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Abstract: One of the most valuable approaches in spatial analysis for a better understanding of the
hydrological response of a region or a watershed is certainly the analysis of the well-known land
use land cover (LULC) dynamicity. The present case study delves deeper into the analysis of LULC
dynamicity by using digital Landsat TM and Landsat OLI data to classify the Kolkata Metropolitan
Development Authority (KMDA) into seven classes with over 90% classification accuracy for decadal
level assessments of 30 years (for the years 1989, 1999, 2009, and 2019). The change index, the Dematel
method for analyzing the cause-effect relationship among the LULC classes, the Jaccard Similarity
Index for measuring the nature of similarity among the LULC classes, and the Adherence Index for
measuring the consistency of the LULC classes after the transition was used in this study to analyze
the LULC transformation. In more detail, the present study considers how urban land use is altering
at the expense of other land uses. Besides the shifting pattern of mean centers of the LULC classes
through time, also gives a very significant insight into the LULC dynamics over 30 years of span.
The current study of LULC dynamicity and transformation patterns over the 30 years of the KMDA
area is expected to assist land and urban planners, engineers, and administrators in sustainable
decisions and policies to ensure inclusive urbanization that accommodates population growth while
minimizing the impact on potential natural resources within the whole study area.

Keywords: LULC analysis; change index; dematel method; jaccard similarity index; KMDA;
hydrologica watershed modeling

1. Introduction

Since the beginning of civilization, man and nature have had an intimate relationship,
and the rapid increase in population through the decades has led to anthropogenic impact
on land and water resources management. Therefore, planning and management of land
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use pattern and their spatial distribution and change over time play a crucial role in the
sustainable development of any region [1].

One of the most crucial measures of a region’s economic development is the dynamism
of land use and land cover (LULC). Its development demonstrates how human behavior
and needs change over time, as well as how they prioritize some land uses over others. Its
dynamism is associated with several processes, including urbanization, industrialization,
commercialization, and other related ones, each of which has a unique impact on the
current environment. A crucial step in the analysis of the given spatial problem is choosing
the proper spatial-temporal scale for the study of its variations.

Most of the earlier research focuses on using modeling methods to investigate the
pattern of LULC alterations. Jiangle’s potential future land use patterns in China were
predicted by Liping et al. [2] using a Cellular Automata (CA) Markov analysis. Similarly to
this, Hiping et al. [3] have predicted LULC changes in Beijing (China) using the CLUE-S
model in conjunction with a Markov model. Li et al. [4] have used a novel method consisting
of an artificial neural network (ANN)-based CA analysis in a geographic information
system (GIS) platform, to predict the land use pattern over the territory of southern China.

The conventional techniques typically employed for detecting changes in land use
and land cover are expensive, imprecise, and only effective in a small region. Due to the
multiple challenges that regularly occur in environmental research [5–7], new technologies
such as satellite remote sensing and GIS are needed. These technologies enable researchers
to investigate and track the dynamics of natural resources, providing information for en-
vironmental management. Applications of remote sensing analysis can assist planners or
environmental managers in making decisions about sustainability by utilizing a quantita-
tive and model-based approach, in addition to the object-oriented component of the result.
Land use or land cover change is intrinsically related to the interaction of natural and
human impacts on environmental change. Different types of land use and their persistence
are what influence changes in the biosphere’s condition and bio-geochemical cycles [8–10].

Monitoring and modelling of land use/land cover patterns have become more con-
sistent because of the introduction of high spatial resolution satellite imagery as well as
improved image processing and GIS technology over the wide applicability based on
spatio-temporal analysis. The multiple advantages of remote sensing lead to the chance of
covering three decades of land use dynamics along with a higher resolution from satellite
platforms [11–17]. In more detail, Landsat-TM images are freely available and provide
valuable and continuous records of the earth’s surface, as well as a wealth of information
for identifying and monitoring changes in manmade and physical environments over
the last three decades [18,19]. In India, maps at a scale of 1:250,000 are created using the
multitemporal Indian Remote Sensing (IRS) satellites for spatial accounting and trend
monitoring of land usage (NRSA, 1989). By providing a fundamental understanding of the
current land use pattern, satellite remote sensing can assist in determining future improve-
ments and management. In the modern world, satellite remote sensing technology is very
helpful for creating maps of land use and land cover and evaluating them [20]. It is easy to
update an existing database for various land use planning and design purposes due to the
availability of repetitive data. As a result, the compilation of LULC maps and information
has become more effective with the application of geospatial technologies such as remote
sensing, GIS, GPS, and computational approaches [21–24]. Geospatial technology ensures
that real-time data and geospatial information are available and accessible rapidly for
resource mapping. Several change detection algorithms based on remote sensing images
have recently been introduced. A multitude of change detection strategies and algorithms
have been developed and their advantages and disadvantages assessed. The most used
techniques in classification analyses include unsupervised hard classification or clustering,
supervised hard classification, principal components analysis (PCA), hybrid classification,
and fuzzy classification [25–30].
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It is essential to have information about existing land use and land cover over regional
areas in making optimal use of land. It is also important to have the ability to monitor
the changing dynamics of land use because of both increasing population demands and
natural factors shaping the landscape. As a result of the variety of natural and man-made
processes, the land is always transforming. Understanding the evolution of land use/cover
systems and studying spatio-temporal patterns of intra- and inter-land use/cover systems
are still important goals in land use studies [31]. The method of detecting changes in the
process of an object or situation by observing it at different times is known as land use/land
cover change detection [32–34]. According to Macleod and Congation [35], four aspects
of change detection are relevant when monitoring natural resources. The authors entail,
first and primarily, recognizing the changes that have occurred; second, defining the type
of the change; third, evaluating the change’s area extent; and last, rating the change’s
spatial pattern.

The objective of the study is to determine the changing trajectory, stability of each
land use/cover element, identifying the land use/cover elements having alike changing
characteristics and the interaction between the land use/cover elements. Therefore, con-
sidering all these above-mentioned aspects as a baseline, in this present study the status
of land use/cover and its reconfiguration during the last 30 years (1989, 1999, 2009, and
2019) in the Kolkata Metropolitan Development Authority (KMDA) region of West Bengal
has been analyzed in a quantitative manner using geoinformatics. The outcomes of this
study represent a very useful tool for both hydrology and hydraulic researchers in the
assessment of land use/cover impacts on the ecohydrological behavior of both urban and
natural watersheds.

