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Purpose: To evaluate the potential utility of a number of parameters 
obtained at T2-weighted, diffusion-weighted, and dynamic 
contrast material–enhanced multiparametric magnetic res-
onance (MR) imaging for computer-aided diagnosis (CAD) 
of prostate cancer and assessment of cancer aggressiveness.

Materials and 

Methods:

In this institutional review board–approved HIPAA-com-
pliant study, multiparametric MR images were acquired 
with an endorectal coil in 48 patients with prostate cancer 
(median age, 62.5 years; age range, 44–73 years) who 
subsequently underwent prostatectomy. A radiologist and 
a pathologist identified 104 regions of interest (ROIs) (61 
cancer ROIs, 43 normal ROIs) based on correlation of his-
tologic and MR findings. The 10th percentile and average 
apparent diffusion coefficient (ADC) values, T2-weighted 
signal intensity histogram skewness, and Tofts Ktrans were 
analyzed, both individually and combined, via linear dis-
criminant analysis, with receiver operating characteristic 
curve analysis with area under the curve (AUC) as fig-
ure of merit, to distinguish cancer foci from normal foci. 
Spearman rank-order correlation (r) was calculated be-
tween cancer foci Gleason score (GS) and image features.

Results: AUC (maximum likelihood estimate 6 standard error) 
values in the differentiation of prostate cancer from 
normal foci of 10th percentile ADC, average ADC, T2-
weighted skewness, and Ktrans were 0.92 6 0.03, 0.89 6 
0.03, 0.86 6 0.04, and 0.69 6 0.04, respectively. The 
combination of 10th percentile ADC, average ADC, and 
T2-weighted skewness yielded an AUC value for the same 
task of 0.95 6 0.02. GS correlated moderately with 10th 
percentile ADC (r = 20.34, P = .008), average ADC (r = 
20.30, P = .02), and Ktrans (r = 0.38, P = .004).

Conclusion: The combination of 10th percentile ADC, average ADC, 
and T2-weighted skewness with CAD is promising in the 
differentiation of prostate cancer from normal tissue. ADC 
image features and Ktrans moderately correlate with GS.
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consecutive patients who were seen be-
tween March 2008 and March 2010 and 
who had biopsy-proved prostate cancer 
and underwent prostatectomy and mul-
tiparametric endorectal MR imaging, 
including all sequences of T1-weighted, 
T2-weighted, DW, and DCE MR imag-
ing in the axial direction with Philips 
MR imagers (Achieva; Philips Health-
care, Eindhoven, the Netherlands).  
Patients were excluded from the study 
if (a) the patient underwent radiation 
therapy before MR imaging (n = 1), (b) 
MR imaging was performed after pros-
tatectomy (n = 2), (c) MR images were 
acquired with a 3.0-T imager (n = 5), 
(d) DW MR images were missing (n = 
1), or (e) DCE MR images were missing 
(n = 5). A total of 48 patients remained 
in this study. Standard histologic tissue 
slices of dissected prostatectomy speci-
mens were available for all patients.

MR Image Data Acquisition

All MR images were acquired with 
an endorectal coil (Medrad; Bayer 
Healthcare, Warrendale, Pa) and a 
phased-array surface coil with the 
aforementioned Philips MR imagers. 

of cancer aggressiveness. However, in-
terpretation of multiparametric MR 
images can be challenging because of 
the large amount of image data from 
multiple MR sequences in each patient. 
Without standardized analytic tools, 
subjective interpretation of multipara-
metric MR images depends on radiolo-
gists’ experience and expertise, thereby 
limiting the accuracy and reproducibil-
ity of prostate cancer detection and the 
assessment of cancer aggressiveness or 
GS and impeding wide and optimal use 
of the imaging techniques.

Computer-aided diagnosis (CAD), 
in which computer image analysis 
methods are used to help radiologists 
detect and diagnose abnormalities on 
medical images (9), has been developed 
for breast cancer (10–13), lung cancer 
(14,15), and colorectal cancer (16,17), 
but it has seen limited application to 
prostate cancer (18–26). The purpose 
of this study was to evaluate the poten-
tial utility of a number of parameters 
obtained at T2-weighted, DW, and DCE 
multiparametric MR imaging for CAD 
of prostate cancer and assessment of 
cancer aggressiveness.

