “the field of study associated with extracting 

information about an object without coming into physical contact with it.” [15] Remote 

sensing is important as a process because it allows users to obtain information about 

phenomena that would be dangerous or impossible for them to detect solely with their 

senses. The process can be modeled as a chain, as seen in Figure 1. 

 

Figure 1 – The image chain analogy. Courtesy [15] 

 In this model, each segment of an imaging system is broken into individual chains: 

the input link, the processing link, and the display link. A remote senser’s task is to 
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understand how each link in the chain fits together and to avert any problems arising from 

the interaction between each link. One common problem is data reduction. For example, a 

detector (input) is able to output pixels that have a dynamic range described by twelve bits. 

In the same system, the monochrome display (output) is able to output pixels that have a 

dynamic range of only eight bits. Hence, a procedure aimed at reducing the data must take 

place in the processing stage to enable the display to work with data from the detector. This 

procedure must accomplish two goals: reduce the dynamic range of the input image into an 

image that is acceptable for input by the output system and do this in such a manner that the 

output image is pleasing to the human observer. 

 One such procedure is simply changing the hardware in the imaging system; one 

can use a detector with a lower dynamic range or a display with a higher dynamic range. 

However, this introduces the opportunity for capturing imagery which is not robust enough 

for a user’s purpose and high costs in developing the system, respectively. Another 

procedure that can be employed is dynamic range compression. Dynamic range 

compression can be defined as the mapping of pixels containing a high dynamic range to 

pixels that contains a reduced dynamic range. In essence, dynamic range compression is a 

pixel operator, defining the value of an arbitrarily located pixel in a new image by using the 

value of the corresponding pixel in the original image. Dynamic range compression has a 

number of applications in fields such as video telephony [1], radiology [7, 16], and high 

dynamic range photography [8, 14]. As such, research has been performed with the aim of 

providing a dynamic range compression algorithm that suits an application area’s needs, 
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such as enhanced image quality or heightened information availability. Although research 

has been performed, each study has shown a lack of quantitative metrics to describe how 

well each algorithm performs in terms of image quality. In most cases, all that is offered is 

a simple qualitative metric with no explanation of meaning or background. 

 Another task remote sensers must occupy themselves with is systems integration, or 

the meshing of input systems, processing systems, and output systems. Systems integration 

requires that the remote senser define certain parameters of a system and understand how 

each affects the interplay between each link in the imaging chain. One parameter that is 

important is that of power consumption. In many commercial industries, power 

consumption plays a huge role in the development of a system because no consumer will 

use an imaging system that is rated to last for a few minutes when a competing imaging 

system can be used for hours. In many imaging systems, the use of digital image processing 

microprocessors have become prevalent due to their scant size and ability to upload 

computer programs for real-time processing of imagery from a detector. However, the use 

of the solid-state image processors is done with care as they are a large source of power 

consumption concerns in modern imaging systems. This is due to the direct correlation 

between the need for clock-speed required to apply image processing algorithms in real-

time and power usage of the solid-state chip. Unfortunately, no research has been 

performed that measures each algorithm’s processing time requirements using a 

quantitative metric. 
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Chapter 2 

 

SPECIFIC AIMS 

 

The specific aims of this research were to: 

 

1. Research and develop algorithms that could perform dynamic range compression 

and contrast enhancement simultaneously on infrared imagery. 

2. Collect sample infrared imagery that would fully test an algorithm’s response. 

3. Implement engineering code that showed each algorithm’s feasibility on example 

imagery using a simple graphical user interface. 

4. Execute an analysis that determined the rate of growth and calculate an estimation 

of the number of operations required to complete each algorithm on an arbitrarily 

sized image. 

5. Generate video streams from collected imagery to simulate actual camera 

operation and use them in a paired-comparison psychophysical trial. 

6. Run the psychophysical trial to fully determine the algorithms’ quality. 
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Chapter 3 

 

BACKGROUND 

 

To fully understand how the infrared contrast enhancement algorithms will be 

evaluated, one must first understand how image processing algorithms can be tested. The 

first way to analyze an algorithm has its roots in computer science. The second way to 

analyze an algorithm has its roots in psychophysics. By using both methods, a better 

evaluation of the “best” infrared contrast enhancement algorithm can be determined. 

3.1 Algorithm Analysis 

 In computer science, the process of algorithmic analysis is incredibly important. By 

finding a quantitative metric of an algorithm’s efficiency, decisions involving the 

algorithm’s use in a system can be made; for example, whether an algorithm will execute 

correctly on a microprocessor system or if further optimization needs to occur. At first 

glance, the time an algorithm requires to execute might seem to be an appropriate metric. 

However, the amount of time an algorithm requires is not useful in an algorithmic analysis 

for two reasons. First, one should be concerned with the relative efficiency of how an 

algorithm solves a problem. Second, an algorithm does not get “better” or “worse” when 

transferred to faster or slower computing systems. [9] 

 As such, computer scientists have determined a way to compare two algorithms 

through the use of computing resources as a function of input image size. This is done by 

comparing the rate at which their use of resources grows. The growth rate is critical 
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because there are instances where one algorithm may take fewer operations than another 

when the input image is small but many more when the image is large. This method is 

called “Big O” notation analysis. [9] 

 Specifically, one wishes to find the rate of growth that is asymptotically bound to 

some function f. By finding this “worst-case” bound, one could compare the “worst-case” 

performance of different algorithms that solve the same problem. If one algorithm has a 

much larger rate of growth than another, then that algorithm would not be as efficient and 

hence, would be undesirable. 

 To find the rate of growth of an algorithm, one must simply find the amount of 

consumption of a computing resource versus the size of the input. For the analysis of image 

processing algorithms, the simplest way to accomplish this is to record the amount of time 

required to execute each algorithm with arbitrarily sized input imagery. Next, a plot of time 

versus input size is generated. From this plot, an equation is developed to approximate the 

data. Based on this approximation, the largest term will be determined. This will be the 

order of the equation.  

3.2 Paired Comparison Psychophysical Testing 

 According to the American Heritage dictionary, psychophysics is defined as the 

branch of psychology that deals with the relationships between physical stimuli and 

sensory response. In addition, psychophysics concerns itself with the quantitative 

measurement of the relationships; in essence, using a human being as a yard stick. 

Common knowledge dictates that a human being makes for a poor measurement device. 
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However, with careful thought and planning, a person can be used as an accurate tool. 

Hence, by performing psychophysical trials, values can be measured that indicate the level 

of quality for each of the algorithms to be tested in this study. 

One type of psychophysical trial is the paired-comparison test. Using the paired-

comparison method allows for the generation of an interval scale, a rating of which 

algorithm is the best. By having an interval scale, a quantitative determination can be made 

as to the relative quality differences between each of the algorithms. The paired-

comparison method asks a human subject to select from two samples which best answers a 

question put forth to them. The human subject will then compare all possible combinations. 

By recording which element of each pair the subject selects, certain assumptions can be 

made that leads to the creation of an interval scale [3]. When testing image processing 

algorithms, the samples would represent imagery output from the algorithms studied. 

To get the best sense of an algorithm’s quality, the paired-comparison test can be 

run on multiple scenes. By testing an algorithm’s response for various scenes, a more 

complete picture of the algorithm’s effectiveness can be made. As such, a user will be 

required to make a certain number of comparisons. This number can be calculated through 

the use of Equation 1. np represents the number of pairs, A represents the number of 

algorithms while M represents the number of images.  

2

)1( −
=

AA
Mn p                                                     (1)  
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 After psychophysical data collection, two informational items can be developed: an 

average rank and an interval scale. The average rank will be calculated through the use of 

Equation 2. Rankav represents a 1 by n-element vector containing the average rank of the 

samples. The row vector of ones is n elements long. F represents an n-unit square data 

matrix where each cell indicates how many times one sample in a pair was picked over 

another. If during a psychophysical experiment an observer selects sample j over i, the 

value in the cell located at the jth column and the ith row of F increases by 1. This continues 

for each observer and for all pairs. N represents the number of observers. 

F
N

Rankav ]1111[
1

K=                                       (2) 

 Since the number of observers for the test will not equal the number of people in 

the testable population (i.e. the human race), there is some error associated with the 

calculation of the average rank. This error can manifest itself in equal ranks for the same 

sample. As such, one can use statistics to test whether a rank for one sample is actually the 

same as another. To do so, one can use a statistical hypothesis test. In a statistical 

hypothesis test, two statements are formed: a null hypothesis (H0) and an alternative 

hypothesis (Ha). In addition, a value called a test statistic is formed. A test statistic is a 

value on which the decision to reject H0 is based. Moreover, there exists a rejection region, 

or the set of all test statistic values for which H0 will be rejected. By comparing the test 

statistic to the rejection region, one can decide whether to reject the null hypothesis and 

accept the alternative hypothesis [2]. 
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 To statistically evaluate the average rank, one must first realize that one can 

generate N average ranks by calculating an average rank for each observer. As such, a 

mean average rank and standard deviation can be calculated for each sample. One must 

then consider whether the average ranks among the users are different. Hence, the 

statistical hypothesis that the mean average rank of each sample are different must be 

tested. To start, it must be assumed that the mean average rank amongst each possible pair 

of samples are the same. Therefore, the null hypothesis, alternative hypothesis, test statistic, 

and rejection region can be defined as Table 1. 

