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We provide a minimal strategy for the quantitative analysis of a large class of non-equilibrium
systems in a steady state using the short-time Thermodynamic Uncertainty Relation (TUR). From
short-time trajectory data obtained from experiments, we demonstrate how we can simultaneously
infer quantitatively, both the thermodynamic force field acting on the system, as well as the exact
rate of entropy production. We benchmark this scheme first for an experimental study of a colloidal
particle system where exact analytical results are known, before applying it to the case of a colloidal
particle in a hydrodynamical flow field, where neither analytical nor numerical results are available.
Our scheme hence provides a means, potentially exact for a large class of systems, to get a quanti-
tative estimate of the entropy produced in maintaining a non-equilibrium system in a steady state,
directly from experimental data.

Non-Equilibrium thermodynamics at microscopic length
scales is dominated by a fascinating range of phenomena
[1], where thermal fluctuations play a crucial role. These
phenomenon can now be observed in great detail experi-
mentally, due to the availability and scope of current mi-
croscopic manipulation techniques. The interpretation
and quantitative analysis of the experimentally available
data is however lagging behind these advances, mostly
due to the fact that the vast majority of these systems
are too complicated to model without making several ap-
proximations, despite having far fewer degrees of free-
dom than their macroscopic counterparts. Even when
it is possible to build such simplified models, these are
still usually too complicated to solve except sometimes
by numerical analysis of specific systems, which however
lack general insights. There could also be other factors
making the system hard to solve, such as the presence
of a background flow, for which the spatial dependence
of the flow velocity needs to be known by means of solv-
ing the corresponding Navier-Stokes equation; usually a
difficult task, especially for unsteady flows. In the face
of all these challenges, a relevant question is whether it
is at all possible to gain any precise quantitative infor-
mation about a complex non-equilibrium system directly
from experimental data, bypassing the first step of either
having a known model to compare with or building in
simplifying assumptions about the system.

Not surprisingly, this question has aroused a lot of
recent interest. Broadly speaking, measurements from
experiments can be used to obtain general information
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about the system, such as identifying that detailed bal-
ance is broken and hence the system is out-of-equilibrium
[2–4] (not always obvious for microscopic systems such as
at the cellular level), or to obtain more specific proper-
ties of the system such as the rate of dissipation of energy
(equivalently the rate of entropy production) [5–12], the
average phase-space velocity field [2, 13, 14] related to the
so-called thermodynamic force field [15, 16] or the micro-
scopic forces driving the system [14, 17]. The motivation
for such studies is that if quantitative information about
the system can be directly obtained from experimentally
observed quantities, then this understanding can be used
for building more realistic and experimentally validated
models of the system of interest [2, 18, 19].

A very informative quantity about a non-equilibrium
system is the rate of entropy production. This quan-
tity not only signals - when it is non-zero - that the sys-
tem is out of equilibrium, but also provides a quantita-
tive measure of how out-of-equilibrium a system is and
the irreversibility of the dynamics [20–22]. In the con-
text of microscopic machines [23], a quantification of the
amount of energy dissipated directly provides informa-
tion about engine efficiencies [24–26] and prescriptions for
obtaining optimal operating conditions [27]. The value
of the entropy production rate can also be used to obtain
information-theoretic quantities of interest [28], or even
information about hidden degrees of freedom [29].

The entropy production rate can be obtained directly
from experimental data, at least for systems where it is
understood that the underlying dynamics is Markovian,
by several means. These include utilizing the Harada-
Sasa equality [5] which involves a spectral analysis of
trajectory data [30, 31], determining the average steady
state current and steady-state probability distribution
from the data [6], determining the time-irreversibility of
the dynamics [22, 32–36] and relatedly determining esti-
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mators for the ratio of forward and backward processes
directly from the data [9, 37, 38]. Very recent approaches
[11, 14] also advocate inferring first the microscopic force
field from which the entropy production rate can be in-
ferred.
An alternative strategy is to set lower bounds on the

entropy production rate [39–43] by measuring experimen-
tally accessible quantities. One class of these bounds, for
example those based on the thermodynamic uncertainty
relation (TUR) [43–47], have been further developed into
variational inference schemes which translate the task of
identifying entropy production to an optimization prob-
lem over the space of a single projected fluctuating cur-
rent in the system [10, 48–50]. Recently, a similar vari-
ational scheme using neural networks was also proposed
[51]. As compared to other trajectory-based entropy esti-
mation methods, these inference schemes do not involve
the estimation of probability distributions over the phase-
space, rather they usually only involve means and vari-
ances of measured currents, and are hence known to work
better in higher dimensional systems [10]. In addition, it
is proven that such an optimization problem gives the ex-
act value of the entropy production rate in a stationary
state as well as the exact value of the thermodynamic
force field, if short-time currents are used [48–51]. How-
ever, these methods have not yet been tested against ex-
perimental data to the best of our knowledge.
Here we demonstrate that the Short-time TUR based