Materials and Methods

Patients

Our institutional review board ap-
proved this retrospective and Health In-
surance Portability and Accountability 
Act–compliant study, with a waiver of 
written informed patient consent. We 
searched the radiology image archive 
at our institution and identified 62 

P
rostate cancer is the most com-
monly diagnosed nonskin cancer 
and the second leading cause of 

cancer death among U.S. men (1–4). 
Magnetic resonance (MR) imaging is a 
promising noninvasive imaging tool for 
imaging prostate cancer (5). In addi-
tion to conventional T2-weighted im-
ages, multiparametric MR techniques 
yield additional biologic information on 
diffusion-weighted (DW) MR images, 
dynamic contrast material–enhanced 
(DCE) MR images, and spectroscopic 
images (5–8). These advanced func-
tional imaging techniques may help in-
crease the sensitivity of prostate cancer 
detection and the accuracy of predicting 
Gleason score (GS), which is a measure 

Implication for Patient Care

 n Quantitative image features iden-
tified in this study can be used in 
computer-aided diagnosis to inte-
grate multiparametric MR image 
data and potentially help radiolo-
gists achieve standardized, accu-
rate, reproducible, and more effi-
cient interpretation of prostate 
MR images to improve prostate 
cancer detection and improve 
predictive accuracy of cancer 
aggressiveness.

Advances in Knowledge

 n The 10th percentile apparent dif-
fusion coefficient (ADC), average 
ADC, and T2-weighted signal 
intensity skewness are effective 
image features with which to dis-
tinguish prostate cancer foci 
from normal peripheral zone 
(PZ) tissue (area under the re-
ceiver operating characteristic 
curve [AUC], 0.92 6 0.03 [max-
imum likelihood estimate 6 stan-
dard error], 0.89 6 0.03, and 
0.86 6 0.04, respectively).

 n The combination of the 10th per-
centile ADC, average ADC, and 
T2-weighted signal intensity 
skewness with a linear classifier 
is better than the 10th percentile 
ADC alone in the differentiation 
of prostate cancer foci from 
normal PZ tissue (AUC, 0.95 6 
0.02).

 n The 10th percentile ADC, av-
erage ADC, and volume transfer 
constant (Ktrans) are moderately 
correlated with tumor Gleason 
score (GS) (r = 20.34, P = .008; 
r = 20.30, P = .02; and r = 0.38, 
P = .004, respectively) and mod-
erately effective when distin-
guishing low-grade (GS = 6) from 
high-grade (GS 7) prostate 
cancer foci (AUC = 0.78 6 0.07 
for both ADC features, AUC = 
0.72 6 0.07 for Ktrans).
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and one patient had four ROIs. The 
ROIs were manually outlined on one 
two-dimensional MR image on which 
visualization of the tumor best corre-
lated with histologic findings: Almost all 
ROIs were outlined on a T2-weighted 
image, except for four ROIs in four pa-
tients, which were outlined on a DW 
MR image. GS was rendered specifically 
for each tumor ROI by the study pathol-
ogist during the consensus review.

Transferring ROIs between MR Images

To analyze the multiparametric MR im-
ages, the ROIs outlined on a T2-weight-
ed or DW MR image must be trans-
ferred to all other MR sequences. The 
ROIs were first mapped between MR se-
quences with computer software devel-
oped in-house with the Python program-
ming language (version 2.6.5; www.

python.org) by assuming that there was 
no patient motion throughout the en-
tire multiparametric MR imaging study. 
Then, the study radiologist reviewed the 
results of the transferred ROIs in all 
cases. In cases in which misalignments 
were visually obvious, the locations of 
the ROIs were adjusted manually, with-
out modifying their size or shape.

Quantitative Image Feature Analyses

We calculated pixelwise apparent dif-
fusion coefficient (ADC) values from 

radiologist (A.O., 9 years of experience 
in prostate MR imaging). The histologic 
samples used in this study were pro-
cessed as follows: Prostatectomy spec-
imens were fixed in 5% buffered for-
malin, processed, and cut serially into 
4-mm-thick blocks from apex to base in 
transverse planes. Each block was then 
halved or quartered (depending on its 
size), and 7–8-µm-thick microtome slic-
es were stained with hematoxylin-eosin.