H0: ji RR μμ =  

Ha: ji RR μμ ≠  

Test statistic: 

N

s

N

s

RR
t

ji

ji

22

+

−
=  

Reject H0 if: να ,
2

Tt ≥  

Table 1 – Average rank test hypothesis 

iRμ  and 
iRμ represent the true rank for samples i and j, iR and jR  represent the calculated 

mean average rank for samples i and j, si and sj represent the standard deviation of the 

average ranks for samples i and j, t represents the test statistic, α represents an arbitrary 

significance level, and Tα/2,ν represents the value of the Student’s T distribution at 

significance α/2 and degrees of freedom ν, which can be calculated using Equation 3. The 
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value for the Student’s T distribution can be found by using standard tables. The Student’s 

T distribution was selected because the amount of trial participants is not expected to be 

enough to assume a Gaussian nature and thus, the use of the normal distribution. 

1

)/(

1

)/(
2222

222

−
+

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

=

N

Ns

N

Ns

N

s

N

s

ji

ji

ν                                                (3) 

 To start, the unique combination of means and standard deviations that can be made 

from the samples is determined. Second, the test statistic and rejection region are 

calculated. Once done, the test statistic is compared to the rejection region. If the test 

statistic is greater than the specified t value, the null hypothesis is rejected and one can 

safely assume that the true rank value is different from the data. Once this test has been 

performed on each pair and the values are compared, one can see that it is desirable to have 

the test hypothesis rejected in favor of the alternative hypothesis. Put another way, by 

having average ranks that are statistically separable (i.e. not the same), one can make an 

accurate determination of the true rank. This is important because one can then infer that 

the interval scales will be different. 

 Another way to visualize the error inherent in the calculation is through the use of 

confidence intervals. A confidence interval is a range of numbers where the true value of a 

statistical parameter may fall with a desired probability. To calculate a confidence interval, 

one may use Equation 4. 
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1,

2
11,

2
1 N

s
TR

N

s
TRCI i

Ni
i

Nii −−−−
+−∈ αα                                 (4) 

CIi represents the confidence interval for sample i while T1-α/2,N-1 represents the inverse 

cumulative distribution function of the Student’s T distribution at a 1-α/2 critical value and 

N-1 degrees of freedom. 

 After the average ranks are calculated, one can generate an interval scale. To 

calculate an interval scale, Thurstone’s Law of Comparative Judgment will be used. The 

law states that for various reasons, an observer might vary his response for the same sample 

pair. This variance is assumed to have a Gaussian distribution. Based on this law, a number 

of assumptions and steps can be taken to generate a scale. First, Thurstone found that the 

proportion of times that a sample was chosen over another is an indirect measure of the 

distance between the two on an interval scale. Accordingly, one can generate a matrix that 

contains these proportions using Equation 5. P represents the proportionality matrix. 

F
N

P
1

=                                                          (5) 

Next, one can back out each of the values in the proportionality matrix as differences in 

scale through the use of Equation 6. P(A>B) represents a cell within the proportionality 

matrix, H-1 represents the inverse of the Gaussian cumulative distribution function, and SA-

SB represents the scale difference. B

)]([1 BAPHSS BA >=− −                                            (6) 
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Upon using Equation 5, we then create a matrix S that contains each of the scale 

differences, as seen in Equation 7. 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
−−−
−−−

=

nnnn

n

n

n

SSSSSS

SSSSSS

SSSSSS

SSSSSS

S

L

MOMM

L

L

L

21

33231

22221

11211

                                     (7) 

One should note that the sum of each column reduces to the scale represented by that 

column by the average of all scales. This can be seen mathematically for the first column as 

Equation 8. 

SSSS
A

A

i
i −=−∑

=
1

1
1 )(

1
                                                (8) 

Hence, by setting an arbitrary scaling such that the average of the scales is zero, each 

column sum will return the scale value for that sample [3]. 

 Since the number of observers for the psychophysical trial will not be the same as 

the number of observers in the entire human population, there is some error associated with 

each scale value. Montag defines the error interval as Equation 9. 

xiLU zSS σα
2

1
|

−
±=Δ                                                    (9) 

ΔSU|L represents the upper and lower error bounds, Si represents an arbitrary scale value, z 

represents the z-score specified by the cutoff formulated from α, and xσ  represents the 

standard error. Montag further defines the standard error as Equation 10 [10]. 
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 Once the error interval has been found, it can be used to determine whether the 

scale values are statistically different by forming error bars in a plot of interval scale versus 

algorithm. The scale values are deemed statistically different if “the error bar of one does 

not extend past the mean of another.” [11] 
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Chapter 4 

 

ALGORITHMS 

 

At the heart of this research is the development of the infrared contrast 

enhancement algorithms. In general, infrared contrast enhancement algorithms are designed 

to take high dynamic range input infrared imagery and output low dynamic range display 

imagery. As such, the input image will be called f(x,y) and the output image will be called 

g(x,y) for the purpose of algorithmic explanation. 

In all, there are four algorithms to be studied: tail-less plateau equalization (TPE), 

adaptive plateau equalization (APE), the method according to Aare Mällo (MEAM), and 

infrared multi-scale retinex (IMSR). It should be noted that there are two additional 

algorithms to be explained: histogram equalization (HE) and linear scaling (LS). These 

algorithms are components of the four algorithms and are not tested independently. 

4.1 Histogram Equalization (HE) 

 Histogram equalization is a way of increasing the amount of entropy in an image by 

re-mapping the values in the pixels of an image such that there is an equal chance of each 

grey level appearing within an image. In terms of automatic dynamic range compression 

and contrast enhancement, histogram processing provides a method to map values from the 

high dynamic range image into a lower dynamic range image such that the contrast in the 

image is enhanced based on the probability of a certain digital count appearing in the 

image.  
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 To start, a histogram of the input image f(x,y) is taken. A histogram is simply a 

discrete function H(k) where k is a grey level within the image and H(k) is the number of 

pixels with the specified grey level k within said image. From this histogram, the 

probability density function (PDF) and the cumulative distribution function (CDF) are 

found through Equations 11 and 12. 

)),( all(for   
)(

)( yxfk
N

kH
kPDF ∈=                                    (11) 

∑
=

=
k

a

aPDFkCDF
0

)()(                                                (12) 

N represents the total number of pixels within the input image. From the CDF, a mapping 

of a high dynamic range value to a low dynamic range value can be made through Equation 

13. 

⎣ ⎦)()( max kCDFLkm =                                                 (13) 

m(k) is the output digital count that is mapped to the input digital count k while Lmax is the 

highest digital count possible in the lowered dynamic range system [5]. This mapping often 

comes in the form of a lookup table. A lookup table is an entity which has two columns: 

one for the input greyscale value and one for the corresponding output greyscale value. To 

perform histogram equalization, one must apply the lookup table generated by Equation 13 

to the input image f(x,y). This is done pixel-by-pixel, finding the appropriate mapping for 

each input pixel to generate each output pixel. Although histogram equalization does 

increase the entropy and balances an image’s histogram, the process has the undesirable 
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effect of removing detail from highlight and shadow areas within the image. Subjectively 

speaking, this effect tends to make the image look artificial and thus, uninformative to a 

human observer. An example of this effect can be seen in Figure 2. 

      

Figure 2 – Loss of detail in mouth region due to histogram equalization 

4.2 Linear Scaling (LS) 

 In linear scaling, an input infrared image is transformed into a compressed output 

image through the use of two linear functions. An overview of linear scaling can be seen in 

Figure 3. 

Median, gain

Range Adaptation Limitation

Histogram, CDFf(x,y)
CDF

α, β

g(x,y)
g

l

, fh m, xlf

 

Figure 3 – Linear scaling 

The histogram and corresponding CDF of the input image f(x,y) are found using Equations 

11 and 12. To keep stray pixels from making the gain unnecessarily small, a percentage α 

of the histogram is removed from each end of the distribution. As such, α can have values 

from zero to one-half. Using the CDF, three values are defined. xa is equal to the value k 
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which satisfies the equation CDF(k) = α. xb is equal to the value k which satisfies the 

equation CDF(k) = 1 – α. xm is the median value k which satisfies the equation CDF(k) = 

½. After finding these values, the dynamic range of the output is found and the 

corresponding linear gains that need to be applied can be calculated using Equations 14 

and 15. Figure 4 depicts this process visually. 

2
,1),1( minmax

minmax

yy
yyyyyy maba

−
=−=−+= ββ                          (14) 

mb

mb
h

am

am
l

xx

yy
f

xx

yy
f

−
−

=
−
−

= ,                                               (15) 

xaxmin xbxm xmax

x

CDF(x)

1

1-α

0.5

α

xaxmin xbxm xmax

x

y

ya

ymin

yb

ym

ymax

f h

f l

 

Figure 4 – Finding gains and median for linear scaling 

β represents a scalar that scales the input range to be scaled. Traversing the input image, 

the pixels in the dynamic range adapted image are found using Equation 16. 
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Once this adapted image has been formed, the results are limited to ensure a pixel’s 

digital count is within the range of desired display using Equation 17.  
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“Linear scaling is a simple method and image with a large dynamic range lose much of 

the detail and important high frequency content is reduced too much” [4] 

4.3 Tail-less Plateau Equalization (TPE) 

Tail-less plateau equalization is a variation on histogram equalization where a 

maximum gain parameter, called the plateau, is introduced. The plateau is a clipping value 

that is applied to a histogram, placing a limit on the number of pixels that can be resident 

within each histogram bin. The purpose of the plateau is to lessen the chance for excessive 

contrast enhancement. It does so by making the lookup table more linear, increasing the 

probability that all possible input pixel values will be present in the output image. An 

overview of the process can be seen in Figure 5. 
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1 2 3

4 5 6

1. An image is selected

2. The image’s histogram is generated

3. The histogram is clipped to a pre-defined parameter

4. A CDF is created from the clipped histogram

5. Using the clipped CDF, the leading and trailing tails of the histogram are zeroed

6. A CDF is created from the tail-less histogram and is used in the mapping  

Figure 5 – Tail-less plateau equalization 

To start, the histogram of the input image f(x,y) is calculated, which from this point 

on will be referred to as H(k). In plateau equalization, a maximum gain parameter (Pmax) is 

introduced and a new histogram Hp(k) is calculated, as seen in Equation 18. 