2. Materials and Methods
2.1. Study Area

Kolkata Urban Agglomeration (UA) incorporates the administrative areas of the
Kolkata Metropolitan Development Authority (KMDA) encompassing 3 municipal cor-
porations (Howrah, Kolkata, and Chandan Nagar), 38 municipalities, 77 non-municipal
urban towns, 16 outgrowths, and 445 rural villages [36]. KMDA functions as a statutory
authority under the administrative control of the Urban Development Department of the
Government of the State of West Bengal in India.

As shown in Figure 1, KMDA incorporates 6 districts i.e., Kolkata, Howrah, Hooghly,
Nadia, North 24 Parganas, and South 24 Parganas under its jurisdiction. Kolkata UA is
located between 22◦00′19′′ N and 23◦00′01′′ N latitudes and 88◦00′04′′ E and 88◦00′33′′ E
longitudes with a surface coverage of 1851 km2. The agglomeration is characterized by a
concentrated population and dense settlements along both sides of river Hooghly. It has a
total population of 14.72 million people, with an average density of 7950 persons/km2 [32],
and a annual population growth rate of 1.8% [33–36].

The population dynamics of the region witnessed a massive migration influx, which
has caused many problems such as lack of land, overpopulation, pressures upon the existing
resource potentials, etc., to name a few, and those problems are now leaving its indelible
mark on the anthropogenic landscape over the years. These processes lead to massive
LULC changes over the years, especially in such a metropolitan area as Kolkata [37,38].
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Figure 1. Location map of the study area.

2.2. Data Sources

The study area was covered by Landsat digital data from the TM, ETM+, and OLI/TIRS
sensors for the years 1989, 1999, 2009, and 2019 on the USGS Earth Explorer website
(http://earthexplorer.usgs.gov, accessed on 5 December 2022). The availability of the
Landsat images and their medium to high spatial resolution led to their selection for this
study. The detailed information regarding the data is provided in Table 1. These three
Landsat digital data are referenced to the UTM map projection (Zone 45 N) using WGS84
geodetic datum and are Level-1 Terrain corrected (L1T).

http://earthexplorer.usgs.gov
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Table 1. Detailed features (i.e., metadata) of the datasets analyzed in the present case study, with
different sensors.

Year Sensor Path/Row Band Count Spatial
Resolution

Radiometric
Resolution

1989 TM 138/44, 138/45 7 Optical 30 m,
Thermal 120 m 8 bits

1999 ETM+ 138/44, 138/45 9
Optical 30 m,

Thermal 60 m,
Pan 15 m

8 bits

2009 TM 138/44, 138/45 9
Optical 30 m,

Thermal 60 m,
Pan 15 m

8 bits

2019 OLI, TIRS 138/44, 138/45 11
Optical 30 m,

Thermal 100 m,
Pan 15 m

16 bits

2.2.1. Land Use/Cover Mapping Based on Digital Classification

The maximum likelihood algorithm and the hard classification approach were used
to the FCCs with the best band combinations during the three decades to create the land
use/cover classification. This method assumes that all classes’ probability densities are
equal and is based on the probability density of pixels belonging to a given class. The
maximum likelihood algorithm determines the spectral distance between the measurement
vector for the candidate pixel and the mean vector for each signature within a pixel
cluster, just like other supervised classification techniques. The study area analyzed in
the present study case was classified by the means of this classifier algorithm into the
following seven land use/cover classes: urban built-up area, homestead with the plantation,
fallow land, bare land, waterbody, agricultural land, and vegetation by assigning per-pixel
signatures from the corresponding satellite digital data on the basis of the specific pixel
reflectance value.

Aiming at improving the accuracy of the classification and at reducing the presence
of misclassification errors, post-classification refinement was therefore employed for guar-
anteeing the effectiveness and reliability to this method [39]. Moreover, the use of data
characterized medium spatial resolution such as that of Landsat digital image pixels, is a
very common problem still unsolved in the literature [40]; especially for urbanized surfaces
such as the study area examined in the present study case where a heterogeneous mixture
of features can be recognized [41].

Assessment of classification accuracy of analyzed and classified images of three
decades years was carried out to determine the quality of information derived from the
data by employing the error matrix and Kappa (K-hat) statistics. To use the classified out-
puts in detecting changes, it is essential to perform an accuracy assessment for individual
classification [42]. For the accuracy assessment of land use/cover maps extracted from
satellite images, the stratified random method was used to represent different land cover
classes of the area. The accuracy assessment was carried out using 275 points, based on
ground truth data. The comparison of reference data and classification results was carried
out statistically using error matrices. In addition, a nonparametric Kappa test (K-hat) was
also performed here to measure the extent of classification accuracy as it not only accounts
for diagonal elements but for all the elements in the confusion matrix [43].

Kappa (k) is a measure of agreement between predefined producer ratings and user-
assigned ratings. It is calculated as follows [1–3]:

k =
Pr(a)− Pr(e)

1− Pr(e)
, (1)

where Pr(a) represents the observed agreement, while Pr(e) indicates the chance agreement.
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2.2.2. Reconfiguration Detection of Land Use/Cover Categories through Time

Reconfiguration in this study is defined as the change from one land use/cover element
to another (s). The post-classification outputs were integrated during the re-configuration
study using a GIS platform. Reconfiguration is a local effect within an event. It involves
the movement and change in event [33]. In the context of the temporal land use and land
cover study, the term reconfiguration is pertinent. That would convey the arrangement of
land use and land cover elements in different forms or combinations, actually.

Post-classification reconfiguration has been used successfully by many researchers
in land use/cover dynamics assessments due to its effectiveness in detecting the location,
nature, and rate of changes [44]. The quantitative determination of conversions from one
land use/cover category to another on a “one-to-many” basis and their corresponding area
across the assessed phase were determined using cross-tabulation analysis on a pixel-by-
pixel basis. The three temporal classified maps, each of which had a unique “from–to”
transition class, were consequently combined to produce a new thematic layer.