The pathologist identified all distinct 
tumor foci larger than approximately 5 
mm in diameter, and the radiologist 
manually outlined the corresponding 
regions of interest (ROIs) of the tumor 
foci on MR images. For those tumor foci 
that were not clearly visible on MR im-
ages, their locations were determined 
based on their relationship with other 
identifiable landmarks (eg, urethra, 
ejaculatory ducts, benign prostatic hy-
perplasia nodules) on MR images by 
consensus of the radiologist and pa-
thologist. In each case, the radiologist 
manually drew ROIs of peripheral zone 
(PZ) and/or central gland (comprising 
the transition zone and central zone) 
tumor foci (when present), as well as 
a normal PZ focus, unless no histologi-
cally normal region was present (n = 7). 
Four patients had no cancer ROIs, 31 
patients had one ROI, 10 patients had 
two ROIs, two patients had three ROIs, 

Immediately before MR imaging, 1 mg 
of glucagon (Glucagon; Lilly, Indianapo-
lis, Ind) was injected intramuscularly to 
decrease peristalsis of the rectum. We 
imaged the entire prostate and oriented 
axial images to be perpendicular to the 
rectal wall, with guidance from sagit-
tal images. We acquired the following 
images: axial, coronal, and sagittal T2-
weighted MR images; axial T1-weighted 
MR images; axial free-breathing DW 
MR images (b values of 0, 50, 200, 
1500, and 2000 sec/mm2 in 29 patients; 
b values of 0 and 1000 sec/mm2 in 24 
patients); and axial free-breathing DCE 
MR images. Acquisition of DCE MR im-
ages of the entire prostate started 30 
seconds before intravenous administra-
tion of approximately 0.1 mmol of ga-
dodiamide (Omniscan; GE Healthcare, 
Princeton, NJ) per kilogram of body 
weight, which was followed by a 20-mL 
saline flush at a rate of 2.0 mL/sec. Im-
age acquisition details are summarized 
in Table 1.

Histologic–Radiologic Correlation

The reference standard of prostate can-
cer foci in MR images was established 
through a systematic consensus-seeking 
correlative review of histologic findings 
and MR images by a genitourinary 
pathologist (T.A., 8 years of experi-
ence in genitourinary pathology) and a 

Table 1

MR Image Acquisition Parameters

Sequence and  

Imaging Plane Sequence Type

Repetition  

Time (msec)

Echo  

Time (msec)

Field of  

View (mm)* Matrix In-Plane Resolution (mm2)

Section  

Thickness (mm)

Flip Angle  

(degree)

No. of Signals  

Acquired

T2-weighted

 Axial Fast spin echo 3166–6581† 90–120† 140–180 216–360 3 189–350 0.44 3 0.44 to 0.56 3 0.56 3, 4‡ 90 2–4

 Sagittal Fast spin echo 2186–8374 90, 120 160–200 224–276 3 188–240 0.47 3 0.47 to 0.50 3 0.50 3, 4‡ 90 2–4

 Coronal Fast spin echo 2208–6132 90, 120 140–180 224–328 3 192–260 0.44 3 0.44 to 0.50 3 0.50 3, 4‡ 90 2–4

DW axial Fast spin echo,  

   echo planar  

  imaging

2948–8616 71–85 240–360† 120–180 3 118–178† 0.81 3 0.81 to 1.28 3 1.28 3–6 90 2–4†

DCE axial§ Fast field echo 3.3–5.4 1.1–2.6 300–370 140–292 3 136–199 0.63 3 0.63 to 1.25 3 1.25 4–8 10–40 1

Note.—An effective sensitivity encoding (parallel imaging) factor of 2 was used in all sequences. Total image acquisition time was approximately 45 minutes.

* Data are the length of one side of a square field of view.