⎩
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⎧

>
≤

=
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)(

pkHP
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kH p                                            (18) 

Using this modified histogram, the PDF and CDF of Hp(k) is calculated using Equations 11 

and 12 [4]. Next, the “tails” of the modified histogram are eliminated using Equation 18, 

forming a new histogram Ht(k). By removing the tails of the histogram, outlier pixels can 
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be forced into saturation, increasing the contrast in the output image. tmax is a value between 

zero and one-half and represents the percentage of pixels one wishes to remove from the 

head and tail-end of the histogram. CDFp(k) represents the CDF of Hp(k). 

⎩
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=
otherwise

ttkCDFkH
kH pp

t
0

]1,[)()(
)(

maxmax
                                   (19) 

The PDF and CDF of the new histogram Ht(k) are calculated and Equation 13 is used to 

generate a lookup table, which is applied to each pixel globally to form the output image 

g(x,y). 

4.4 Adaptive Plateau Equalization (APE) 

 Adaptive plateau equalization is very similar to tail-less plateau equalization in the 

sense that a plateau is applied to a histogram before a calculation of the mapping function is 

determined. However, instead of having the maximum gain parameter fixed, it is adapted to 

the current histogram of the scene. First, the histogram H(k) is taken of the scene and its 

corresponding CDF CDF(k) is calculated using Equations 11 and 12. Second, a number of 

values are defined. These values are illustrated in Figure 6 and a description of these values 

is provided in Table 2. 
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Figure 6 – Parameters necessary for adaptive plateau equalization 
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Value Description Found By 

Imin The greyscale that corresponds to the first 

histogram bin with a value greater than zero 

The first greyscale k where 

CDF(k) > 0 

Imax The greyscale that corresponds to the last 

histogram bin with a value greater than zero 

The last greyscale k where 

CDF(k) > 0 

I1% The greyscale that corresponds to the location in 

the CDF that is equal to .01 

The greyscale k that satisfies 

CDF(k) = 0.01 

I99.9% The greyscale that corresponds to the location in 

the CDF that is equal to .999 

The greyscale k that satisfies 

CDF(k) = 0.999 

I99.99% The greyscale that corresponds to the location in 

the CDF that is equal to .9999 

The greyscale k that satisfies 

CDF(k) = 0.9999 

I25% The greyscale that corresponds to the location in 

the CDF that is equal to .25 

The greyscale k that satisfies 

CDF(k) = 0.25 

I75% The greyscale that corresponds to the location in 

the CDF that is equal to .75 

The greyscale k that satisfies 

CDF(k) = 0.75 

Iinf,a The first inflection point of the histogram See below 

Iinf,b The last inflection point of the histogram See below 

ηA The number of pixels with a value less than Iinf,a

∑
−

=

=
1inf,

min

)(
aI

Ii
A iHη  

ηBB

The number of pixels with a value greater than Iinf,b

∑
+=

=
max

inf, 1

)(
I

Ii
B

b

iHη  

Table 2 – Important values for adaptive plateau equalization 

 As one can see from Figure 6 and Table 2, almost all of the values needed for the 

plateau algorithm can be found using the CDF. It should be noted that the values of the 

CDF are not likely to match the limits specified in Table 2 exactly. Hence, the greyscale 

that corresponds to the CDF value that is closest to the desired value will be used. Iinf,a and 

Iinf,b are not derived from the CDF but from the shape of the histogram. These two 

inflection points are found by applying a moving window sum of width w across the 

histogram. The low (Iinf,a) and high (Iinf,b) inflection points correspond to intensities where 

the moving window sums change from their previous values by a threshold amount based 
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on a fraction of the difference between Imin and Imax, as seen in Equation 20. ΔI represents 

the threshold amount and ε represents a scalar value that ranges between zero and one. 

)( minmax III −=Δ ε                                                (20) 

Limitations are placed on the high and low inflection points. These limitations are 

described in Equations 21 and 22. 

}{ %25inf,inf,inf, IIkII aaa <∋==                                        (21) 
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II
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−
<>∋==                   (22) 

 After the inflection points have been defined, ηA and ηB can be found by using the 

appropriate equation in Table 2.  

B

 Next, the maximum gain parameter can be calculated. To do so, a number of 

intermediate values are calculated. The first is the ratio of pixels that occupy that central 

portion of the histogram versus the tails of the histogram. This ratio is defined as Equation 

23. X represents the ratio while N represents the total number of pixels in the image. 
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After the ratio has been calculated, the nominal plateau value can be calculated as Pnom. 
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Next, the dynamic range of the scene (RD) can be calculated using Equation 25. 
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%1%9.99 IIRD −=                                                      (25) 

Using this dynamic range metric, a dynamic range adjustment factor can be calculated 

using Equation 26. FDR represents the dynamic range adjustment factor while Lmax 

represents the maximum grey level output after processing. 
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In addition to the dynamic range adjustment factor, another adjustment factor is calculated 

to create a more natural appearance of extended dark regions whose intensities are greater 

than I75%. The adjustment factor FED is computed as: 

%1.0

%1.01
II

II
F

B

A
ED −

−
−=                                                  (27) 

The actual gain parameter (PA) that will be used to perform plateau equalization can be 

calculated using Equation 28. A requirement will be placed upon this gain parameter that 

the value must be greater than or equal to one. 

EDDRnomA FFPP ⋅⋅=                                                (28) 

 Due to the ever-changing nature of infrared imagery, it is possible that the adaptive 

plateau value can change in value greatly from image to image. To make this algorithm 

suitable for video, a temporal lowpass infinite impulse response (IIR) filter has been 

applied to the plateau value. This entails taking a previously calculated plateau value 
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PA,previous and forming a new plateau value PA,filtered using Equation 29. PA,current represents 

the plateau value calculated for the current image. 

previousAcurrentAfilteredA PPP ,,, )1( ψψ −+=                                 (29) 

where ψ represents a scalar arbitrary set to a value between zero and one. By changing the 

value of ψ, the amount of a current scene’s contribution can be minimized. Hence, flicker 

can be reduced in the resulting video stream. 

 Once the gain parameter has been calculated, a new histogram is calculated based 

on the original histogram [6] where Hp(k) represents the new plateau histogram. 
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 Using Equations 11 and 12, a CDF is calculated using the plateau histogram. Then, 

using Equation 13, a mapping of pixel values is formed using the CDF to produce the 

output image g(x,y).  

4.5 Method According to Aare Mällo (MEAM) 

 The method according to Aare Mällo is a departure from performing histogram 

equalization as the sole dynamic range compression and contrast enhancement instrument. 

MEAM separates an input image f(x,y) into high spatial frequency and low spatial 

frequency component images. By operating on the two component images separately, a 

higher degree of control over the dynamic range compression and contrast enhancement 

can be realized. An overview of the algorithm can be seen in Figure 7. 
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Figure 7 - Overview of MEAM 
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In this algorithm, the input image f(x,y) is convolved with a lowpass filter, forming a low-

pass image (f(x,y)lp). This filter is often a mean value spatial filter. The original image has 

the low-pass image subtracted from it forming a high-pass image (f(x,y)hp). A gain is 

applied to the high-pass image. This gain is applied using Equation 31. xp represents an 

arbitrary pixel value above which one gain value (g2) is applied and below which, a 

different gain value (g1) is applied. This value is specified such that the edge information 

pixels, which usually have a small value, are enhanced by the first gain parameter while 

pixels containing noise information, which usually have a large value, are attenuated by the 

second gain parameter. 
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To the low-pass image, a number of histogram enhancement processes can be performed. 

For simplicity here, a linear scaling will be performed. The transformed low-pass and high-

pass images are summed (forming g(x,y)l) and the resultant values are limited between a 

specified range, forming the final image g(x,y) [6]. 

4.6 Infrared Multi-Scale Retinex (IMSR) 

 The infrared multi-scale retinex is an offshoot of a neuro-physiological model 

called the Retinex calculation. The Retinex calculation “was perceived as a model of the 

lightness and color perception of human vision.” [13] This model was based on the 

receptive field structures found within the human visual system. By using a specifically 

designed spatial filter called a surround, the lateral opponent operation of the human visual 
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system could be mimicked. Later research showed that the model could be applied to 

existing imagery to enhance it in a way that the eye would find aesthetically pleasing. 

Expounding on this research, Rahman found that by using this model with a Gaussian 

surround, existing imagery could be improved. Rahman called this process the “multi-scale 

retinex” and its process is defined mathematically in Equation 32. 
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R(x,y) represents the output value at location (x,y), S represents the number of surround 

functions one wishes to use to perform the retinex calculation, Lmax represents the 

maximum grey value possible in the output image, I(x,y) represents the input image 

rescaled from zero to one at location (x,y) while Ws represents an arbitrary numerical 

weight associated with the s
th
 Gaussian surround function defined by Fs. Fs is defined as: 
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σs
2
 represents the variances of the different scales one uses in the calculations. κ represents 

a numerical weighting that can be calculated as seen in Equation 34. 