The change magnitude and direction of land use and land cover elements can be
explained by temporal shifting of mean centers of each LULC element. Plotting of the
weighted mean centers (Xw, Yw) of each LULC element on a temporal basis has seemed
useful for tracking changes in the distribution or comparing the distributions of each
feature. The weighted mean centers have been calculated as [6–8]:

Xw =
∑n

i=1 wixi
∑n

i=1 wi
(2)

Yw =
∑n

i=1 wiyi
∑n

i=1 wi
(3)

where wi is the weight of ith element and xi, yi are the x and y coordinate of the ith element.
Besides this, the rate of change of LULC elements is an important indicator that

expresses the pace at which the LULC elements change either by expansion or as being
encroached. The higher the positive value, the higher the pace to be expanded and the
higher the negative value, the higher the areal loss as being encroached.

On the other hand, the value of it as “0” or within 0 to 1 is indicating the stability or
near to stable state. In this present study, the rate of change in area for each land use/cover
class is calculated using the following formula [8,9]:

Ci =
(Wei −Wbi)

Wbi
×
(

1
t

)
× 100, (4)

where Ci is the rate of change of impervious surface during the study phase, Wei and Wbi
are impervious surface area or percentage at the end and beginning of the study phase,
respectively, t is the length of the study phase measured in years.

2.2.3. Calculation of Change Index

Such land use and land cover reconfiguration enumeration have provided effective
inputs to calculate the transferred index T1 and transformed index T2. Transferred index T1
is the quantitative explanation of fractional area transferred from a specific LULC element
to other LULC elements within the total studied span retaining fractional unchanged
area. Whereas the transformed index (T2) is quite a straightforward quantitative temporal
approach. It is a quantitative expression of fractional area transformed into a specific
LULC element from the other LULC elements within the studied span. Both indices can be
calculated using Equations (2) and (3) [4–7]:

T1 =
∑n

i=1(A− ai)

∑n
i=1 ai

1
aj

1
t

, (5)
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where A is the total area, ai is the fractional area transferred from the ith LULC element
in the beginning year to other LULC elements in the ending year, and j is the fractional
unchanged LULC element in the ending year [4–7]:

T2 = ∑n
i=1

aei
abi

1
t

, (6)

where the fractional area of different LULC elements aei has transformed into a specific
LULC element abi from the beginning year to the ending year.

Finally, the so-called change index CI can be calculated as follows by the ratio between
T1 and T2 [9–11]:

CI =
T1

T2
(7)

2.2.4. Decision-Making Trial and Evaluation Laboratory (DEMATEL) Methodology

An extremely widespread methodology used for locating cause-and-effect chain el-
ements in complex systems is represented by the so-called Decision-making trial and
evaluation laboratory (hereinafter referred to as DEMATEL). In more detail, it deals with
the assessment of interdependent interactions among components and identifying the
significant ones using a visual structural model, and numerous studies on the use of
DEMATEL have been undertaken in the past ten years.

This kind approach makes use of impact relation diagrams to identify the key com-
ponents of a complex structural system as well as matrices to transform interdependency
relationships into a cause-and-effect group. The formulating steps of DEMATEL are as
follows:

i. Finding the direct-relation (Average) matrix:

First, each respondent was asked to evaluate the direct influence between any two
factors by an integer score from 0–4 representing 0 as no influence, 1 indicates low influence,
2 indicates medium influence, 3 indicates high influence, and 4 indicates very high influence.

The notation of xij indicates the degree to which the respondent believes factor i affects
factor. For i = j, the diagonal elements are set to zero. For each respondent, a n × n
non-negative matrix can be established as follows [14–16]:

xk = xk
i,j, (8)

where k is the number of respondents with 1 ≤ k ≤ H, and n represents the number of
factors. Thus, X1, X2, X3, . . . ., XH are the matrices from H respondents. To incorporate all
opinions from H respondents, the average matrix (A) = [aij] can be properly constructed as
follows [14–16]:

A =
[
aij
]
=

1
H ∑H

k=1 xk
i,j. (9)

ii. Calculation of the normalized initial direct-relation matrix:

Normalized initial direct-relation matrix D can be calculated by [14–16]:

D = mA, (10)

where m = min
(

1
maxi ∑n

j=1 aij
, 1

maxj ∑n
j=1 aij

)
with i, j ∈ {1, 2, . . . , n}, and element belonging

to matrix D falls between zero and one.

iii. Calculation of total relation matrix:

The total-influence matrix T is then obtained by utilizing Equation (11), in which, I is
an n × n identity matrix. The tij element summarizes the indirect effects that factor i had on
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factor j, and then the T matrix reflects the overall relationship between each pair of system
factors [17–20]:

T = lim
m→∞

(D + D2 + . . . + Dm)

= ∑∞
m=1 Di,

(11)

where ∑∞
m=1 Di

= D1 + D2 + . . . + Dm

= D
(

I + D1 + D2 + . . . + Dm−1)
= D(I − D)−1(I − D)

(
I + D1 + D2 + . . . + Dm−1)

= D(I − D)−1(1− D)m

T = D(I − D)−1

iv. Calculation of Influential relational map (IRM):

At this step, the vectors R and C, representing the sum of the rows and the sum of the
columns from the total-influence matrix T, are defined by the following formulas [17–20]:

R = [ri]n×1 =
[
∑n

j=1 tij

]
n×1

(12)

C =
[
cj
]

1×n =
[
∑n

i=1 tij

]
n×1

(13)

Here [ri]n×1 demonstrates the total effects, both direct and indirect, given by criterion
i to the other criteria j = 1, 2, . . . , n. Similarly, [ri]n×1 represents total effects, direct and
indirect, received by criterion j from the other criteria i = 1, 2, . . . , n. The sum (R + C)
shows the total effects given and received by factor i. That is, (R + C) indicates the degree of
importance that factor i plays in the entire system. On the contrary, the difference (R − C)
depicts the net effect that factor i contributes to the system. Specifically, if (R− C) is positive,
factor i is a net cause and if (R − C) is negative, factor i is a net effect.