† Exceptional acquisition parameters are as follows: repetition time, 9561 msec (n = 1); echo time, 70 msec (n = 1); field of view, 160 (n = 1); matrix, 80 3 78 (n = 1); and number of signals acquired, 

one (n = 1).

‡ Comma indicates that there are only two values.

§ Approximately 100–120 DCE MR images were acquired in 5–10 minutes at a temporal resolution of 3–6 seconds.
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where s
i
 denotes T2-weighted signal in-

tensity; µ and s are the mean and stan-
dard deviation of the signal intensity 
histogram, respectively; and N is the 
number of pixels within the ROI (31). 
Skewness is not influenced by the abso-
lute T2-weighted signal intensity (32). 
It is a third-order statistic; therefore, 
it may be difficult to perceive reliably 
with the naked eye. A Python script 
was developed to calculate T2-weighted 
skewness. Examples of T2-weighted im-
age ROIs, T2-weighted signal intensity 
histograms, and their skewness values 
are shown in Figure 1.

The extended Tofts model (33) was 
used to estimate the pharmacokinetic 
parameters, volume transfer constant 
(Ktrans), blood plasma volume fraction, 
and extravascular extracellular space 
volume fraction of an ROI by using a 
population arterial input function (34) 
scaled by the contrast agent dose per 
kilogram of patient weight. Prior to 
this curve fit, the concentration of the 
contrast agent was estimated by using 
a noncontiguous bilateral ROI that cov-
ered the gluteal muscles and was manu-
ally drawn on a single image section at 
the precontrast time point reported by 
Fan et al (35). The curve fit was applied 
to the average concentration of the con-
trast agent in the ROI. Because earlier 
studies (36) and our clinical experi-
ence suggest that blood plasma volume 
fraction and extravascular extracellular 
space volume fraction are not as effec-
tive as Ktrans, we assessed only Ktrans in 
this study. The computer software for 
DCE MR image analysis was written in 
the Matlab programming language (ver-
sion 7.11.0.584; Mathworks, Natick, 
Mass).

Statistical Analysis

We evaluated the effectiveness of im-
age features in the differentiation of 
prostate cancer foci from normal tissue 
ROIs with receiver operating character-
istic (ROC) analysis (37). Proper binor-
mal ROC curves were estimated with 
maximum likelihood estimation (38), 

For each ROI, we also calculated 
the skewness of the T2-weighted signal 
intensity histogram, which quantifies 
the symmetry of the signal intensity 
histogram with respect to the average 
T2-weighted signal intensity within the 
ROI. For example, a symmetric histo-
gram (skewness equal to zero) indicates 
that there are as many dark pixels as 
bright pixels within the ROI. However, 
an asymmetric histogram from an ROI 
that has more dark pixels than bright 
pixels (skewness . 0) is often seen in 
ROIs of prostate cancer foci, whereas 
an asymmetric histogram from an ROI 
that has more bright pixels than dark 
pixels (skewness , 0) is sometimes 
seen in normal tissue. The T2-weighted 
skewness (T2

skew
) feature is defined as 

follows:

DW MR images by using a linear least-
squares fit (27) to the logarithmic 
form of a monoexponential DW signal 
model, as follows:

 0

b

ln ADC,
s

b
s

= ⋅(   )__  

where s
0
 and s

b
 are DW MR signal in-

tensities with diffusion weighting of 0 
and b, respectively (28–30). All b values 
(either five or two b values) were used 
to estimate an ADC without any other 
normalization by using in-house soft-
ware written in Python. We calculated 
the average and 10th percentile ADCs 
within an ROI. The 10th percentile ADC 
is less influenced by random statistical 
fluctuations than is the minimum ADC.