inference scheme can be used to infer both the entropy
production as well as the thermodynamic force field in
different experimental setups involving colloidal particles
in (time-varying) potentials. We first test the scheme in
an experimental set up where the entropy production rate
of the system can also be analytically predicted, hence
benchmarking our procedure. We then apply the scheme
to a modified system for which the underlying model is
both unknown and hard to estimate. The short-time
TUR predicts a value of the entropy prediction even for
this situation. We provide a motivation for the value
as well as demonstrate how we might infer some useful
properties of this system by knowing the value of the
entropy production rate of the system.

MODEL

The results we demonstrate here apply to systems with
continuous state-space but a finite-number of degrees of
freedom, described by overdamped Langevin equations
of the type

Ẋµ(t) = Fµ[X(t)] +Gµν [X(t)] · ξν , (1)

Here µ = 1, . . . , N is the number of degrees of freedom
of the system and we use · to refer to the Ito convention.
Fµ(X) is a function of X, but not an explicit function
of time,t, ξµ is N dimensional white-in-time noise such

that 〈ξµ(t)ξν(t′)〉 = δµνδ(t − t′), where 〈·〉 denotes aver-
aging over the statistics of the noise. The corresponding
Fokker–Planck equation for the probability distribution
function P is given by:

∂tP = −∂µJµ , (2a)

Jµ ≡ FµP −Dµν∂νP , Dµν =
1

2
GµαGαν . (2b)

In the stationary state ∂tP = 0. The total rate of entropy
production σ can be obtained as [6, 34],

σ =

∫

dX FµJµ where (3a)

Fµ ≡
D−1

µν Jν

P
(3b)

is called the thermodynamic force field [10]. Overdamped
Langevin equations are excellent descriptions for colloidal
particle systems. Even for systems where the Langevin
equation is not known, the fact that such a description
exists in principle is all that is needed in order to ap-
ply Eq. 3a and obtain σ by determining the current and
steady-state probability density directly from the time-
series data [6, 10]. Another approach is to first infer the
terms in the Langvein equation, Fµ and D [11, 14] and
use Eq. 3a to obtain σ. These methods can be applied
directly on data obtained from tracking the system or
by even using tracking-free methods in image space [11].
Note however that all these methods require the measure-
ment or empirical estimation of the steady-state proba-
bility distribution P , its spatial derivatives and current
Jµ.

RESULTS

In this paper, we demonstrate an alternative method
for the simultaneous determination of both the entropy
production rate as well as the thermodynamic force field
Fµ from experimental data, using the recently intro-
duced short-time thermodynamic inference relation [48–
50]. Our method is built on an exact result obtained in
[48–50]:

σ = max
J

[

2kB 〈J〉2
∆tVar(J)

]

, (4)

where kB is the Boltzmann constant and J is a scalar
current in the non-equilibrium stationary state. This
holds for any X that is even under time reversal [52].
Let us now discretize X in time with time interval ∆t:
X0

µ · · ·X j
µ · · ·XN

µ . We use latin indices as superscripts for
the discrete time labels. For a given function d(X) we
can define a time-discretised scalar current

Jk = dµ

(

Xk +Xk+1

2

)

(

Xk+1
µ −Xk

µ

)

(5)
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Any such current can be shown to give a lower bound to
σ. Our algorithm is as follows:

1. We first obtain a time-series of experimental data:
Xk.

2. To be able to perform maximisation we use a basis
in the space spanned by X with basis functions
ψm(X), m = 1, . . . ,M , such that

d(X) =

M
∑

m=1

wmψm(X). (6)

3. We start with an initial guess for wm, calculate the
time-series Jk, construct the function within the
square brackets in (4) and then maximise over wm

to obtain σ and also the set of values w∗
m such that

d∗ =
∑M

m=1 w
∗
mψm(X) maximises Eq. (4).

Furthermore, it is shown in [48] that the thermodynamic
force is given by the d that maximises (4), i.e.,

F ∝ d∗ (7)

Hence, by solving an optimization problem, where the
RHS of Eq. (4) is maximized in the space of all currents
we can obtain σ as the optimal value as well as its con-
jugate thermodynamic force field, Fµ up to a constant
multiplier. This constant multiplier can in addition, be
fixed by using Var(∆Stot) = 2〈∆Stot〉 at τ → 0 [48].