In this present study case, DEMATEL has been used to enumerate the cause-and-effect
relation between the LULC elements, which leads to the land use/cover reconfiguration.

2.2.5. Jaccard Similarity Index

The Jaccard index, also known as the Jaccard similarity coefficient, is a statistic that is
used to determine how similar sample sets are (A and B). The size of the intersection divided
by the size of the union of the sample sets is formally defined as the size of the intersection
divided by the size of the union of the sample sets, by emphasizing the similarity between
finite sample sets. The mathematical representation of the index is written as [21,22]:

J(A, B) =
| A ∩ B |
| A ∪ B | =

| A ∩ B |
| A | + | B | − | A ∪ B | . (14)

The Jaccard index is essentially the number in both sets, divided by the number in
either set, multiplied by 100. This will produce a percentage measurement of similarity
between the two sample sets.

2.2.6. Adherence Index

The Adherence index is a metric that shows how much of each land use/cover category
had not transitioned to another LULC category. The percent consistency of any land
use/cover element after the transition is represented by this index. It is the ratio of the land
use/cover area that had not changed Auc to the mean of the area at the beginning Ab and
ending year Ae associated with that specific land use/cover element [22,23]:

Adherence Index =
Auc

Ab+Ae
2

(15)



Remote Sens. 2023, 15, 959 9 of 23

3. Results and Discussion
3.1. Status of Land Use/Cover Classification

The classified LULC maps of the study area corresponding to 1989, 1999, 2009, and
2019 are illustrated in Figure 2.
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Figure 2. Land use and Land cover map corresponding to the study area for the years 1989, 1999,
2009, and 2019.

The achieved classification accuracies were respectively 98%, 98%, 95%, and 95%, and
the overall kappa statistics were 0.98, 0.96, 0.96, and 0.91 for the classification for 1989, 1999,
2009, and 2019 images, respectively. In the land use/cover classifications for the examined
four years, user’s and producer’s accuracies of individual classes were extremely high,
ranging between 81% and 99%, and 90% and 99% respectively (see Tables 2–5).
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Table 2. Contingency matrix for land use and land cover, 1989.

Data Urban
Built-Up

Water
Body/River Vegetation Bare

Land
Fallow
Land

Home
Stead with
Plantation

Agricultural
Land Row Total

Urban built-up 5314 35 0 0 415 0 0 5770

Water body/river 2 4102 0 0 0 0 0 4104

Vegetation 0 1 2883 0 0 60 2 2046

Bare land 0 0 0 2152 39 3 0 2194

Fallow land 684 13 0 236 2139 8 0 3080

Home stead with
plantation 0 0 93 0 36 2233 1 2363

Agricultural land 0 0 16 10 0 0 576 602

Column Total 6000 4151 2992 2398 2635 2304 579 21,059

Table 3. Contingency matrix for land use and land cover, 1999.

Data Urban
Built-Up

Water
Body/River Vegetation Bare

Land
Fallow
Land

Home
Stead with
Plantation

Agricultural
Land Row Total

Urban built-up 5429 40 0 0 415 0 0 5884

Water body/river 2 4602 0 0 0 0 0 4604

Vegetation 0 1 2083 0 0 60 2 2146

Bare land 0 0 0 2172 39 3 0 2194

Fallow land 684 13 0 236 2639 8 0 3580

Home stead with
plantation 0 0 93 0 36 2243 1 2373

Agricultural land 0 0 16 10 0 0 676 702

Column Total 6000 4151 2992 2398 2635 2304 579 21,483

Table 4. Contingency matrix for land use and land cover, 2009.

Data Urban
Built-Up

Water
Body/River Vegetation Bare

Land
Fallow
Land

Home
Stead with
Plantation

Agricultural
Land Row Total

Urban built-up 5731 40 0 0 415 0 0 6186

Water body/river 2 4611 0 0 0 0 0 4613

Vegetation 0 1 1183 0 0 60 2 1246

Bare land 0 0 0 2872 39 3 0 2914

Fallow land 684 13 0 236 2639 8 0 3580

Home stead with
plantation 0 0 93 0 36 2143 1 2273

Agricultural land 0 0 16 10 0 0 684 710

Column Total 6000 4151 2992 2398 2635 2304 579 21,522
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Table 5. Contingency matrix for land use and land cover, 2019.

Data Urban
Built-Up

Water
Body/River Vegetation Bare

Land
Fallow
Land

Home
Stead with
Plantation

Agricultural
Land Row Total

Urban built-up 6531 49 0 0 410 0 0 6990

Water body/river 2 4611 0 0 0 0 0 4613

Vegetation 0 1 1083 0 0 60 2 1146

Bare land 0 0 0 2072 39 3 0 2114

Fallow land 684 13 0 236 2645 8 0 3586

Home stead with
plantation 0 0 93 0 36 1943 1 2073

Agricultural land 0 0 16 10 0 0 884 910

Column Total 7217 4674 1192 2318 3130 2014 887 21,432

According to Li et al. [45] among others, an accurate classification should have an
overall classification accuracy of 92% and kappa statistics above 0.9, which were successfully
achieved in the present study.

3.2. Land Use/Cover Scenario

The classification area statistics are summarized in Table 6. The classified areas were
measured by multiplying the count of pixels per class with a spatial resolution of remote
sensing data (i.e., 30 m), in which the pixel counts were determined after applying post-
classification analysis.

Table 6. Temporal areal account on LULC elements.