Figure 1

Figure 1:  T2-weighted MR images show (a) a tumor (arrow) in a 66-year-old man with a GS of 7 (4+3) 

and a prostate-specific antigen level of 13.02 ng/mL and (b) an area of PZ normal tissue (arrow) in a 

64-year-old man with prostate cancer elsewhere. Red outlines indicate ROIs. (c, d) Corresponding histo-

grams show T2-weighted signal intensities within the ROIs and the corresponding skewness image feature 

values. The tumor ROI has more dark pixels than bright pixels, whereas the normal tissue ROI has more 

bright pixels than dark pixels. Red lines in c and d identify the average T2-weighted signal intensity within 

each ROI.
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with lower 10th percentile and average 
ADCs but a higher Ktrans (except for GS 
9 tumor foci, which apparently showed 
a trend in the opposite direction) (Fig 
4). These features were moderately ef-
fective individually in the classification of 
low-grade (GS 6) versus high-grade (GS 
7, 8, or 9) tumors (AUC = 0.78 6 0.07 
for 10th percentile and average ADCs, 
AUC = 0.72 6 0.07 for Ktrans). Combin-
ing the three features did not yield sig-
nificantly better AUC values (leave-one-
patient-out technique: 0.77 6 0.05, P = 
.90; leave-one-ROI-out technique: 0.80 
6 0.06, P = .49) compared with 10th 
percentile ADC alone.

Discussion

Current clinical interpretations of mul-
tiparametric prostate MR images are 
challenged by a lack of standardized di-
agnostic criteria and an overwhelming 

for tumor ROIs: r = 0.10, P = .46) (Fig 
3a), whereas the average and 10th per-
centile ADCs were highly correlated (r 
= 0.98, 0.98, and 0.95, for all ROIs, 
normal ROIs, and tumor ROIs, respec-
tively; P , .05 for all groups) (Fig 3b). 
The linear discriminant analysis classi-
fier accounts for correlation among the 
features automatically during the train-
ing process. The Ktrans performed at a 
lower level (AUC = 0.69 6 0.05) and 
did not improve the AUC value (0.90 
6 0.03) when combined with the 10th 
percentile ADC; therefore, Ktrans was 
not further combined with other image 
features.

Moderate correlation with tumor GS 
was found (Fig 4) for the 10th percen-
tile ADC (r = 20.34, P = .008), average 
ADC (r = 20.30, P = .02), and Ktrans 
(r = 0.38, P = .004), and no correlation 
was found for T2 skewness (r = 20.07, 
P = .59). Higher grade was associated 

and the area under the ROC curve 
(AUC) was used as a figure of merit 
(39). AUC values were compared sta-
tistically by using the conventional bi-
variate binormal model, the output of 
which includes P values (40). Individual 
image features were combined by us-
ing linear discriminant analysis (LDA) 
(41) and both leave-one-patient-out 
and leave-one-ROI-out cross-validation 
methods to separate training from re-
porting of classifier performance (42). 
With these methods, every patient or 
ROI was used to test the classifier, both 
in turn and one at a time, when all other 
patients or ROIs were used to train the 
classifier; subsequently, ROC analysis 
was performed on the test results of 
all patients or ROIs in aggregate. We 
calculated the Spearman rank-order 
correlation coefficient (r) to character-
ize correlation strength between image 
features (continuous numbers) and GS 
(ordinal numbers); we also calculated 
the Pearson correlation coefficient (r) 
to characterize correlation strength be-
tween image features (43). All statisti-
cal tests were two sided, and P , .05 
was considered to indicate a significant 
difference. Statistical analyses were 
performed with in-house computer 
software that was written in Python, 
except for ROC analysis (44).

Results

Characteristics of patients (n = 48), as 
well as those of tumor and normal PZ 
tissue ROIs (n = 104), are summarized 
in Tables 2 and 3, respectively.

The effectiveness of the image fea-
tures, both individually and combined 
(10th percentile ADC, average ADC, 
and T2-weighted skewness), in the 
differentiation of prostate cancer foci 
from normal PZ tissue is summarized 
in Table 4 and Figure 2. The 10th per-
centile ADC yielded the best individual 
feature AUC of 0.92 6 0.03 (maximum 
likelihood estimate 6 standard error). 
The three-feature combination further 
improved AUC to 0.95 6 0.02 (Table 
4). The 10th percentile ADC correlated 
moderately with T2-weighted skewness 
(for all ROIs: r = 20.44, P , .001; for 
normal tissue ROIs: r = 20.27, P = .08; 

Table 2

Patient Characteristics

Characteristic Average Median Standard Deviation Range

Age (y) 61.5 62.5 7.0 44–73

Prostate-specific antigen level (ng/mL)* 15.6 7.0 37.0 0.8–256

Interval (d)

 From biopsy to MR imaging†‡ 64.5 49 52.5 20–335

 From MR imaging to prostatectomy 63.2 34.5 66.2 3–375

* One case was excluded because the prostate-specific antigen level was missing.