∑∑
=

x y

yxF ),(

1κ                                                     (34) 

Rahman found that using multiple surrounds is necessary to achieve a balance between 

dynamic range compression and correct tonal rendition. Through experimentation, three 
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scales comprising of a narrow (σ = 5), medium (σ = 20) and wide surround (σ = 240) with 

equal weightings was sufficient [13]. 

 After applying the multi-scale retinex to infrared imagery, it was found that due to 

the dynamic nature of infrared imagery, the logarithmic operation would not be sufficient 

to compress the contrast gracefully. As such, the infrared multi-scale retinex can be defined 

as Equation 34. 
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f(x,y) represents the input image while g(x,y) represents the output image. F and G are 

normalizing functions: 
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ρ represents the maximum bit depth one wishes to have the ratio image to have. Through 

experimentation, acceptable values of ρ lie between 2
10

 and 2
14

. By increasing ρ, one 

increases the number of bits of relevant edge information and as such, increases the chance 

of that edge appearing in the final image. 
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Chapter 5 

 

METHODS 

 

 The quantitative analysis was performed in distinct stages. An overview of the 

process can be seen in Figure 8. 

Stage 1

Engineering code

development

Stage 2

Imagery

capture

Stage 3

Psychophysical

trial execution
 

Figure 8 – Overview of the quantitative assessment method 

 The first stage was the development of engineering code representative of the four 

infrared contrast enhancement algorithms. The engineering code was developed in the 

MATLAB development environment. The purpose of this engineering code was to take 

digital frames that contain 16 bit pixels as input and output 8 bit imagery using an 

algorithm of choice for image enhancement. This input imagery took the form of single or 

multiple frames and output images or video, respectively. Additionally, this engineering 

code has the ability to run a rate of growth analysis on the code as described in Section 3.1. 

The analysis was run on an arbitrarily resized example infrared image. To facilitate use of 

the algorithms, a graphical user interface was developed for each algorithm. The code for 

each algorithm can be found in Appendix A. 

 The second stage involved the collection of digital frames captured from the 

infrared imager. To do so, a digital frame grabbing station was constructed. The station 
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consisted of three components: an infrared imager (the BAE Systems SCC500H), capturing 

equipment (dedicated frame grabber and all necessary components), and a computer to 

control the capturing equipment. Using this setup, digital frames containing pixels output 

from the focal plane array on the camera were generated. 

The imager was used in a variety of conditions that one can expect it to perform in. 

For this analysis, three scenes were selected: two artificial and one natural. It should be 

noted that the artificial scenes contain natural items but it was specifically designed to 

exhibit an arbitrary range of infrared behavior. To confirm the temperature range in the 

scene, an infrared thermometer was used to confirm the temperatures of objects with 

known emissivities. With known emissivities, the temperature recorded would be accurate. 

The first scene involved a frame sequence where the imager captures a scene 

containing low-contrast objects (the thermal differential across the scene is less than one 

degree Fahrenheit) and then pans to a scene containing high-contrast objects (the thermal 

differential across the scene is greater than twenty degrees Fahrenheit). For this scene, a lit 

hibachi grill was used as the high contrast target while foliage, shortly after a rain event, 

provided the low-contrast scene elements. The second scene involved a frame sequence 

where the imager captures a scene containing low-contrast objects and then pans to a scene 

containing mid-contrast objects (the thermal differential across the scene is greater than one 

degree but less than twenty degrees Fahrenheit). For this scene, the hibachi grill was 

doused to provide the mid-contrast target while freshly rained on foliage provided the low-

contrast target. Pictures of the representative targets can be seen in Figure 9. 

 31



 

Figure 9 – Visible imagery of the backyard scene 

The final scene involved a frame sequence where the imager captured a scene 

containing natural elements. It should be noted that the thermal differential across this 

scene was not noted. For this sequence, the imager was pointed at an interstate interchange 

with full view of objects such as vehicles, roads, lightposts, and foliage. Frames were 

recorded as vehicles passed the imager. An example visible picture from this scene can be 

seen in Figure 10. 

 

Figure 10 – Visible imagery of the highway scene 
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 The third stage of the analysis involved the execution of paired-comparison 

psychophysical trials where test subjects were asked to evaluate processed video from the 

four different algorithms studied using the three scenes captured, resulting in 18 pairs to 

observe. For this research, the test subjects were separated into two groups: members of the 

Rochester City Fire Department and students from the Imaging Science program at the 

Rochester Institute of Technology. Since firefighters are one of the principal users of the 

infrared imager, their opinions are extremely important to the sponsor of this research. As a 

basis for comparison, the trial was also open to imaging science students. For each of the 

18 pairs, observers were asked to answer two questions: “Of the two videos, select which 

one has the best quality” and “Of the two videos, select which one has the most detail.” By 

asking the observer these specific questions, it was hoped that quantitative evidence would 

be generated to support the hypothesis that there is no difference between quality and detail 

between algorithms and computational considerations could be the deciding factor for the 

comparisons. To facilitate data collection and analysis, a MATLAB program was created to 

automate the process. Using this program, a calculation of the average ranks and interval 

scale values was generated according to the methods described in Section 3.2. 
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Chapter 6 

 

RESULTS 

 

After the research had been completed, the results were analyzed quantitatively. 

Using the means described in Sections 3 and 5, data collected from experimentation was 

analyzed to help determine the best infrared contrast enhancement algorithm. Once the 

results have been generated, a true ranking will be calculated for each quantitative 

comparison. This true ranking will account for any ranks that cannot be considered due to 

statistical limitations imposed on the results. 

6.1 Subjective Image Analysis 

 After image collection, one of the first analyses that was carried out is a subjective 

analysis of the processed captured imagery. According to the previously described method, 

three scenes were collected: a low-to-high contrast scene, a low-to-mid contrast scene, and 

a natural scene. The low-to-high contrast scene was gathered by situating the infrared 

camera in a backyard that contained a fence, grass, trees, and flowers. The scene also 

contained a small hibachi grill that contained a small wood fire. As the video stream starts, 

the camera is facing a tree and some large bushes. As time progressed, the camera panned 

to the left, allowing the lit grill to enter the field of view. Finally, the camera panned right, 

returning to the original scene. Results of infrared contrast enhancement on frames 

containing the large tree and the lit grill can be seen in Figures 11 and 12. 
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TPE IMSR

MEAM APE  

Figure 11 – Processed imagery of the low-to-high contrast scene containing foliage 
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TPE IMSR

MEAM APE  

Figure 12 – Processed imagery of the low-to-high contrast scene containing the lit grill 

 As one can see from Figure 11, the low contrast trees and bushes do appear through 

each algorithm’s processing yet each rendition shows noticeable differences. For example, 

IMSR has provided an image that has extremely high contrast but also has an appreciable 

amount of noise. MEAM has provided an image that has less contrast than IMSR but also 

less noise. APE continues this trend as there is less contrast than the two previous 

algorithms but also infinitesimal noise. Finally, TPE shows the least contrast amongst the 

scene but has no detectable noise. This informal ranking can be applied to the imagery 
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when the scene changes, as in Figure 12. IMSR provides an image that shows structure in 

both the hot fire and the cool background. MEAM shows a bit less detail in the background 

while retaining a fair amount of detail in the fire. APE loses much of the detail in the 

background while retaining some in the flames of the fire itself. Finally, TPE loses the most 

detail in the background and a fair amount in the flames of the fire. 

 The low-to-mid contrast scene was very similar to the low-to-high contrast scene. 

Every component of the video stream was the same as the low-to-high contrast video with 

the exception that the hibachi grill was cooled after dousing the wood fire. Results of 

infrared contrast enhancement on frames containing the large tree and the unlit grill can be 

seen in Figures 13 and 14. 
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Figure 13 – Processed imagery of the low-to-mid contrast scene containing foliage 
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TPE IMSR

MEAM APE  

Figure 14 – Processed imagery of the low-to-mid contrast scene containing the unlit grill 

 As one can see in Figure 13, the same descriptions applied to Figure 11 can be 

applied with the beginning of this sequence of imagery as well. Some differences become 

apparent in Figure 14. IMSR provided an image that has the most overall contrast; structure 

can be seen in the grill, fence, and surrounding foliage. MEAM also has a significant 

amount of contrast overall but some detail was lost in the grass and tree. APE continues 

this trend as more detail was lost in the foliage. Finally, TPE loses much of the background 

contrast. 
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 The natural scene consisted of situating the infrared camera in front of the 

intersection of East Henrietta Road and Interstate 390 in Brighton, a township located just 

outside downtown Rochester. While recording a video stream, the camera was kept 

stationary, allowing the motion of the vehicles on the roadways to provide changing 

infrared content. The results of image processing can be seen in Figure 15. 

TPE IMSR

MEAM APE  

Figure 15 – Processed imagery of the natural scene 

 As one can see in Figure 15, the reconstructions of the scene vary widely across 

algorithms. TPE provided an image with stark contrast between the ground and the sky, 
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losing most of the detail between the two fields. In addition, it becomes difficult to detect 

the tall light pole in the center of the scene. The other three algorithms do not exhibit this 

behavior. IMSR provides a scene where much detail can be seen in the ground plane at the 

expense of some of the detail in the sky. MEAM provided a more balanced rendition of the 

scene while APE provided an image that was slightly better in rendition than TPE. 