Class Name
Area in

km2
Area in

Percentage
Area in

km2
Area in

Percentage
Area in

km2
Area in

Percentage
Area in

km2
Area in

Percentage

1989 (km2) 1989 (%) 1999 (km2) 1999 (%) 2009 (km2) 2009 (%) 2019 (km2) 2019 (%)

Agricultural land 104.40 5.820 234.68 13.08 311.80 17.38 189.20 10.54

Bare land 388.00 21.62 194.70 10.85 137.76 7.68 206.66 11.52

Urban built-up area 362.71 20.21 473.36 26.38 493.85 27.53 539.10 30.05

Fallow land 62.88 3.50 101.54 5.66 76.45 4.26 124.74 6.95

Vegetation 182.66 10.18 187.50 10.45 224.30 12.50 174.66 9.73

Homestead with
plantation 574.89 32.04 477.75 26.632 370.54 20.65 351.18 19.57

Water bodies 118.33 6.59 124.33 6.93 179.15 9.98 208.32 11.61

The data reported in Table 6 reveal that in 1989, about 5.82% (104.40 km2) area
of the KMDA region was under agricultural land, 21.63% (388 km2) under bare land,
20.22% (362.71 km2) under built-up area, 3.51% (62.88 km2) under fallow land, 10.18%
(182.66 km2) under vegetation, 32.05% (572.89 km2) under homestead with plantation, and
6.60% (118.33 km2) under water body. During 1999 the area under these land categories
was found about 13.08% (234.68 km2) under agricultural land, 10.85% (194.70 km2) under
bare land, 26.39% (473.36 km2) under built-up area, 5.66% (101.54 km2) under fallow land,
10.45% (187.50 km2) under vegetation, 26.63% (477.75 km2) under homestead with planta-
tion, and 6.93% (124.33 km2) under water body. During 2009, the area under these land
categories was found about 17.38% (311.80 km2) under agricultural land,7.68% (137.76 km2)
under bare land, 27.53% (493.85 km2) under built-up area, 4.26% (76.45 km2) under fallow
land, 12.50% (224.30 km2) under vegetation, 20.66% (370.54 km2) under homestead with
plantation, and 9.99% (179.15 km2) under water body. Finally, during 2019 the area un-
der these land categories was found about 10.55% (189.20 km2) under agricultural land,
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11.52% (206.66 km2) under bare land, 30.05% (539.10 km2) under built-up area, 6.95%
(124.74 km2) under fallow land, 9.74% (174.66 km2) under vegetation, 19.58% (351.18 km2)
under homestead with plantation, and 11.61% (208.32 km2) under water body as shown in
Figure 3.
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3.3. Land Use-Land Cover Changes and Reconfiguration
3.3.1. Temporal Shifting of Mean Centers of Each LULC Element

The post-classification comparison method has been applied in this study, which
is the most adopted approach to detect the spatial as well as the areal change of LULC
elements [46–53].

The plot of the weighted mean centers of each LULC element on a temporal basis has
seemed useful for tracking changes in the distribution or comparing the distributions of
each feature, as shown in Figure 4.
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Figure 4 shows that within 30 years of span the agricultural land, bare land, urban built-
up, fallow land, vegetation, homestead with plantation and water bodies have shifted by
10.8 km north-westward, 6.0 km northward, 5.64 km southward, 13.47 km south-westward,
7.32 km northward, 1.51 km eastward and 3.22 km south-eastward, respectively, as shown
in Table 7.

Table 7. Shifting distances (expressed in km) and directions of each LULC element.

LULC Elements 1989 to 1999 1999 to 2009 2009 to 2019 1989 to 2019

Agricultural land 9.67 (NW) 1.48 (NE) 1.64 (W) 10.8 (NW)

Bare land 2.63 (E) 3.49 (NW) 3.55 (NE) 6.00 (N)

Urban built-up area 2.36 (SW) 2.41 (S) 1.07 (SW) 5.64 (S)

Fallow land 7.13 (S) 12.29 (SE) 9.44 (W) 13.47 (SW)

Vegetation 4.72 (NE) 3.41 (NW) 4.11 (NE) 7.32 (N)

Homestead with
plantation 1.58 (S) 3.04 (NE) 1.57 (S) 1.51 (E)

Water bodies 0.23 (NE) 1.99 (N) 4.21 (S) 3.22 (SE)
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Within this span, the fallow land has shifted by the longest distance (expressed in
Table 4 in km) followed by agricultural land; minimum shifting distance is seen for the
homestead with plantation. Apart from the overall scenario, if the total span is studied
under three quarters, (1989 to 1999, 1999 to 2000, and 2009 to 2019) in the first phase,
maximum transition has happened with agricultural land so that it has shifted by maximum
distance (9.67 km northward) and minimum shifting distance is seen for water (0.23 km
north-eastward direction). Whereas in the rest of the two spans, maximum shifting is seen
for the fallow land (12.29 km south-eastward and 9.44 km westward in the second and
last phase respectively), though in the last phase it is seen to be decreased and the shifting
distance has seen to be minimized also. The analysis of LULC areal transition focuses on
the fact that the mean centers shifting distance is seen to be minimized gradually, especially
for the agricultural land and the fallow land, but the transition effects are seen on bare land,
HSP, vegetation, and water in the span of 1999 to 2009 and vegetation and water in the span
of 2009 to 2019 as their shifting distance has increased [54–60]. However, a noteworthy fact
can be established from the explanation that within the 30 years of span, such mean enters
of each LULC element have shifted within 13.5 km from their prior locations. Therefore, it
can be concluded that maximum LULC dynamicity has been experienced by the 13.5 km
area under KMDA. Among all these mean centers shifting about the land use /cover
dynamicity, there are some similarities such as mean center shifting viz LULC dynamicity.
As shown in Table 8, implementing Jaccard Similarity Index similar nature in mean center
shifting of respective LULC elements has been established. Here the similarity index value
greater than or equal to 0.5 has been considered significant.

Table 8. Jaccard similarity index values per LULC element.

Agricultural
Land

Bare
Land

Urban
Built-up Area

Fallow
Land Vegetation Homestead with

Plantation
Water
Bodies

Agricultural land 1.000 0.558 0.523 0.565 0.746 0.200 0.234

Bare land 1.000 0.874 0.483 0.928 0.537 0.721

Urban built-up area 1.000 0.345 0.777 0.537 0.578

Fallow land 1.000 0.585 0.207 0.276

Vegetation 1.000 0.413 0.556

Homestead with
plantation 1.000 0.583

Water bodies 1.000

From Table 8 it is seen that the vegetation cover of the study area is the most dynamic
of all and that is quite like the land use/cover such as agricultural land, built-up areas,
bare land, and fallow land. The vegetation cover dynamics are the most alike the bare land
(0.928) followed by built-up areas (0.77), agricultural land (0.74), and fallow land (0.58)
respectively. On the other hand, strong similarities are seen between built-up areas and
bare land (0.87) and between the water body and bare land (0.72).