† One case was excluded because MR imaging was performed before prostate biopsy.

‡ MR images were obtained within 6 weeks of prostate biopsy in 12 (25.5%) of 47 patients.

Table 3

Characteristics of Tumor and PZ Normal Tissue ROIs

Characteristic

Cancer
Normal  

TissueGS 6 GS 7 GS 8 GS 9 All

No. of all ROIs (%) 14 (23.0) 32 (52.5) 9 (14.8) 6 (9.8) 61 (100)* 43*

No. of PZ ROIs (%) 12 (25.5) 24 (51.1) 8 (17.0) 3 (6.4) 47 (100)† 43

No. of central gland ROIs (%) 2 (14.3) 8 (57.1) 1 (7.1) 3 (21.4) 14 (100)† 0

ROI size (mm2)‡ 60 6 70 88 6 52 83 6 76 128 6 123 85 6 72 48 6 26

Note.—Unless otherwise indicated, data are number of ROIs and data in parentheses are percentages. Central gland ROIs are 

transition zone ROI plus central zone ROI.

* Cancer ROIs accounted for 58.7% and normal tissue ROIs accounted for 41.3% of the total 104 ROIs.

† PZ cancer ROIs accounted for 77.0% and central gland cancer ROIs accounted for 23.0% of the total 61 cancer ROIs.

‡ Data are mean 6 standard deviation.
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CAD analysis of multiparametric MR 
data to help improve the reproducibil-
ity of prostate MR image interpretation, 
thereby enabling us to more accurately 
detect cancer and predict tumor aggres-
siveness for better patient counseling 
and treatment planning.

In this retrospective study, we found 
that computer-calculated quantitative 
MR image features—the 10th percentile 
pixelwise ADC, average ADC, and T2-
weighted signal intensity skewness—
were effective in the differentiation of 
prostate cancer from normal PZ tissue 
and that the 10th percentile ADC, aver-
age ADC, and Ktrans correlated moder-
ately with GS. The 10th percentile ADC 
and T2-weighted skewness are infre-
quently used image features.

The 10th percentile pixelwise ADC 
is more effective than average ADC in 
the differentiation of prostate cancer 
from normal PZ tissue; by selecting an 
appropriate cutoff value, both greater 
sensitivity and greater specificity can 
be achieved with the 10th percentile 
ADC. This may be because the 10th 
percentile ADC is more effective than 
the average ADC in the identification of 
areas where cancerous glands intermix 
with benign prostatic tissue rather than 
completely replace it (28). The 10th 
percentile ADC is analogous to and 

The quantitative nature of CAD analysis 
can help achieve standardization of diag-
nostic criteria, and we expect automated 

amount of image data that must be ana-
lyzed in each case. CAD has the poten-
tial to address both of these challenges. 

Table 4

Effectiveness of Quantitative Image Features, Individually and in Combination, in the Differentiation of Prostate Cancer Foci from 

Normal Tissue

Image Feature AUC* Sensitivity (%)† Specificity (%)† Cutoff Value‡

10th percentile ADC 0.92 6 0.03 80.3 (49/61) [68.2, 89.4] 86.0 (37/43) [72.1, 94.7] 0.990 3 1023 mm2/sec

Average ADC 0.89 6 0.03 75.4 (46/61) [62.7, 85.5] 83.7 (36/43) [69.3, 93.2] 1.15 3 1023 mm2/sec

T2-weighted skewness 0.86 6 0.04 75.4 (46/61) [62.7, 85.5] 79.1 (34/43) [64.0, 90.0] 0.257

Ktrans§ 0.69 6 0.04 54.4 (31/57) [40.7, 67.6] 75.0 (30/40) [58.8, 87.3] 0.230 min21

Three-feature combination||

 Leave-one-ROI-out technique 0.95 6 0.02 82.0 (50/61) [70.0, 90.6] 95.3 (41/43) [84.2, 99.4] …

 Leave-one-patient-out technique 0.95 6 0.02 82.0 (50/61) [70.0, 90.6] 95.3 (41/43) [84.2, 99.4] …

Note.—Unless otherwise indicated, results change little if the five patients who underwent 3.0-T MR imaging are included in the analysis; change in AUC was no more than 0.01, and changes in 

sensitivity and specificity (including the 95% confidence interval) were no more than 2.7% with fixed cutoff values.