6.2 Algorithm Analysis 

 As described in Section 5, a rate of growth analysis was conducted on each 

algorithm. This entailed recording the average execution time for each algorithm, repeated 

an arbitrary number of times, versus the size of the input image to each algorithm. It should 

be noted that each algorithm was executed on a computer system with swap memory 

enabled. By measuring the execution time on this system, there is a chance that swap 

access time may be included in the measurement of execution time if the system did not 

have enough physical memory to complete the algorithm. Due to no disk accesses being 

noticed by the principal investigator during the efficiency test, it is assumed that the swap 

was not accessed. Hence, the execution times recorded are for algorithmic execution alone. 

The results of this analysis for each algorithm can be seen in Figure 16. 
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Figure 16 – Rate of growth analysis for all algorithms 
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 As one can see, APE, TPE, and MEAM all have similar operating characteristics 

that cannot be easily distinguished. That can be explained by the linear nature of each 

algorithm’s components. However, IMSR takes on a character that could not be accurately 

assessed when viewed alone: the rate of growth has a curved nature to it, hence it is not 

linear. That is fairly easy to understand as the Fourier transform is a component of IMSR. 

As image size increases, the computational load of the Fourier transform increases 

logarithmically, not linearly. As such, IMSR will have a higher rate of growth since it 

includes both a logarithmic and linear nature. Hence, if one were to rank the results based 

on these results, one would find the ranking found in Table 3. 

Algorithm APE IMSR MEAM TPE 
Rank 1 2 1 1 

Table 3 – Rank based on rate of growth analysis 

6.3 Paired Comparison Testing 

 As described in Section 5, a group of firefighters and students were sought to 

participate in a paired comparison psychophysical trial utilizing the three collected scenes. 

Members of the Rochester Fire Department and Imaging Science department participated 

in the trials over the course of three months. Groups were formed based on the scheduling 

in place and as such, data could not be collected at the same time. The principal 

investigator presented two scenes to the firemen during one week and presented the final 

scene during another week. As a result, the paired comparison trial of the first two scenes 

involved thirteen observers while the final scene involved sixteen observers. For the 

students, all scenes were presented at the same time to ten observers. 
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 Using developed software, observers were presented with exemplar video from 

each of the four algorithms and were asked to select video that exhibited individually the 

best quality and most detail. Through background calculations, an average rank and 

interval scale were developed according to the methods described in Section 3. 

6.3.1 Average Rank 

 Using the data collected from the paired comparison experiment, one can create a 

quick quantitative metric called an average rank. An average rank was calculated for three 

distinct groups: the firefighters, the imaging scientists, and a combined group. To calculate 

an average rank, one uses the process described in Section 3 and Equation 2. Once 

calculated, the algorithm that has the highest average rank is the best. From Section 5, one 

can see that six average ranks are calculated: a rank for each question asked of each scene. 

A plot of average rank versus algorithm can be seen in Figures 17 through 22. 

 As there exists the possibility that one cannot discern the average rank visually, one 

can infer that there is no statistical difference between the rank of one algorithm compared 

to another. This lack of difference is important because without a difference, it would be 

impossible to determine the true ranking; all that could be done is assume the same rank for 

those algorithms not deemed statistically different. To confirm statistical difference, the t 

test, as described in Section 3, was employed. For each question in each scene, a test 

hypothesis was formed for each possible pair that could be formed from the statistics 

generated for each algorithm. As such, a test statistic and appropriate comparison T curve 

value were found for each pair. The results can be seen in Tables 4 through 9. The 
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numerical values in each table for the pairs indicated match a specific algorithm (1 – APE, 

2 – IMSR, 3 – MEAM, 4 – TPE). It should be noted that the t-test was only performed on 

the combined data set because the final determination of best algorithm was made only on 

this set. As such, split results for both groups are presented separately for completeness. 
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Figure 17 – Average rank using the low-to-high contrast scene concerning best quality 

Pairs 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4 

t 2.155806 6.264736 2.236068 4.162331 0.312348 3.254126 

df 43 38 43 40 42 36 

T value 2.016692 2.024394 2.016692 2.021075 2.018082 2.028094 

Reject H0 Y Y Y Y N Y 

Table 4 – T test results for the low-to-high contrast scene involving best quality 
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Average Rank (Low to High Contrast Scene, Most Detail)
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Figure 18 – Average rank using the low-to-high contrast scene concerning most detail 

Pairs 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4 

t 2.184281 2.919381 2.681848 5.318883 4.833333 0 

df 43 43 43 43 40 42 

T value 2.016692 2.016692 2.016692 2.016692 2.021075 2.018082 

Reject H0 Y Y Y Y Y N 

Table 5 – T test results for the low-to-high contrast scene involving most detail 
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Average Rank (Low to Medium Contrast Scene, Most Quality)
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Figure 19 – Average rank using the low-to-mid contrast scene concerning best quality 

Pairs 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4 

T 3.113209 7.325199 2.75119 3.78583 0 3.418295 

df 41 41 37 43 42 42 

T value 2.019541 2.019541 2.026192 2.016692 2.018082 2.018082 

Reject H0 Y Y Y Y N Y 

Table 6 – T test results for the low-to-mid contrast scene involving best quality 
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Figure 20 – Average rank using the low-to-mid contrast scene concerning most detail 

Pairs 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4 

t 0.513809 5.117663 3.219961 5.578018 3.694764 1.840317 

df 43 43 43 43 43 43 

T value 2.016692 2.016692 2.016692 2.016692 2.016692 2.016692 

Reject H0 N Y Y Y Y N 

Table 7 – T test results for the low-to-mid contrast scene involving most detail 
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Average Rank (Natural Scene, Most Quality)
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Figure 21 – Average rank using the natural scene concerning best quality 

Pairs 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4 

t 6.870254 3.996804 6.67532 2.139252 13.76279 9.921708 

Df 49 47 48 48 47 43 

T value 2.009575 2.011741 2.010635 2.010635 2.011741 2.016692 

Reject H0 Y Y Y Y Y Y 

Table 8 – T test results for the natural scene involving best quality 
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Average Rank (Natural Scene, Most Detail)
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Figure 22 – Average rank using the natural scene concerning most detail 

Pairs 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4 

t 9.955402 10.55556 7.263002 0.727607 15.90293 16.36366 

df 45 44 49 49 45 44 

T value 2.014103 2.015368 2.009575 2.009575 2.014103 2.015368 

Reject H0 Y Y Y N Y Y 

Table 9 – T test results for the natural scene involving most detail 

 The first scene to be analyzed was the low-to-high contrast scene. As one can see in 

Figure 17, the average rank from best to worst when considering quality was APE, MEAM, 

TPE, and IMSR. From the plot, MEAM and TPE exhibit similar rankings from visual 

judgment; this is confirmed from Table 4. The test statistic value for the comparisons 

between MEAM and TPE were not great enough to reject the null hypothesis. As such, one 

must consider that the two algorithms have the same rank. Based on these results, the 

exhibited rank in answering this question can be seen in Table 10. 
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Algorithm APE IMSR MEAM TPE 
Rank 1 3 2 2 

Table 10 – True rank based on rank analysis for quality in the low-to-high contrast scene  

 As one can see in Figure 18, the average rank for detail differed from the average 

rank for quality. From best to worst, the ranking is MEAM, APE, TPE, and IMSR. 

However, from Table 5, one can see that there is no statistical difference between IMSR 

and TPE. Due to this, the rank must be considered the same for each algorithm. Based on 

these results, the exhibited rank in answering this question can be seen in Table 11. 

Algorithm APE IMSR MEAM TPE 
Rank 2 3 1 3 

Table 11 – True rank based on rank analysis for detail in the low-to-high contrast scene 

 The second scene to be analyzed was the low-to-mid contrast scene. As one can see 

in Figure 19, the average rank from best to worst when considering quality was APE, 

MEAM, TPE, and IMSR. From the plot, MEAM and TPE exhibit similar rankings from 

visual judgment; this is confirmed from Table 6. The test statistic value for the comparison 

between TPE and MEAM was not great enough to reject the null hypothesis. As such, one 

must consider that these two algorithms have the same rank. Based on these results, the 

exhibited rank in answering this question can be seen in Table 12. 

Algorithm APE IMSR MEAM TPE 
Rank 1 3 2 2 

Table 12 – True rank based on rank analysis for quality in the low-to-mid contrast scene  

 As one can see in Figure 20, the average rank when concerned with detail differed 

from the average rank when concerned with quality. From best to worst, the ranking is 
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MEAM, APE, TPE, and IMSR. However, from Table 7, one can see that there is no 

statistical difference between APE & MEAM and between IMSR & TPE. Due to this, the 

rank must be same for each. Based on these results, the exhibited rank in answering this 

question can be seen in Table 13. 

Algorithm APE IMSR MEAM TPE 
Rank 1 2 1 2 

Table 13 – True rank based on rank analysis for detail in the low-to-mid contrast scene 

 The final scene to be analyzed was the natural scene. As one can see in Figure 21, 

the average rank from best to worst when considering quality was TPE, APE, MEAM, and 

IMSR. From the plot, one can see that there is definitive visual evidence that there is 

separability between the average ranks of the algorithms. The values in Table 8 confirm 

this as well. Based on these results, the exhibited rank in answering this question can be 

seen in Table 14. 