Irrespective of aforesaid LULC elements, a near similarity in dynamicity can also be
seen between the rest of the LULC elements. Agricultural land dynamics have a nearness
with bare land (0.55), built-up (0.52), and fallow land (0.56) dynamicity. Bare land dynamics
are found to be nearly similar to homestead with plantation (0.53). Built-up area dynamics
have near similarity with the dynamics of homestead with plantation and water body by
the similarity index value of 0.53 and 0.57 respectively.

The dynamics of both the vegetation area and homestead with plantation have the
nearness to the water body dynamics by the index value of 0.55 and 0.58, respectively.

3.3.2. Study on the Annual Rate of Areal Change and Areal Loss and Gain Temporally

It has been revealed from Table 9 that within the overall span of 30 years, the maximum
areal increase has been observed for the fallow land at the rate of 3.64% followed by
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agricultural land, water bodies, and built-up area at the rate of 3%, 2.81%, and 1.80%
respectively. Whereas maximum areal encroachment has been observed in the case of bare
land at the rate of 1.73%, followed by Homestead with plantation and vegetation at the rate
of 1.41% and 0.16% respectively [61–67].

Table 9. Rate of changes (in percentage, %) in LULC areas over the time.

Class Name 1989 to 1999 1999 to 2009 2009 to 2019

Agricultural land 13.865 3.651 −4.369

Bare land −5.535 −3.249 5.557

Urban built-up area 3.390 0.481 1.018

Fallow land 6.830 −2.745 7.017

Vegetation 0.295 2.181 −2.459

Homestead with plantation −1.878 −2.493 −0.580

Water bodies 0.564 4.899 1.809

Though throughout the study built-up and water body has shown consistency with
respect to the areal expansion, the rate of expansion is not alike. In the span of 1989 to 1999
built-up area has been seen to be expanded at a maximum rate (3.39%). But such expansion
has a slowdown in the span of 1999 to 2009 at 0.48%. A little bit of expansion has taken
place in this phase (20.49 km2 or 1.14%), though that has been seen to be increased at the
rate of 1.01%. On the other hand, water bodies have been observed to be consistent to some
extent throughout the three phases. The rates of areal increase accounted for 0.56%, 4.89%,
and 1.80% respectively. Another consistency is seen for homestead with plantation with
respect to the decreasing areal extent.

Throughout the three spans they have been seen to be decreased by the rate of 1.87%,
2.49%, and 0.58% respectively. However apart from the aforesaid LULC elements, from
1989 to 1999 maximum rate of areal expansion is seen for the agricultural land (13.86%),
followed by fallow land (6.83%). Whereas vegetation areas have almost no change (the rate
of change is 0.29%). Apart from those LULC elements, for agricultural land and vegetation,
a decreasing rate of areal expansion is evident. In the case of both, despite having areal
expansion at the rate of 3.65% and 2.18% in the span of 1999 to 2009, those are seen to be
decreased by 4.36% and 2.49% in the span of 2009 to 2019 respectively. Irrespective of all
the elements, bare land area has decreased at decreasing rate of 5.53% and 3.24% in the
span of 1989 to 1999 and 1999 to 2009 respectively though that has increased at the rate
of 5.55% in the span of 2009 to 2019. On the other hand, fallow land area is seen to be
increased in the spans of 1989 to 1999 and 1999 to 2019 at the rates of 6.83% and 7.01%
respectively followed by a decrease in the area at the rate of 2.74% in the span of 1999 to
2009. LULC areal dynamics is the function of areal loss and gain temporally. The gain is the
expression of expansion of any LULC element at the cost of the others; whereas loss is the
encroachment of any LULC element by others. The post-classification comparisons between
temporal areal databases can provide an apparent insight regarding the areal losses and
gains of different LULC elements. Such areal gains and losses are an effective outcome
of the interaction between each LULC element. A negative correlation between each can
express the LULC areal growth and encroachment as well. As emerges from the detailed
analysis of Table 10, a high negative correlation can be observed between agricultural
land and bare land (−0.93), built-up and bare land (−0.85), homestead with plantation
and built-up (−0.98), and homestead with plantation and water bodies (−0.93). Besides
the interaction between homestead with plantation and fallow land (−0.63), vegetation
and bare land (−0.54) are worthy enough to be mentioned. For those cases, each LULC is
experiencing a growth in the area at the cost of others.
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Table 10. Correlation statistics between LULC temporal areas.

Agricultural
Land

Bare
Land

Urban
Built-up Area

Fallow
Land Vegetation Homestead with

Plantation
Water
Bodies

Agricultural land 1

Bare land −0.938 1

Urban built-up area 0.636 −0.856 1

Fallow land 0.147 −0.479 0.819 1

Vegetation 0.791 −0.544 0.114 −0.465 1

Homestead with
plantation −0.687 0.843 −0.948 −0.632 −0.312 1

Water bodies 0.394 −0.579 0.830 0.601 0.116 −0.927 1

Although it is evident from Tables 11 and 12 that, within the 30 years of span, urban
area has gained the maximum areas (290 km2) and homestead with plantation has expe-
rienced the maximum areal loss (404.44 km2), they did not remain same. In the period
1989 to 1999, maximum areal gain and loss were of built-up area (196.35 km2) and bare
land (269.37 km2) respectively; from 1999 to 2009, maximum areal gain and loss were of
agricultural land (209.88 km2) and homestead with plantation (254.66 km2) respectively;
and within 2009 to 2019, the maximum areal gain and loss were that of the homestead with
plantation (204.25 km2) and agricultural land (227.04 km2).

Table 11. Account for areal gains (km2) per LULC elements over the time.