We note that similar algorithms have already been
tested against numerical data generated from steady-
state colloidal particle systems [49, 50] in the context
of the short-time inference scheme. Here we test this
scheme in an experimental setup.

Colloidal particle in a stochastically shaken trap

To test the inference scheme we first apply it to an
experimental problem for which the rate of entropy pro-
duction is known from theory [53–56] – a colloidal particle
in a stochastically shaken optical trap. This model was
first experimentally tested in [57].
We trap a polystyrene particle in an optical trap; see

the methods section for details of how the experiment is
performed. We modulate the position of the center of
the trap λ(t) along a fixed direction x on the trapping
plane perpendicular to the beam propagation (+z). The
modulation is a Gaussian Ornstein-Uhlenbeck noise with
zero mean and covariance 〈λ(0)λ(s)〉 = A exp(− | s |
/τ0), i.e.,

λ̇(t) = −λ(t)
τ0

+
√
2Aη, (8)

where η is Gaussian, has zero-mean and is white-in-time.
The correlation time τ0 is held fixed for all our experi-
ments.

The dynamics of the colloidal particle is well described
by an overdamped Langevin equation,

ẋ(t) = −K
γ

[x(t)− λ(t)] +
√
2Dξ, (9)

where K is the spring constant of the harmonic trap, γ is
the drag coefficient, ξ is the thermal noise, D = kBT/γ
is the diffusion coefficient of the particle and T the tem-
perature of the medium. The noise ξ is also Gaussian,
zero-mean and white-in-time and mutually independent
from the noise η in Eq. 8. Note that Aτ0 can be inter-
preted as an effective temperature [58]. Equations (9)
and (8) together define the model we call the Stochastic
Sliding parabola. Starting from arbitrary initial condi-
tions for x and λ, the system reaches a non-equilibrium
stationary state, with the probability distribution func-
tion and current given respectively by [59]

P (x, λ) =
exp

(

−
(δ+1)(δ2θ(x−λ)2+δ(θx2+λ

2)+λ
2)

2Dτ0θ(δ2(θ+1)+2δ+1)

)

2π

√

D2τ2
0 θ(δ2(θ+1)+2δ+1)

δ(δ+1)2

, (10a)

J(x, λ) =





δ(δ2θ(λ−x)+δλ+λ)
(δ2(θ+1)+2δ+1)τ0

− δ2θ(δx+x−δλ)
(δ2(θ+1)+2δ+1)τ0



P (x, λ), (10b)

where the dimensionless parameters θ and δ are defined
as,

δ =
Kτ0
γ

, θ =
A

D
. (11)

The rate of entropy production and the thermodynamic
force field for this model are,

σ =
δ2θ

(δ + 1)τ0
, (12a)

F(x) ≡
(

Fx

Fy

)

=





δ(δ2θ(λ−x)+δλ+λ)
Dτ0(δ2(θ+1)+2δ+1)

− δ2(δx+x−δλ)
Dτ0(δ2(θ+1)+2δ+1)



 (12b)

In Fig. 1 we compare the above exact results to the
outcome of the inference algorithm applied to numeri-
cally generated data for this model. Different sets of
time-series data were generated by varying the noise am-
plitude ratio θ, keeping the other parameters fixed. In
Fig. 1a, we see that the inference algorithm predicts an
estimate of σ very close to the true value. The inference
algorithm also simultaneously gives an optimal force field
d∗(x) which is very similar to the thermodynamic Force
field Fµ(x) expected from theory. We illustrate this in
Fig. 1b. From Eq. (12), it is clear that σ increases lin-
early with θ or equivalently the parameter A. Fig 1c
illustrates that the inference algorithm captures this be-
haviour accurately. Since we are limited by the mini-
mal resolution of the time series in probing the ∆t → 0
limit of Eq. (4), the inferred value of entropy production
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is in general different from the exact value by an O[∆t]
term. For this model we can also compute this correction
analytically as (using expressions previously obtained in
[56]),

σ∆t = σ − δ4θ2
(

δ2(θ + 1) + 1
)