* Data are maximum likelihood estimate 6 standard error.

† Empirical sensitivity and specificity values were calculated from the data and fall close to the fitted ROC curve. Data in parentheses are raw data, and data in brackets are 95% confidence intervals, 

which are exact binomial estimates.

‡ Example of image feature cutoff values that yield the listed sensitivity and specificity values.

§ Two cases were excluded from the analysis because of image artifacts.

|| The combination of 10th percentile ADC, average ADC, and T2 skewness with a linear discriminant analysis classifier. P values are for AUC comparison with 10th percentile ADC alone and were .06 

for both techniques.

Figure 2

Figure 2: ROC curves of 10th percentile ADC, average ADC, T2-weighted 

skewness, and combination of the three image features in the differentiation of 

prostate cancer foci and normal PZ tissue. Solid lines are maximum likelihood 

estimates of proper binormal ROC curves, and dashed lines are observed data. 

AUCs and standard errors are listed in the legend.
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differentiation of low- and high-grade 
tumors; these findings are inconsistent 
with previous finding that showed no 
correlation between quantitative DCE 
MR parameters and GS (54,55). How-
ever, the temporal resolution in our 
study was higher than that in previous 
studies (3–6 sec vs 5–12 sec), and one 
other recent study with higher tempo-
ral resolution (2 sec) also reported a 
significant correlation between GS and 
washout gradient of the DCE MR im-
ages (56). Better temporal resolution 
may be a factor in revealing moderate 
correlation between quantitative DCE 
MR parameters and GS.

Several groups have developed pros-
tate cancer CAD techniques (18,19,21). 
Early studies often emphasized DCE MR 
and T2 image analysis (20,22,24,25), 
and more recent studies have incorpo-
rated diffusion image analysis (26). The 
reported AUC values ranged from 0.77 
to 0.89 (20,22,24,25), and a recent 
study reported sensitivity of 74% with 
five false-positive detections per patient 
(26). The present study adds to this lit-
erature and, because we identified im-
portant image features, it is a first step 
toward the development of a CAD tool 
that will help radiologists detect pros-
tate cancer clinically.

Our study had several limitations. 
First, because precise spatial correla-
tion of tumors between histologic and 
MR images is critical and difficult, we 
devoted considerable effort to careful 
histologic-radiologic correlation in each 
case. The entire set of prostatectomy 
tissue slices was reviewed jointly by a 
genitourinary pathologist and a radi-
ologist before the radiologist outlined 
tumor ROIs. However, uncertainty still 
cannot be ruled out in some cases. 
Second, an additional source of un-
certainty was the transferring of ROIs 
from one MR sequence to another. Re-
spiratory motion, cardiac motion, and 
other patient motion throughout the 
course of the MR examination causes 
rigid transferring to be unsatisfactory 
in some patients. Thus, a radiologist 
reviewed all ROI transfer results and 
manually adjusted the ROI locations, 
when necessary. Perhaps adoption of 
new techniques (57) and routine use of 

with those of previous reports (48,50). 
However, the observed correlation can 
be influenced by the subjective nature 
and interobserver variability of GS 
(51), as well as by variations in DW MR 
image acquisition (eg, the number and 
value of b values), the latter of which 
requires further investigation. Also 
consistent with the literature (49), we 
found that the two ADC image features 
were moderately effective in the dif-
ferentiation of low-grade (GS 6) and 
high-grade (GS 7) tumors. The rela-
tively small number of CG tumors (n = 
14) did not permit a separate analysis 
of correlation for PZ and CG tumors 
versus GS.