Gain Agricultural
Land

Bare
Land

Urban
Built-up Area

Fallow
Land Vegetation Homestead with

Plantation
Water
Bodies

1989 to 1999 192.79 76.08 196.35 76.63 96.30 152.72 27.06

1999 to 2009 209.88 90.02 151.85 56.50 189.56 147.46 73.32

2009 to 2019 104.44 174.15 174.15 107.80 204.25 165.22 78.88

1989 to 2019 171.78 128.94 290.01 115.06 151.44 180.73 112.58

Table 12. Account for areal loss (km2) per LULC elements over the time.

Loss Agricultural
Land

Bare
Land

Urban
Built-up Area

Fallow
Land Vegetation Homestead with

Plantation
Water
Bodies

1989 to 1999 62.51 269.38 85.70 37.98 91.46 249.87 21.06

1999 to 2009 132.76 146.96 131.35 81.59 152.76 254.66 18.49

2009 to 2019 227.05 96.32 128.90 59.52 150.46 223.61 49.72

1989 to 2019 86.98 310.27 113.61 53.20 159.44 404.44 22.59

The transition matrix (Table 13, Table 14, Table 15, Table 16) is another useful method
for expressing the areal gain and loss of LULC elements, from which areal losses and gains
per LULC element may be derived from the corresponding rows and columns values.
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Table 13. Transition matrix (1989 to 2019).

1989 to 2019 Agricultural
Land

Bare
Land

Urban
Built-up Area

Fallow
Land Vegetation Homestead with

Plantation
Water
Bodies

Agricultural land 17.424 13.124 21.951 12.045 9.320 18.961 11.579

Bare land 47.467 77.730 90.308 37.664 33.309 78.743 22.775

Built-up 11.561 29.020 249.099 19.927 9.969 30.773 12.357

Fallow land 9.719 16.569 12.024 9.681 3.308 8.273 3.310

Vegetation 39.747 12.06 20.759 8.911 23.222 40.349 37.608

Homestead with
plantation 56.908 55.384 139.823 34.369 93.008 170.454 24.949

Water bodies 6.371 2.777 5.141 2.141 2.525 3.630 95.742

Table 14. Transition matrix (1989 to 1999).

1989 to 1999 Agricultural
Land

Bare
Land

Urban
Built up Area

Fallow
Land Vegetation Homestead with

Plantation
Water
Bodies

Agricultural land 41.893 15.138 8.19 10.279 15.433 12.492 0.979

Bare land 88.299 118.623 58.199 45.847 30.202 44.591 2.237

Built-up 11.292 15.798 277.014 9.920 5.121 37.337 6.225

Fallow land 5.553 19.476 5.643 24.909 3.969 2.730 0.603

Vegetation 19.921 5.631 4.937 2.601 91.197 49.822 8.548

Homestead with
plantation 65.169 18.956 114.575 5.479 37.218 325.03 8.469

Water bodies 2.558 1.078 4.805 2.505 4.358 5.749 97.274

Table 15. Transition matrix (1999 to 2009).

1999 to 2009 Agricultural
Land

Bare
Land

Urban
Built-up Area

Fallow
Land Vegetation Homestead with

Plantation
Water
Bodies

Agricultural land 101.923 31.567 30.131 9.998 29.328 25.560 6.180

Bare land 47.952 47.741 40.276 29.166 8.069 17.122 4.377

Built-up 20.912 5.875 342.010 5.180 14.865 76.991 7.530

Fallow land 19.784 32.307 21.280 19.957 1.900 3.430 2.886

Vegetation 68.279 10.793 8.565 7.174 34.745 21.441 36.505

Homestead with
plantation 49.468 9.144 45.532 4.212 130.472 223.088 15.837

Water bodies 3.487 0.338 6.063 0.770 4.926 2.912 105.843
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Table 16. Transition matrix (2009 to 2019).

2009 to 2019 Agricultural
Land

Bare
Land

Urban
Built-up Area

Fallow
Land Vegetation Homestead with

Plantation
Water
Bodies

Agricultural land 84.757 39.714 37.151 24.535 34.960 69.594 21.093

Bare land 19.670 41.446 22.511 19.274 5.684 21.827 7.352

Built-up 10.938 40.183 364.962 39.007 3.207 22.556 13.005

Vegetation 27.451 10.385 15.675 5.425 73.847 75.120 16.403

Fallow land 4.921 21.417 19.229 16.937 1.333 4.971 7.648

Homestead with
plantation 27.281 46.509 69.269 16.047 51.118 146.936 13.383

Water bodies 14.182 7.011 10.310 3.516 4.516 10.183 129.440

3.3.3. Study on Change Index Per LULC Elements

The post-classification LULC transition matrix is a commonly adopted approach
to represent the LULC reconfiguration. This is basically a cross-tabulation matrix that
expresses detailed “from-to” change class information. From the transition matrix (Table 17),
three types of information can be provided as the most dominant land use element which
is effective, the most affected category, and the amount of persistent area. As per the areal
account of the LULC elements registered in the transition matrix (Table 17) for 30 years, the
urban built-up area is seen to be most dominant at about 290.01 km2 (16%) area of the total
area (1793.89 km2), reconfigured as urban built-up. Whereas homestead with plantation is
the most affected category as out of its total area, 70% (404.44 km2) has transformed into an
urban built-up area. However, apart from all these conversions out of the whole, 35.76%
(643.35 km2) area has shown persistence within the span of the study period.

Table 17. Land use and land cover transferred index and transformed index.