(δ + 1)2τ20 (δ2(θ + 1) + 2δ + 1)
∆t+O[∆t]2,

(13)

where σ∆t is the result one gets from Eq. (4) for a fixed
value of ∆t. Notice that the O[∆t] correction increases
with the value of θ. We indeed observe this trend in
Figure 1c.
Next, we tested the algorithm on experimentally gen-

erated data for the same model. In the experiments,

we varied A from 0.1 to 0.35 (
(

×0.6× 10−6
)2

m2s−1),
while keeping the other system parameters fixed. Exper-
iments for individual parameter sets were carried out for
a duration of 100s, with a sampling rate of 10 KHz for
the particle position. Each of these 100s long data sets
were further divided into 12.5s long patches, upon which
the inference algorithm was then tested. In Fig. 2, we
demonstrate the results of the analysis of the experimen-
tal data. The blue line and the shaded light-blue region
correspond to the theoretically predicted value of the en-
tropy production rate, and the error bounds correspond
to the fluctuations in trap stiffness in different experi-
ments (See methods section). We find that the inference
scheme works well and gives an excellent estimate of σ
just as for the numerically generated data, for inference
at ∆t = 0.1ms and ∆t = 0.2ms. Notice that inference at
0.2 ms predicts a lower estimate of σ consistent with the
fact that the true value is obtained in the τ → 0 limit
according to Eq. (4). Out of all the experiments we per-
formed, roughly 2/3 of the data gave correct estimates
for σ.
As compared to the numerically generated data (see

the methods section) however, we did not obtain a perfect
agreement between the optimal current d∗(x) and the
thermodynamic force field F(x) in general, as shown in
Fig. 3 where streamline plots are used to show the vector-
fields. However we observe that the agreement is better
for A = 0.3 compared to A = 0.1 case. We conclude
that, this method might not be efficient in reconstructing
the force field from experimental trajectories when the
forces are weak in which case experimental noises and
algorithmic biases can dominate [60, 61].

A colloidal particle trapped near a microbubble

After benchmarking our scheme against numerical and
experimental data of an analytically solvable system, we
apply it to a modified set up where the particle is trapped
in the vicinity of a microscopic bubble of size 20-22 µm.
The presence of the bubble sets up flows in its vicin-
ity which affect the trapped colloidal particle and change
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FIG. 1. The inference algorithm tested on numerically gener-
ated data. a) Brownian trajectories of the Stochastic sliding
parabola for A = 0.1, 0.25 and 0.35. b) The inferred entropy
production rate plotted against the number of steps in the op-
timization process for A = 0.15 with ∆t = 0.0001. c) Inferred
entropy production as a function of the parameter A.

the steady-state probability distribution. We expect that
the underlying description of the particle is still an over-
damped Langevin equation, including a flow velocity field
u(x). However, the quantification of this flow field is
rather difficult, even numerically. As a result, we have
a system where the details of the microscopic descrip-
tion are unknown. Our inference scheme, on the other
hand, is easily applicable even in this context. In order
to demonstrate this, we trap the colloidal particle at dif-
ferent distances from the bubble in a stochastically driven
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FIG. 2. Inference algorithm tested on the experimental data
for different values of the parameter A. The blue line corre-
sponds to the theoretical value, and the squares corresponds
to σ estimated from the experimental data. The shaded blue
region accounts for fc fluctuations theoretically (see the sup-
plemental information).

FIG. 3. Optimal force fields (streamline plots) obtained from
the experimental data d∗(x, λ) (red) compared to theory
F(x, λ) (green) in two cases. The parameter choices used
are A = 0.1 (Left) and A = 0.3 (Right).

trap as before, and analyse the experimentally obtained
time series data.
At the level of the non-equilibrium trajectories of the

system, we see that there is a qualitative difference from
the case without the bubble. First, we see that the par-
ticle is more confined in the trap when there is a bubble
in the vicinity. Further statistical analysis also reveal
weaker non-equilibrium currents (see supplemental ma-
terial, Fig. 9). Consistent with these observations, on
applying the inference algorithm, we observe that the
value of σ is substantially reduced in the presence of the
bubble. This is demonstrated in Fig. 4. As we go a dis-
tance d ∼ 1.5r from the surface of the bubble, we see that
the inferred value of σ gets closer to the value the system
would have had in the absence of the bubble. This is
demonstrated in Fig. 5
An important point to understand here, in the light of

these findings - is the significance of the inferred value of
σ. In the case without the bubble, it is exactly the to-
tal heat dissipated to the environment as a consequence
of maintaining the system in a non-equilibrium steady

b)

FIG. 4. The colloidal system in the presence of the bubble.
a) The microbubble - colloidal particle system. b) System
trajectories without (red) and with (green) the bubble in the
neighbourhood of the colloidal particle. We see that the col-
loidal particle is strongly confined in the presence of the bub-
ble.