Algorithm APE IMSR MEAM TPE 
Rank 3 2 1 4 

Table 14 – True rank based on rank analysis for quality in the natural scene  

 As one can see in Figure 22, the average rank when concerned about detail is more 

ambiguous when compared to the ranks for quality. From best to worst, the ranking is 

IMSR, MEAM, APE, and TPE. From the plot, it is visually apparent that IMSR and 

MEAM share the same rank. Table 9 confirms this finding. As such, the rank must be same 

for IMSR and MEAM. Based on these results, the exhibited rank in answering this question 

can be seen in Table 15. 
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Algorithm APE IMSR MEAM TPE 
Rank 2 1 1 3 

Table 15 – True rank based on rank analysis for detail in the natural scene 

6.3.2 Interval Scale 

 In addition to the average rank, a quantitative metric called an interval scale can be 

calculated from the psychophysical data. Using the procedures described in the Sections 3 

and 5, an interval scale was calculated for each question asked of the three scenes, resulting 

in six scales. Error metrics were calculated using Equation 9. A plot of interval scale versus 

algorithm for each respective scene and question can be seen in Figures 23 through 28 with 

their respective error bars. 

Interval Scale (Low to High Contrast Scene, Most Quality)
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Figure 23 – Interval scale for the low-to-high contrast scene involving best quality 
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Interval Scale (Low to High Contrast Scene, Most Detail)
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Figure 24 – Interval scale for the low-to-high contrast scene involving most detail 

Interval Scale (Low to Medium Contrast Scene, Most Quality)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

In
te

rv
a

l 
S

c
a

le

APE - Combined MEAM - Combined IMSR - Combined TPE - Combined APE - Firefighters MEAM - Firefighters

IMSR - Firefighters TPE - Firefighters APE - Imaging Scientists MEAM - Imaging Scientists IMSR - Imaging Scientists TPE - Imaging Scientists

Figure 25 – Interval scale for the low-to-mid contrast scene involving best quality 
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Interval Scale (Low to Medium Contrast Scene, Most Detail)
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Figure 26 – Interval scale for the low-to-mid contrast scene involving most detail 

Interval Scale (Natural Scene, Most Quality)
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Figure 27 – Interval scale for the natural scene involving best quality 
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Interval Scale (Natural Scene, Most Detail)
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Figure 28 – Interval scale for the natural scene involving most detail 

 The first scene to be analyzed was the low-to-high contrast scene. Figure 23 

illustrates that the interval scale ranks APE, MEAM, TPE, and IMSR from best to worst 

when concerned with quality. Also, one can see that the interval scale for TPE lies in the 

error bars of MEAM. As such, the interval scale values for MEAM and TPE are not 

statistically different and as such, must be considered the same. If so, the true rank would 

be seen as Table 16. 

Algorithm APE IMSR MEAM TPE 
Rank 1 3 2 2 

Table 16 – True rank based on scale analysis for quality in the low-to-high contrast scene  

 Figure 24 shows that the interval scale ranks MEAM, APE, IMSR, and TPE from 

best to worst when concerned with detail. However, as seen in the figure, there is 

significant overlap with the error bars of the interval scale for IMSR and TPE. As such, 
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their respective rankings must be considered the same. As these two algorithms are 

separable from the other two, the final ranking for this question can be found in Table 17. 

Algorithm APE IMSR MEAM TPE 
Rank 2 3 1 3 

Table 17 – True rank based on scale analysis for detail in the low-to-high contrast scene  

 The second scene to be analyzed was the low-to-mid contrast scene. From Figure 

25, one can see that the ranking from best to worst is AP, MEAM, TPE, and IMSR when 

concerned with quality. One should also see that there is significant overlap between the 

error bars of MEAM and TPE. As such, the rankings for these two algorithms must be 

considered the same. Therefore, the true ranking for this question can be seen in Table 18. 

Algorithm APE IMSR MEAM TPE 
Rank 1 3 2 2 

Table 18 – True rank based on scale analysis for quality in the low-to-mid contrast scene  

 When concerned with detail, the results follow a different pattern. As one can see in 

Figure 26, the ranking from best to worst is MEAM, APE, TPE, and IMSR. One should 

also see that the scale values for APE and MEAM  fall within their respective error bars. 

Additionally, the scale values for IMSR and TPE falls within their respective error bars. As 

such, the rank for the combination of APE and MEAM and the combination of IMSR and 

TPE are the same. Hence, the true rank using this question can be found in Table 19. 

Algorithm APE IMSR MEAM TPE 
Rank 1 3 1 2 

Table 19 – True rank based on scale analysis for detail in the low-to-mid contrast scene  
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 The final scene to be analyzed was the natural scene. From Figure 27, one can see 

that the best to worst ranking when concerned with quality is MEAM, IMSR, APE, and 

TPE. From the figure, one can also see that there is definite separation between the scale 

values. As such, the true rank for this question can be seen in Table 20. 

Algorithm APE IMSR MEAM TPE 
Rank 3 2 1 4 

Table 20 – True rank based on scale analysis for quality in the natural scene  

 From Figure 28, one can see that this trend becomes slightly ambiguous. The best 

to worst ranking when concerned with detail is IMSR, MEAM, APE, and TPE. One should 

note that the scale value for MEAM falls within the error bars for IMSR. As such, their true 

ranking must be considered the same. Therefore, the true rank using the interval scale data 

can be seen in Table 21 for this question. 

Algorithm APE IMSR MEAM TPE 
Rank 2 1 1 3 

Table 21 – True rank based on scale analysis for detail in the natural scene  
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Chapter 7 

 

CONCLUSIONS 

 

 Dynamic range compression and contrast enhancement are two image processing 

methods that are highly important to any person designing an infrared imaging system. 

Often, the detector in an infrared system has a high dynamic range while the output display 

device has a much lower dynamic range. As such, an intermediate step must be taken to 

make these two components of the system compatible in such a way that is pleasing to the 

human observer. 

 This thesis strived to find examples of this intermediary step and quantitatively 

determine the feasibility and utility of each. By performing a rate of growth analysis on 

each algorithm, it became possible to compare the resources required by each algorithm in 

a system-independent fashion. By performing a psychophysical trial, it became possible to 

use the end user of an infrared system as an objective quantitative metric. Through careful 

analysis, it became possible to form a decision on which algorithm is the best to use in an 

infrared system. 

 The first step in analyzing the results was determining whether there was a 

difference between quality and detail. This is important because if there is a difference, a 

unique condition is placed on a system engineer designing the camera, namely the decision 

of which algorithm to use as the intermediary step becomes complex. Whereas before, if an 

algorithm was determined to have a high quality, the systems engineer would choose such 
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an algorithm. However, if there is a difference between quality and detail, the system 

engineer must choose an algorithm that is appropriate to the application. For example, if the 

end user of an infrared system was a firefighter, their main concern would be whether they 

could distinguish between human beings or man-made objects. As such, spatial detail 

would be of primary importance since detail is what differentiates an ambiguous blob on 

the output display from a human being. If the end user of a system is a foot soldier, they 

would be more concerned with a noiseless output display. This is important because if a 

soldier sees a quick appearance of random pixels, he may perceive that to be an enemy and 

take inappropriate action. As such, a noise-free display would be a quality issue. From the 

results of the psychophysical experiment, the separation between quality and detail is 

apparent. For the most part, the true rankings for the question of detail were different than 

the true rankings for the question of quality, leading one to believe that quality and detail 

can be separate. 

 From the true rankings, one can also see that the best algorithm seems to be a 

frequency-based method: MEAM. MEAM was a clear winner when used in a natural, 

everyday scene with a high signal-to-noise ratio. However, more importantly, observers 

preferred MEAM just as favorably as APE when used in a low signal-to-noise ratio scene 

such as the artificial scenes. To determine which algorithm was the best, a true average 

rank was calculated using Tables 3 and 10 through 21. The results of this average can be 

seen in Table 22. 
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Algorithm APE IMSR MEAM TPE 

Rate of Growth 1 2 1 1 
Quality 1 3 2 2 

Low-to-High 
Detail 2 3 1 3 

Quality 1 3 2 2 
Low-to-Mid 

Detail 1 2 1 2 
Quality 3 2 1 4 

Average Rank 

Natural 
Detail 2 1 1 3 

Quality 1 3 2 2 
Low-to-High 

Detail 2 3 1 3 
Quality 1 3 2 2 

Low-to-Mid 
Detail 1 3 1 2 

Quality 3 2 1 4 

Interval Scale 

Natural 
Detail 2 1 1 3 

Total Rank 21 31 17 33 
Average Rank 1.61 2.38 1.30 2.53 

Final Rank 2 3 1 4 

Table 22 – Final results 

 As one can see, the collated results show that from best to worst, the algorithm of 

choice is MEAM, APE, IMSR, and TPE. One of the goals of this research was to develop 

algorithms that were better than the baseline. From this study, that goal has been 

accomplished. With additional optimization for the hardware it is intended for, the 

frequency-based methods MEAM and IMSR should prove to be a superior algorithm for 

infrared contrast enhancement. 
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Chapter 8 

 

FUTURE RESEARCH 

 

 After completing this thesis, the principal investigator found two areas of research 

that could be tended to in the future. The first area is a deep exploration of how each input 

parameter affects the performance of each infrared contrast enhancement algorithm. Due to 

the nature of the experiment, a single “one size fits all” parameter set was chosen for each 

algorithm to apply to each scene. In actual usage, it might be more beneficial to have a 

parameter or parameters that could be changed by an end user to enable the best display of 

infrared imagery. For example, by applying independent α and β parameters to each of the 

Gaussian fields in the IMSR algorithm, a smoother image might result. 