Land Use/Cover Category
Transferred Transformed

1989 to 1999 1999 to 2009 2009 to 2019 1989 to 1999 1999 to 2009 2009 to 2019

Agricultural land 0.021 0.015 0.008 0.034 0.058 0.115

Bare land 0.006 0.006 0.018 0.200 0.069 0.049

Built-up 0.007 0.037 0.006 0.045 0.047 0.097

Fallow land 0.036 0.032 0.040 0.015 0.034 0.027

Forest 0.012 0.005 0.011 0.042 0.077 0.056

Homestead with
plantation 0.004 0.009 0.006 0.135 0.122 0.108

Water bodies 0.034 0.018 0.016 0.011 0.007 0.021

The LULC reconfiguration is a two-fold process, one element is “transferring” to
others and many elements are “transforming” to one. Both processes in combination imply
a fact as “change”. Therefore, in the LULC reconfiguration phenomenon, the “from-to”
change can be renamed as “transfer” and “transform” respectively. From Table 9, it is
seen that the maximum areas of existing LULC elements in 1989 have transformed to
urban built-up in 2019 and hence the “transformed index” (Table 17) of urban built-up area
has been accounted as 0.083 which is the highest. Whereas the vegetation area has been
observed to have undergone maximum areal encroachment by the other LULC elements
especially homestead with plantation (40.35 km2). The transfer index (Table 10) of the
vegetation has been accounted as 0.023. However, such a pattern of class conversion viz.,
class reconfiguration on a “from–to” basis has changed the LULC nature from 1989 to 2019
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and the vegetation cover has experienced the maximum change as indicated by the highest
index value of 1.540 and agricultural land use has the lowest index value as 0.065 (Table 18).

Table 18. Land use and land cover change index and adherence index.

Land Use/Cover Category
Change Index Adherence Index

1989 to 1999 1999 to 2009 2009 to 2019 1989 to 1999 1999 to 2009 2009 to 2019

Agricultural land 0.634 0.249 0.075 24.709 37.301 33.835

Bare land 0.032 0.087 0.376 40.715 28.719 24.066

Built-up 0.149 0.789 0.062 66.265 70.720 70.663

Fallow land 2.383 0.965 1.455 30.297 22.423 16.836

Vegetation 0.287 0.059 0.192 49.275 16.875 37.019

Homestead with
plantation 0.029 0.077 0.056 61.754 52.597 40.718

Water bodies 2.944 2.642 0.756 80.171 69.749 66.811

However very specifically, from 1989 to 1999 water bodies had the maximum change
index (2.94) and homestead with plantation had the minimum (0.029), within 1999 to
2009 the maximum and minimum change index were associated with water bodies (2.64)
and vegetation (0.05) respectively and within 1999 to 2009 the maximum and minimum
change index were for fallow land (1.45) and homestead with plantation (0.05) respectively
(Table 18).

3.3.4. Identification of Cause-Effect Chain among LULC Elements

The LULC change associated with the study area for the 30 years of the span is an
obvious outcome of the interaction between LULC elements as revealed by the transition
matrix and the correlation table. From the overall analysis, it has been noted that a particular
LULC element is changing in response to others. Some are expanding at the cost of others
causing definite areal gains and losses.

Therefore, Dematel method had been ideally applied to deduce the cause-and-effect
chain. As per this method, the highest Ri + Cj value (Table 19) of bare land is indicative
of its higher degree of relationship with the other. On the other hand, the positive values
of Ri − Cj for built-up and HSP is indicating those as the causal elements, whereas the
negative values of the rest of the elements are indicating those as the effect.

Table 19. Cause and effect chain calculated from DEMATEL model.

LULC ri cj (ri + cj) (ri − cj)

Agricultural land 0.564 0.606 1.169 −0.042

Bare land 0.976 0.464 1.44 0.513

Urban built-up 0.694 0.3 0.994 0.394

Fallow land 0.348 0.856 1.205 −0.508

vegetation 0.12 1.32 1.44 −1.2

Homestead with plantation 1.512 0.133 1.645 1.378

Water 0.248 0.782 1.03 −0.534

The plotting of Ri − Cj against Ri + Cj (Figure 5) depicts the LULC positions as per
cause-and-effect assignments.
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Therefore, apart from the inter land use/cover element interaction, it can be particu-
larized that population growth and related urban expansion are the basic driver behind
such land use/cover change viz., reconfiguration. Over time, KMDA has seen continual
built-up and mixed built-up (that has been defined as homestead with plantation) spread
at the expense of non-built-up land covering. However, there was a significant difference
in such growth between the KMDA-urban and KMDA-non-urban settlement (that has
been pointed as homestead with plantation). As a result of the peripheral expansion in
KMDA-non-urban areas, the urban built-up and mixed built-up areas increased signifi-
cantly. Urban built-up cover grew at a positive rate, whereas mixed built-up cover grew at
a negative rate within the KMDA region. This can be explained by the growth of census
towns within the area under KMDA. According to the Census of India data, the number
of Census Towns had considerably increased from 113 in the year of 1991 to 449 in the
year of 2011. Moreover, the global increase in urban population from 1991 to 2011 (Census
of India) is a piece of evident information concerning urban growth as the driver behind
land use/cover reconfiguration. As per Census of India data from 1991 to 2011, the total
urban population of KMDA had increased from 10,481,539 to 12,969,556 out of which
in 38 municipalities that had increased from 500,242 in 1991 to 7,228,920 in 2011 and in
3 Municipal corporations that had increased from 5,481,297 in 1991 to 5,740,636 in 2011.

4. Conclusions

In regard to the various observations and existing literatures related to LULC study, it
can be generalized that changes in LULC pattern is inevitable. In any urbanized area with
the continual urbanization process and associated essential infrastructural development,
the changing LULC is very common. From the overall study, it is evident that the LULC in
the KMDA area have changed significantly over the last 30 years. According to relevant
quantitative assessments on temporal LULC scenario, the increase in urban built-up area
was leading. The expansion is notably centered on the fringes of cities. The growth rate
in southern and northeastern Kolkata has been very high in recent decades. As a result, a
substantial amount of previously undeveloped land is now used for residential purposes.
Cities are generally expanding toward semi-urban areas due to a lack of open space in the
core areas. As the consequences of this, vegetative areas, agricultural land, and bare land
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have reduced. However, such reductions in area may not be the effect of areal increase
of any single LULC element. LULC change is an outcome of interactive response among
existing LULC elements. Such interaction may include an impetus in strategic planning
and management of land and environment as well.

Therefore, the quantitative measures as adopted in this present study to assess the
LULC dynamics as the function of interaction among LULC elements could help in ab-
stracting the LULC scenario of a region and in tracking the effective and effected elements
which could extend a scope of decision-making to the researchers, planners, and managers
to ensure sustainability.
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