state (by shaking the trap). In the case with the bubble
however this is not the case. We present a possible math-
ematical description of this situation as an overdamped
Langevin equation with space-dependent diffusion and
damping terms in an unknown flow field u(x). Since the
trap constrains the particle motion on scales which are
at least two orders of magnitude smaller than the dis-
tance to the bubble, u(x) is further assumed to be a con-
stant ud at a distance d from the surface of the bubble.
σ calculated from this model, reproduces the values we
find from the experimental data, independent of ud, and
purely as a consequence of the space-dependent diffusion
and damping term, and the two fitting parameters a and
b. As we discuss in the supplemental material however,
there is another component of the entropy production,
related to the work that the flow does against the con-
fining potential [37, 62]. This component, which does
indeed depend on the value of ud, is not estimated by
our inference scheme, due to the fact that ud is a field
(corresponding to the velocities of the molecules of the
thermal bath) which is odd under time reversal, for which
the TUR does not hold [46, 52, 63–65]. Hence we expect
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FIG. 5. TUR estimate of entropy production in the colloidal
system in the presence of the bubble, as a function of the
distance from the surface of the bubble.

that the values of σ we find close to the bubble are under-
estimates of the true value. We elaborate on this point
in the supplemental material.
Mathematical model: The colloidal system in the

presence of the bubble and consequently the flow ud, can
be simulated using the following equations:

ẋ− ud = − (x− λ)

τd
+
√

2Dd η(t), (14)

λ̇ = − λ

τ0
+
√
2A ξ(t), (15)

where,

τd = τ (a exp(−bd) + 1) , (16)

Dd =
D

a exp(−bd) + 1
. (17)

Here the parameters a and b can be tuned to match the
experimental data. Particularly, 1/b stands for a charac-
teristic length scale over which the flows created by the
bubble are significant. When the distance of the trapped
particle from the bubble is much greater than 1/b, the
expressions will match the case without the bubble.
In conclusion, we have experimentally tested a simple

and effective method, based on the Thermodynamic Un-
certainty Relation for inferring the rate of entropy pro-
duction σ and the corresponding thermodynamic force
field, in microscopic systems in non-equilibrium steady
states [48–50]. We have illustrated the effectiveness of
our method for a stochastically driven colloidal system
under different non-equilibrium conditions. We expect
that this scheme is easily generalizable to a larger num-
ber of degrees of freedom and higher dimensions.
It would be very interesting to apply it to other non-

equilibrium systems, particularly those, such as molec-
ular motors or certain cellular processes, where our

method can give a potentially exact estimate of the dis-
sipation in the system. Recently, Ref. [66] tried to quan-
tify the activity of a cell by measuring the power spec-
tral density of the fluctuations of position of a phago-
cytosed micron-sized bead inside a cell. As it is pos-
sible to also trap such beads inside a cell with optical
tweezers [66], our technique is ideally suited to be ap-
plied to such problems. Finally, in other recent work
[67], it has been demonstrated that inference schemes of
this kind can also be made to work for non-stationary
non-equilibrium states, further diversifying the scope of
this class of techniques.
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Materials and methods

Experiment

A single colloidal particle in a stochastically shaken trap

The experimental setup consists of a sample cham-
ber placed on a motorized xyz-scanning microscope
stage, which contains an aqueous dispersion of spheri-
cal polystyrene particles (Sigma-Aldrich) of radius r =
1.5 µm. The sample chamber consists of two stan-
dard glass cover-slips (of refractive index ∼ 1.52) on top
of one another. The thickness of the chamber is kept
∼ 100 µm by applying double-sided sticky tape in be-
tween the cover-slips. The aqueous immersion is made
out of double distilled water at room temperature, which
acts as a thermal bath. A single polystyrene particle is
confined by an optical trap, which is created by tightly
focusing a Gaussian laser beam of wavelength 1064 nm
by means of a high-numerical-aperture oil-immersion ob-
jective (100x, NA = 1.3) in a standard inverted micro-
scope (Olympus IX71). The trap is kept fixed at a height,
h = 12 µm from the lower surface of the chamber in or-
der to avoid spatial variation in the viscous drag due to
the presence of the wall. The corner frequency of the
trap is set to be 135Hz. For the first set of experi-
ments, the center of the trap is modulated (λ(t)) using
an acousto-optic deflector, along a fixed direction x in
the trapping plane, perpendicular to the beam propaga-
tion (+z). Thus, the modulation may be represented as a
Gaussian Ornstein-Uhlenbeck noise with zero mean and
covariance 〈λ(s)λ(t)〉 = A exp(|t−s|/τ0). The correlation
time τ0 is held fixed for all our experiments. We deter-
mine the barycenter (x, y) displacement of the trapped
particle by recording its back-scattered intensity from a
detection laser (wavelength 785 nm, co-propagated with
the trapping beam) in the back-focal plane interferom-
etry configuration. The measurement is carried out us-
ing a balanced-detection system comprising of high-speed
photo-diodes [68], with sampling rate of 10 kHz and final
spatial resolution of 10 nm.