 The second area that future research can be performed in is in the exploration of 

how small changes to the current algorithms might be beneficial to the algorithm as a 

whole. For example, the principal investigator wanted to see if an adaptive attenuation of 

the highpass information in the MEAM algorithm would lead to a better overall quality. In 

theory, by adaptively attenuating the highpass information, a greater control over the 

contrast among low and high temperature edges can be achieved. 
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Appendix A 

 

ENGINEERING CODE 

 

 This section contains the actual MATLAB code generated for three of the 

algorithms studied: APE, IMSR, and MEAM. Ancillary code that is specific to each 

algorithm is also included. Code for TPE is not included due to the proprietary nature of the 

code used during this study. 

Function: APE 

% 

% APE 

% Author: Seth Weith-Glushko (seth.weithglushko) 

% 

% Purpose:  Applies the APE algorithm to input infrared imagery 

% 

% Inputs:   appdata - a structure containing the application data 

%           histfilter - an array containing the histogram to use in 

%                        calculations 

% 

% Outputs:  y - an array representing the APE-enhanced infrared image 

%           histfilter - an array containing an intermediate histogram 

 

function [y,histfilter,plateau_value,first_frame]=APE(appdata), 

 

    % Setup the parameters values from the input structure 

    inputImage = floor(appdata.Processed.Data / 2^4); 

    windowSize = appdata.Params.WindowSize; 

    infPtFraction = appdata.Params.InfPtThreshold; 

    imageWidth = appdata.Processed.Cols; 

    imageHeight = appdata.Processed.Rows; 

    in_maxValue = 2^12 - 1; 

    out_maxValue = 2^9 - 1; 

    plateau_value = appdata.Resident.PlateauValue; 

    lpf_value = appdata.Params.LPFCoeff; 

    first_frame = appdata.Resident.FirstFrame; 

     

    % Find the histogram of the input image and calculate the normalized 

    % CDF from it 

    linData = reshape(inputImage,[1 imageWidth*imageHeight]); 

    [inputHist,histValues]=hist(linData,0:2^12-1); 

    unscaledCDF = cumsum(inputHist); 

    CDF = unscaledCDF / max(unscaledCDF); 

     

    % Find the indices of the greyscales needed that can be derived  

    % from the CDF 

    i_Min = min(find(inputHist > 0)); 

    i_Max = max(find(inputHist > 0)); 
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    diff = abs(CDF - 0.01); 

    [val,i_0P1] = min(diff); 

    diff = abs(CDF - 0.99); 

    [val,i_0P999] = min(diff); 

    diff = abs(CDF - 0.999); 

    [val,i_0P9999] = min(diff); 

    diff = abs(CDF - 0.25); 

    [val,i_A] = min(diff); 

    diff = abs(CDF - 0.75); 

    [val,i_B] = min(diff); 

    h_max = max(inputHist); 

    h_min = min(inputHist(find(inputHist))); 

     

    % Define the moving average threshold and the floored half of the 

    % desired window size 

    threshold = floor((h_max - h_min) * (infPtFraction / 100)); 

    halfWindowSize = floor(windowSize / 2); 

     

    % Find the first inflection point. To do so, calculate the sum of a 

    % window centered on i_Min in the input histogram. Then, enter a loop  

    % and calculate the sum of a window centered one greyscale higher than 

    % i_Min. Calculate the difference and compare it to the threshold. If 

    % the difference is higher than the threshold, mark the greyscale that 

    % was not just iterated as the first inflection point. 

    prev_slice = sum(inputHist(i_Min-halfWindowSize:i_Min+halfWindowSize)); 

    i = i_Min + 1; 

    while(i < i_A) 

        curr_slice = sum(inputHist(i-halfWindowSize:i+halfWindowSize)); 

        diff = abs(curr_slice - prev_slice); 

        if(diff > threshold) 

            i = i - 1; 

            break; 

        end 

        prev_slice = curr_slice; 

        i = i + 1; 

    end 

    if(i == i_A) 

        i_infA = i - 1; 

    else 

        i_infA = i; 

    end 

     

    % Find the second inflection point. This is done in much the same way 

    % as the first inflection point but the moving window starts at i_Max 

    % and works its way back to i_B. 

    beginBound = i_Max - halfWindowSize; 

    endBound = i_Max + halfWindowSize; 

    if(endBound > numel(inputHist)) 

        endBound = numel(inputHist); 

    end 

    if(beginBound > numel(inputHist)) 

        endBound = numel(inputHist); 

    end 

    if(endBound < 1) 

        endBound = 1; 

    end 

    if(beginBound < 1) 

        beginBound = 1; 

    end 

    prev_slice = sum(inputHist(beginBound:endBound)); 

    i = i_Max - 1; 

    while(i > i_B) 

        beginBound = i - halfWindowSize; 
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        endBound = i + halfWindowSize; 

        if(endBound > numel(inputHist)) 

            endBound = numel(inputHist); 

        end 

        if(beginBound > numel(inputHist)) 

            endBound = numel(inputHist); 

        end 

        if(endBound < 1) 

            endBound = 1; 

        end 

        if(beginBound < 1) 

            beginBound = 1; 

        end 

        curr_slice = sum(inputHist(beginBound:endBound)); 

        diff = abs(curr_slice - prev_slice); 

        if((diff > threshold) && (inputHist(i) < (0.5 * (inputHist(i_Max) - 

inputHist(i_Min))))) 

            i = i - 1; 

            break; 

        end 

        prev_slice = curr_slice; 

        i = i - 1; 

    end 

    if(i == i_B) 

        i_infB = i + 1; 

    else 

        i_infB = i; 

    end 

     

    % Find the total number of pixels that come before i_infA and after 

    % i_infB 

    n_A = sum(inputHist(1:i_infA)); 

    n_B = sum(inputHist(i_infB:end)); 

     

    % Calculate the ratio value 

    N = imageWidth * imageHeight; 

    X = (N - (n_A + n_B)) / (n_A + n_B); 

     

    % Calculate the nominal plateau value 

    firstValue = i_0P9999 - i_infB; 

    secondValue = i_infA - i_0P1; 

    if(firstValue < secondValue) 

        p_nom = (X * n_B) / (histValues(i_infB) - histValues(i_infA)); 

    else 

        p_nom = (X * n_A) / (histValues(i_infB) - histValues(i_infA)); 

    end 

     

    % Calculate the dynamic range of the scene 

    r_d = histValues(i_0P999) - histValues(i_0P1); 

     

    % Calculate the dynamic range factor 

    if(r_d > out_maxValue) 

        f_dr = 1 - (out_maxValue / r_d); 

    else 

        f_dr = 1 - (r_d / out_maxValue); 

    end 

     

    % Calculate the adjustment factor 

    f_ed = 1 - ((histValues(i_A) - histValues(i_0P1)) / (histValues(i_B) - 

histValues(i_0P1))); 

     

    % Calculate the plateau parameter 

    p_a = round(p_nom * f_dr * f_ed); 
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    % Filter the plateau value using temporal low-pass IIR filter 

    if(~first_frame) 

        p_a = floor(((1 - lpf_value) * plateau_value) + (lpf_value * p_a)); 

    end 

    first_frame = 0; 

    if(p_a < 1) 

        p_a = 1; 

    end 

    plateau_value = p_a; 

     

    % Limit the histogram using the plateau parameter 

    clippedHist = min(inputHist, p_a); 

    histfilter = clippedHist; 

     

    % Using the histogram, calculate the CDF and generate a lookup 

    % table to perform histogram equalization 

    unscaledCDF = cumsum(clippedHist); 

    CDF = unscaledCDF / max(unscaledCDF); 

    LUT = zeros((in_maxValue + 1),1); 

    for j=1:(in_maxValue + 1), 

        LUT(j) = floor(CDF(j) * out_maxValue); 

    end 

     

    % Apply the lookup table to the contrast-enhanced image 

    % and return it 

    y = LUT(inputImage+1); 

 
Function: MEAM 

% 

% MEAM 

% Author: Seth Weith-Glushko (seth.weithglushko) 

% 

% Purpose:  Applies the MEAM algorithm to input infrared imagery 

% 

% Inputs:   appdata - a structure containing the application data 

%           histfilter - an array containing the histogram to use in 

%                        calculations 

% 

% Outputs:  y - an array representing the MEAM-enhanced infrared 

%               image 

%           histfilter - an array containing an intermediate histogram 

 

function [y,histfilter]=MEAM(appdata), 

 

    % Setup the parameters values from the input structure 

    inputImage = floor(appdata.Processed.Data / 2^4); 

    filterWidth = appdata.Params.FilterWidth; 

    filterHeight = appdata.Params.FilterHeight; 

    imageWidth = appdata.Processed.Cols; 

    imageHeight = appdata.Processed.Rows; 

    gainOne = appdata.Params.G1; 

    gainTwo = appdata.Params.G2; 

    alpha = appdata.Params.A; 

    beta = appdata.Params.B; 

    gainThreshold = appdata.Params.XP; 

    inputMaxValue = 2^12 - 1; 

    outputMaxValue = 2^9 - 1; 

     