DCE MR image features from phar-
macokinetic or empirical time-curve 
analysis have been reported to help 
differentiate prostate cancer from be-
nign tissue (AUC range, 0.77–0.885) 
(20,22,25). Increased vascularity, capil-
lary permeability, and interstitial hy-
pertension in tumors are considered 
to underlie better tumor visualization 
(20). However, a recent report suggests 
that prostate cancer is not associated 
with increased vascularity (52). Ktrans 
was not highly effective in the differen-
tiation of tumor from normal tissue in 
our study. This observation agrees with 
the literature (36,53) and with our clin-
ical experience. Moderate correlation 
was found between Ktrans and GS, and 
Ktrans was moderately effective in the 

statistically more reliable than the min-
imum pixelwise ADC (the darkest pixel 
on the ADC map) in an ROI, which we 
have found helpful when making a clin-
ical diagnosis. Computer calculation of 
this feature may be necessary, as it is 
difficult to estimate visually.

The T2-weighted signal intensity 
skewness quantifies the relative number 
of dark pixels versus bright pixels within 
an ROI, independent of the overall signal 
intensity. Its AUC of 0.86 in the differen-
tiation of prostate cancer from normal 
PZ tissue is comparable to that (AUC = 
0.85) of a previous report of T2 value 
(24). It is correlated only moderately 
at best with the 10th percentile ADC, 
which is in contrast with a previous 
report of positive correlation between 
ADC and T2 values (28). As a third-or-
der statistic, it is best calculated with a 
computer rather than estimated visually. 
It would be useful to analyze this feature 
based on T2 maps (18,21,24); however, 
our image data did not permit this.

Moderate and negative correlation 
between ADC and GS has been report-
ed (29,45–50), with a Spearman cor-
relation coefficient of 20.5 to 20.6 for 
biopsy GS (45,47) and 20.38 to 20.46 
for prostatectomy GS (50). Other re-
searchers (29,49) reported a Pearson 
correlation coefficient of 20.39 to 
20.63 for prostatectomy GS, which is 
not the most appropriate measure, as 
GS is ordinal. Our results are consistent 

Figure 3

Figure 3: Scatterplots between (a) 10th percentile ADC and T2-weighted skewness and (b) 10th percen-

tile ADC and average ADC. Pearson correlation coefficients are shown in the legends.
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values on these results. Sixth, normal 
tissue ROIs were taken from only the 
PZ and not the transition zone. Future 
studies are needed to address these 
issues.

This retrospective study suggests that 
CAD based on combining quantitative 
image features derived from multipara-
metric endorectal MR images can be ef-
fective in distinguishing prostate cancer 
from the normal prostate and that ADC 
features and Ktrans correlate moderately 
with tumor GS. CAD has the potential 

cannot be readily located on MR images. 
However, this study is an important 
first step in the identification of effec-
tive quantitative image features, and it 
demonstrates the benefit of CAD image 
analysis. Future studies are needed to 
investigate more subtle tumors. Fourth, 
reproducibility was not assessed in our 
study because we had only one set of 
patient cases, which limited the gen-
eralizability of our results. Fifth, we 
did not analyze the potential effect of 
DW MR imaging with two versus five b 

whole-mount histology can help reduce 
this uncertainty. Third, MR images 
were acquired in patients who under-
went prostatectomy; therefore, patient 
selection bias could have influenced our 
results. Furthermore, our requirement 
for rigorous histologic-MR correlation 
may have led to (a) the inclusion of only 
cancer and normal tissue ROIs whose 
locations could be determined defini-
tively on MR images (either visible or 
locatable via nearby structures) and (b) 

an inability to include other foci that 

Figure 4

Figure 4: Box plots show patterns of correlation between GS and, A, 10th percentile ADC, B, average ADC, and, C, Ktrans. In 

each box plot, red line indicates median; box indicates interquartile range; whiskers indicate most deviated data points within 

the 1.5 interquatile range; and crosses are outliers. Normal PZ tissue ROIs are shown for comparison; corresponding Spearman 

correlation coefficients are also listed (excluding normal tissue ROIs), as well as the number of ROIs in each group.
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viding radiologists with a quantitative 
and standardized approach to combine 
both anatomic and functional informa-
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