In the second set of experiments, i.e. for those with the
microbubble, we employ a cover slip that is pre-coated
by a polyoxometalate material [69, 70] absorbing at 1064
nm as one of the surfaces of the sample chamber (typ-
ically bottom surface), and proceed to focus a second
1064 nm laser on the absorbing region. A microbub-
ble is thus nucleated - the size of which is controlled by
the power of the 1064 nm laser [69]. Typically we em-
ploy bubbles of size between 20-22 µm. Note that the
sample chamber also contains the aqueous immersion of
polystyrene particles. We trap a polystyrene probe par-
ticle at different distances from the bubble surface, and
modulate the trap centre in a manner similar to the ex-
periments without the bubble. The particle is trapped

at a axial height corresponding to the bubble radius.
The other experimental procedures remain identical to
the first set of experiments. An important point here
though, is the determination of the distance of the parti-
cle from the bubble surface. This we accomplish by using
the pixels-to-distance calibration provided in the image
acquisition software for the camera attached to the mi-
croscope, which we verify by measuring the diameters of
the polystyrene particles in the dispersion (the standard
deviation of which is around 3% as specified by the man-
ufacturer), and achieve very good consistency. Note that
we obtain a 2-d cross-section of the bubble as is demon-
strated in Fig. 4, and are thus able to determine the
surface-surface separation between the bubble and the
particle with accuracy of around 5%. During the exper-
iment, we also ensure that the bubble diameter remains
constant by adjusting the power of the nucleating laser
- indeed the bubble diameter is seen to remain almost
constant for the 100 s that we need to collect data for
one run of the experiment.

Numerical algorithm

Our aim is to maximise a cost function C which is a
function of a set of parameters w. We use a particle
swarm optimization algorithm [60]. We choose a domain
and initialise Np particles in that domain. The k-th par-
ticle follows Newtonian dynamics given by:

d

dt
ω

k = V
k (18a)

d

dt
V

k = A
k(ω). (18b)

Here ωk and V k are the position and velocity vector
of the k-th particle and Ak is a stochastic function that
depends on the position of all the particles. Different
variants of this algorithm use different A. The simplest
– the one that we use – is called the Original PSO. Let
us first define the following:

• The k-th particle carries an additional vector P k

which is equal to ωk for which the value of the func-
tion C as observed by the k-th particle was maxi-
mum in its history.

• At any point of time letG denote the position of the
particle in the whole swarm for which the function
has the maximum value.

The function A is given by

Ak
µ =W1δµνU

1
ν (P

k
ν − ωk

ν) +W2δµνU
2
ν (Gν − ωk

ν) (19)

Here the Greek indices run over the dimension of space.
W1 and W2 are two weights. The two terms in Eq. (19)
push the particle in two different directions: one towards
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the point in history where the particle found the func-
tion to be a maxima and the other towards the point
where the swarm finds the maximum value of the func-
tion at this point of time. These are multiplied by two
random vectors U1 and U2 of dimension same as the
dimension of space. Each of the components are inde-
pendent, uniformly distributed (between zero and unity),
random numbers.
We keep track of the highest value of the function seen

by the swarm and also the location of that point. There
are two major advantages to this over standard gradi-
ent ascent algorithms: one, it does not require evalua-
tion of the gradient of the function and two, it can be
parallellized straightforwardly. All the numerical results
reported in this paper are obtained using this algorithm.

Implementation of the algorithm

Here we describe how we applied the algorithm to nu-
merical/ experimental data. We generate numerical data
using first order Euler integration of Eq. (8) and Eq. (9)
with a time step of ∆t = 0.0001. In either case we gener-
ate many copies of trajectories of length 12.5s, and con-
struct the cost function in Eq. (4) using Eq. (5) and Eq.
(6). We have tried out two different choices of basis func-
tions to construct d(X). The first one is a Gaussian basis
in which we represent d(X) as,

d(X) =

M
∑

m=1

ωme
−

(x−xm)2

2b2
x e

−
(λ−λm)2

2b2
λ . (20)

Making use of the spatial symmetry of the problem, we
assume d(X) to be an anti-symmetric function, with
d(−X) = −d(X), and that reduces the dimensionality
of the problem by a factor of 2. Here M is the number of
Gaussian functions, and bi are the variance of the Gaus-
sian in the x and λ direction. The centers of the Gaussian
(xm, λm) are put equally spaced in a rectangular region
enclosing the data. Both M and bi are hyper parame-
ters, and we found that they had negligible effect on the
inference. We used M = 16 and b2x/λ = {x/λ}max/30.