    % Set the output histogram to the histogram of the input image 
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    histfilter = hist(reshape(inputImage,[1 imageWidth*imageHeight]),0:inputMaxValue); 

     

    % Specify an array containing one for each cell value 

    % and use it as a convolution filter to find the lowpass 

    % image 

    averageFilter = ones(filterHeight, filterWidth); 

    lowpassImage = floor((1/(filterHeight * filterWidth))*conv2(inputImage, averageFilter, 

'same')); 

     

    % Subtract the original image from the lowpass image to get 

    % the highpass image 

    highpassImage = inputImage - lowpassImage; 

     

    % Take the absolute value of the image. Find the indices of 

    % the image that fall above and below XP. Apply the gain values 

    % G1 and G2 to those pixels 

    absImage = abs(highpassImage); 

    lowIndices = find(absImage < gainThreshold); 

    highIndices = find(absImage >= gainThreshold); 

    highpassImage(lowIndices) = floor(gainOne * highpassImage(lowIndices)); 

    highpassImage(highIndices) = floor(gainTwo * highpassImage(highIndices)); 

     

    % Use the linear scale algorithm to reduce the dynamic range of the 

    % lowpass image 

    [fl,fh,lowpassImage] = LinearScale(lowpassImage,alpha,beta,outputMaxValue-

30,30,imageWidth,imageHeight); 

     

    % Add the enhanced highpass and lowpass images together 

    sumImage = highpassImage + lowpassImage; 

     

    % Limit the values of the sumImage to be between 0 and 511. Set 

    % the result to y 

    sumImage(find(sumImage < 0)) = 0; 

    sumImage(find(sumImage > 511)) = 511; 

    y = sumImage; 

 
Function: IMSR     

% 

% IMSR 

% Author: Seth Weith-Glushko (seth.weithglushko) 

% 

% Purpose:  Applies the IMSR algorithm to input infrared imagery 

% 

% Inputs:   appdata - a structure containing the application data 

%           histfilter - an array containing an input histogram 

% 

% Outputs:  y - an array representing the IMSR-enhanced infrared 

%               image 

%           histfilter - an array containing an intermediate histogram 

 

function [y,histfilter] = IMSR(appdata, histfilter), 

     

    % Define certain parameters 

    inputImage = floor(appdata.Processed.Data / 2^4); 

    imageWidth = appdata.Processed.Cols; 

    imageHeight = appdata.Processed.Rows; 

    alpha = appdata.Params.Alpha; 

    beta = appdata.Params.Beta; 

    outputMaxValue = 2^9 - 1; 

    inputMaxValue = 2^12 - 1; 
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    % Create a 2D array to hold the final image 

    finalImage = zeros(imageHeight, imageWidth); 

     

    % Find the FFT of the input image 

    fftImage = fft2(inputImage); 

     

    % For each field, create the Gaussian surround with the appropriate 

    % weighting and then apply it to the original image. Then, subtract 

    % the base ten logarithm of the lowpass filtered image with the 

    % base ten logarithm of the original image. Then multiply the result by 

    % the specified weighting. Finally, add this result to the final image. 

    i = 1; 

    while(i <= appdata.Params.NumFields) 

        surround = GetSurround(imageHeight, imageWidth, appdata.Params.GausWeights(i)); 

        lowpassImage = fftshift(real(ifft2(fftImage .* fft2(surround)))); 

        tempImage = AutoGain((inputImage ./ lowpassImage), 2^15); 

        [fl,fh,subtractImage] = LinearScale(floor(tempImage), alpha, beta, 511, 0, 

imageWidth, imageHeight); 

        modulatedImage = appdata.Params.Weights(i) * subtractImage; 

        finalImage = finalImage + modulatedImage; 

        i = i + 1; 

    end 

     

    % Assign the auto-gained output to y 

    y = floor(AutoGain(finalImage, outputMaxValue)); 

     

end 

 
Function: AutoGain 

% 

% AutoGain 

% Author: Seth Weith-Glushko (seth.weithglushko) 

% 

% Purpose:  Applies an automatic gain to an input image 

% 

% Inputs:   inputImage - the 2D array to apply the gain to 

%           outputMaxValue - the maximum pixel value one wishes in the output 

%           image 

% 

% Outputs:  y - an array representing the auto-gained infrared image 

 

function y = AutoGain(inputImage, outputMaxValue) 

 

    % Find the minimum and maximum values of the input image 

    minValue = min(min(inputImage)); 

    maxValue = max(max(inputImage)); 

     

    % Rescale the image into a 0-1 range and multiply it by the maximum 

    % output value to get the auto-gained image 

    tempImage = (inputImage - minValue) / (maxValue - minValue); 

    y = outputMaxValue * tempImage; 

 

end 

 
Function: GetSurround 

% 

% GetSurround 
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% Author: Seth Weith-Glushko (seth.weithglushko) 

% 

% Purpose:  This function will generate an image representative of a 

%           Gaussian function 

% 

% Inputs:   width - a value representing the width of the function to make 

%           height - a value representing the height of the function to 

%           make 

%           stddev - a value specifying the standard deviation of the 

%           function to make 

% 

% Outputs:  outputImage - a 2D array containing the scaled Gaussian function 

 

function outputImage = GetSurround(height, width, stddev) 

 

    % Generate an empty image to hold the Gaussian function 

    gaussian = zeros(height, width); 

     

    % For each pixel within the image, put the value of the Gaussian 

    % function in the pixel. 

    i = 1; 

    j = 1; 

    while(i <= width) 

        while(j <= height) 

            valueX = (i - (width / 2))^2; 

            valueY = ((height / 2) - j)^2; 

            topTerm = -1 * (valueX + valueY); 

            botTerm = stddev ^ 2; 

            gaussian(j,i) = exp(topTerm / botTerm); 

            j = j + 1; 

        end 

        j = 1; 

        i = i + 1; 

    end 

     

    % Add up every pixel within the Gaussian image and find the reciprocal. 

    % Multiply that value by the entire image and return it. 

    recip = 1 / sum(sum(gaussian)); 

    outputImage = recip * gaussian; 

    outputImage = gaussian; 

     

end 

 
Function: LinearScale 

% 

% LinearScale 

% Author: Seth Weith-Glushko (seth.weithglushko) 

% 

% Purpose:  Applies a linear scaling algorithm to an image 

% 

% Inputs:   inputImage - a 2D array containing an image to linearly scale 

%           alpha - a value specifying a percentage of a histogram to 

%                   saturate 

%           beta - a value that controls how much of the image will be 

%                  limited 

%           width - the width of the input image 

%           height - the height of the input image 

%           ymax - a value that specifies the maximum digital count in the 

%                  input image 

%           ymin - a value that specifies the minimum digital count in the 
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%                  input image 

% 

% Outputs:  y - an array representing the linearly scaled image 

%           fl - the calculated low-end gain 

%           fh - the calculated high-end gain 

 

function [fl,fh,y] = LinearScale(inputImage,alpha,beta,ymax,ymin,width,height) 

 

    % Find the histogram of the input image 

    maxValue = max(max(inputImage)); 

    [inputHist,histValues] = hist(reshape(inputImage,[1 width*height]),0:maxValue); 

     

    % Find the scaled CDF of the input image 

    CDF = cumsum(inputHist); 

    CDF = CDF / max(CDF); 

     

    % Find the greyscale value that corresponds to the CDF values of alpha, 

    % 0.5, and 1-alpha (respectively, xa, xm, and xb) 

    [val,ind] = min(abs(CDF - alpha)); 

    xa = histValues(ind); 

    [val,ind] = min(abs(CDF - 0.5)); 

    xm = histValues(ind); 

    [val,ind] = min(abs(CDF - (1 - alpha))); 

    xb = histValues(ind); 

     

    % Calculate all necessary intermediate values (ya, yb, ym, fl, and fh) 

    ya = (ymax * beta) + (ymin * (1 - beta)); 

    yb = ymax - ya; 

    ym = floor((ymax - ymin) / 2); 

    fl = (ym - ya) / (xm - xa); 

    fh = (yb - ym) / (xb - xm); 

    bl = floor(ym - (fl * xm)); 

    bh = floor(ym - (fh * xm)); 

     

    % For each possible greyscale value, calculate the appropriate lookup 

    % table, limiting values between ymin and ymax 

    lut = zeros(1,maxValue+1); 

    i = 1; 

    while(i <= maxValue+1) 

        currValue = i - 1; 

        if(currValue <= xm) 

            lut(1,i) = floor((fl * currValue) + bl); 

        else 

            lut(1,i) = floor((fh * currValue) + bh); 

        end 

        if(lut(1,i) <= ymin) 

            lut(1,i) = ymin; 

        end 

        if(lut(1,i) >= ymax) 

            lut(1,i) = ymax; 

        end 

        i = i + 1; 

    end 

     

    % Apply the LUT and save the result to y 

    y = lut(inputImage + 1); 

 

end 
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Appendix B 

 

ALGORITHM SETTINGS 

 

 This section lists the parameters used in the generation of the test sequences shown 

during the psychophysical trial. 

 

APE 

• w = 9 

• ε = 0.01 

• ψ = 0.3 

 

IMSR 

• S = 3 

• Ws = {0.33, 0.33, 0.33} 

• σs
2 = {4, 40, 200} 

• α = 0.01 

• β = 0 

 

MEAM 

• Filter size: 3x3 pixels 
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• g1 = 10 

• g2 = 0.5 

• xp = 5 

• α = 0.02 

• β = 0 
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