Secondly, we have also tried a linear basis (motivated by
the prior knowledge of the linearity of the system) where
we take

d(X) = ω1x+ ω2λ. (21)

The particle swarm algorithm we use to find the maxi-
mum of the cost function in Eq. (4) in the space of weights
ω is made available here :
Since we have used a finite amount of data to construct

the cost function, it will be prone to statistical errors.
Therefore we independently maximise the cost function
for different 12.5s long data sets, and take their mean
value as the optimized estimate of σ. We show the value

of sigma inferred (σL) as a function of the number of steps
in the optimization algorithm for different 12.5s long data
sets in Fig. 6.

20 40 60 80 100 120
Steps

25

50

75

100

125

150

175

200

L

FIG. 6. The value of sigma inferred (σL) as a function of the
number of steps in the optimization algorithm for different
12.5s data sets, that are numerically generated for the same
parameter choice as in Figure 1b of the main text. The black
dashed-line corresponds to the theoretical estimate of σ for
this parameter choice.

With the numerical data, we also find that the optimal
field d∗ (see Eq. (6)) is proportional to the thermody-
namic fore field F (Eq. (7)). We demostrate this in Fig.
7.
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FIG. 7. Left: The thermodynamic force field (streamline
plots) from theory for the same parameter choice as in Figure
1b of the main text. Right: The optimal d∗ ∝ F obtained
from the algorithm for the same parameter choice.
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Supplemental Information

The heat dissipated in the medium for the case with the bubble

In this work, we have obtained an estimate for the average total entropy production of a colloidal particle maintained
in a steady state by being confined in a shaken trap (the stochastic sliding parabola model), under two different
experimental conditions, namely without and with a microscopic bubble in the vicinity of the trap. The average
total entropy production for a system in steady state is also the same as the heat dissipated by the system into the
surrounding bath (at constant temperature T ). This heat dissipated includes the heat associated with keeping the
system in a steady state (by shaking the trap) and, if there is a flow, the heat associated with the work done by the
flow on the particle. As we argue below, the latter component cannot be obtained by the short-time inference scheme,
and is related to a fundamental limitation of the applicability of the TUR [46] related to how the flow term is dealt
with.

We begin with a possible generic form of the Langevin equation in the presence of the bubble,

ẋ− ud = − (x− λ)

τd
+
√

2Dd η(t), (22)

λ̇ = − λ

τ0
+
√
2A ξ(t), (23)

where u, τ and D are taken to be slowly varying functions of x, and essentially treated as constants (ud, τd and Dd)
at a distance d from the bubble, where the particle is trapped.

First, we notice that under the transformations x → x′ = x − τdud, the above equations map to the Stochastic
sliding parabola model, with the parameters τ = τd and D = Dd. This observation also demonstrates that for the
above system, the mean position of the particle is no longer at the center of the trap, but is instead 〈x〉 = udτd. Now
we look at the entropy production in this system, using the standard definitions in Stochastic thermodynamics.

Since the system is in a stationary state, the actual rate of entropy production can be obtained in terms of the heat
(q) dissipated to the medium at a temperature T as,

σ =
q

T
. (24)

However there is an ambiguity on how to obtain the correct value of σ, arising from two choices of transformations
for the flow term under time-reversal [62].

The first approach is to let the flow term reverse it’s sign under time-reversal, as physically meaningful for a velocity
variable. This gives an estimate of medium entropy production [62] as,

σ =
q

T

=
〈(ẋ− ud)(−∇xV )〉

T

=
〈(ẋ− ud)(λ− x)〉

T
.

(25)

The observed trajectories of the colloidal particle, on the other hand, only show the effect of the flow ud as a constant
external force acting on the system, which only amounts to shifting the mean position of the colloidal particle in the
direction of the flow. This leads to a second (naive) approach to the entropy production in this system as,

σ′ =
〈ẋ(−∇xV + udτd)〉

T

=
〈ẋ(λ− x+ udτd)〉

T
.

(26)

The physical distinction between the two definitions is as follows: when there is a background flow in the medium,
this flow has to constantly do work against the confining potential to maintain the particle in it’s ”new” average
position.This is an additional contribution to entropy production, that is only accounted for in the definition in Eq.
(25). In other words, the particle trajectories do not carry information about this and hence the short-time inference



12

scheme, which is based on TUR and the information carried by particle trajectories, only predicts the quantity σ′ in
Eq. (26). σ and σ′ are related by,

σ = σ′ +
u2dτd
T

,

≥ σ′.

(27)

When the flow velocity ud = 0, they are the same.

Currents in the non-equilibrium stationary state

Systems in a non-equilibrium stationary state are characterized by a non-vanishing current in the phase space [2].
For the colloidal system we consider, these currents can be estimated from the trajectory data as,

[

Jx(x, λ)
Jλ(x, λ)

]

=

[〈

x(t+∆t)− x(t)
λ(t+∆t)− λ(t)

〉

x,λ

(28)

−
〈

x(t)− x(t−∆t)
λ(t)− λ(t−∆t)

〉

x,λ

]

Pss(x, λ)

2∆t
. (29)

For the case without the bubble, this estimate converges to the expressions in Eq. (10b) if we have sufficient amount
of data. In Figure. 8, we demonstrate this for certain parameter choices in Fig. 2.
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FIG. 8. Steady state currents obtained from experimental data (Eq. (28)) compared to theory (Eq. (10b)) for certain parameters
in Fig. 2. The parameters correspond to A = [0.1, 0.15, 0.3, 0.2]× (0.6× 10−6)2m2s−1 in clockwise order.

.



13

Using Eq. (28) we further estimate currents in the case when the bubble is present in the vicinity of the optical
trap. We find that the phase space currents are reduced in magnitude. We demonstrate this with surface plots of the
two components of the currents in Fig. 9 for the case discussed in Figure 4 in the main text.

FIG. 9. Surface plots of the two components of the currents (Jx and Jλ) (Eq. (28)) for the case discussed in Figure 4 of the
main text. Left: Case without the bubble in the vicinity of the optical trap. RIght: Case with the bubble in the vicinity of the
optical trap. We find that the magnitude of the currents are reduced in the vicinity of the bubble.

Parameter values

Figure 1: τ = 1
2π fc

= 0.0012, τ0 = 0.0025,D = 1.6452×10−13, A = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35]×(0.6×10−6)2.

Figure 2: fc = 135± 10, τ0 = 0.0025, D = 1.6452× 10−13, A = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35]× (0.6× 10−6)2.
The shaded light-blue region accounts for a ±10 error bar from the fc fluctuations in the experiment.

Figure 4: fc = 57± 3 Hz, τ0 = 0.025, D = 1.6452× 10−13, A = 0.3× (0.6× 10−6)2.
Figure 5: fc = 135± 10 Hz, τ0 = 0.0025, D = 1.6452× 10−13, A = 0.3× (0.6× 10−6)2.



Figures

Figure 1

The inference algorithm tested on numerically gener- ated data. a) Brownian trajectories of the Stochastic
sliding parabola for A = 0:1, 0:25 and 0:35. b) The inferred entropy production rate plotted against the



number of steps in the op- timization process for A = 0:15 with Δt = 0:0001. c) Inferred entropy production
as a function of the parameter A.

Figure 2

Inference algorithm tested on the experimental data for different values of the parameter A. The blue line
corre- sponds to the theoretical value, and the squares corresponds to σ estimated from the experimental
data. The shaded blue region accounts for fc uctuations theoretically (see the sup- plemental
information).

Figure 3



See manuscript for full �gure caption.

Figure 4

The colloidal system in the presence of the bubble. a) The microbubble - colloidal particle system. b)
System trajectories without (red) and with (green) the bubble in the neighbourhood of the colloidal
particle. We see that the colloidal particle is strongly con ned in the presence of the bubble.



Figure 5

TUR estimate of entropy production in the colloidal system in the presence of the bubble, as a function of
the distance from the surface of the bubble.

Figure 6



The value of sigma inferred (σL) as a function of the number of steps in the optimization algorithm for
different 12.5s data sets, that are numerically generated for the same parameter choice as in Figure 1b of
the main text. The black dashed-line corresponds to the theoretical estimate of σ for this parameter
choice.

Figure 7

See manuscript for full �gure caption.



Figure 8

See manuscript for full �gure caption.



Figure 9

Surface plots of the two components of the currents (Jx and Jλ) (Eq. (28)) for the case discussed in
Figure 4 of the main text. Left: Case without the bubble in the vicinity of the optical trap. Right: Case with
the bubble in the vicinity of the optical trap. We  nd that the magnitude of the currents are reduced in the
vicinity of the bubble.


