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Simple Summary: Radiotherapy is commonly used to treat inoperable locally advanced lung cancer.
Despite the use of sophisticated modern planning and imaging techniques to target the tumour
and minimise dose to normal lung tissue, patients can suffer from acute and chronic respiratory
problems after treatment. Currently, our understanding of the impact that radiotherapy has on
patients’ lungs is inadequate. We have, therefore, proposed a novel classification of the damage to the
lung tissue, as seen on CT scans after a course of radiotherapy to a lung tumour. We have used deep
learning algorithms to allow large numbers of CT scans to be labelled at the level of the individual
voxel according to the degree of damage. The dose delivered to the tumour and the change in lung
function of the patient after treatment both correlated well to the degree of radiological change
measured. Our novel, automated classification combined with a dedicated image registration method
has demonstrated an important clinical application that could be used to improve radiotherapy
delivery in the future by allowing us to precisely track the changes seen after radiation treatment.

Abstract: We present a novel classification system of the parenchymal features of radiation-induced
lung damage (RILD). We developed a deep learning network to automate the delineation of five
classes of parenchymal textures. We quantify the volumetric change in classes after radiotherapy
in order to allow detailed, quantitative descriptions of the evolution of lung parenchyma up to
24 months after RT, and correlate these with radiotherapy dose and respiratory outcomes. Diagnostic
CTs were available pre-RT, and at 3, 6, 12 and 24 months post-RT, for 46 subjects enrolled in a clinical
trial of chemoradiotherapy for non-small cell lung cancer. All 230 CT scans were segmented using our
network. The five parenchymal classes showed distinct temporal patterns. Moderate correlation was
seen between change in tissue class volume and clinical and dosimetric parameters, e.g., the Pearson
correlation coefficient was ≤0.49 between V30 and change in Class 2, and was 0.39 between change
in Class 1 and decline in FVC. The effect of the local dose on tissue class revealed a strong dose-
dependent relationship. Respiratory function measured by spirometry and MRC dyspnoea scores
after radiotherapy correlated with the measured radiological RILD. We demonstrate the potential of
using our approach to analyse and understand the morphological and functional evolution of RILD
in greater detail than previously possible.
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1. Introduction

Lung cancer is the leading cause of cancer-related death worldwide [1]. In inopera-
ble locally advanced non-small cell lung cancer (NSCLC), chemo-radiation (CRT) is the
standard treatment. Eligible patients are also offered up to 12 months of a Programmed
death-ligand 1 inhibitor [2]. The lung is one of the most sensitive tissues to ionising radia-
tion, and this limits the dose that can be delivered to lung tumours [3]. Radiation-induced
lung damage (RILD) is divided into an acute, reversible phase, radiation pneumonitis, and
a late, permanent, fibrotic phase [4].

Radiation damage is caused by both direct nuclear and mitochondrial DNA damage,
and the generation of free radicals. Within minutes of irradiation, altered gene expression
can be detected and growth factors, such as TGF-ß, PDGF and interleukin 1, are released [3].
Two distinct pathophysiological mechanisms of RILD have been described [4]. Classic RP
occurs in-field and follows radiation to large volumes of lung parenchyma. A three-phase
model of the histological changes (an early, intermediate and late phase) is described. The
early or latent phase is visible only with electron microscopy, which reveals degenerative
changes to type I and type II pneumocytes, thickened secretions of mucus from goblet cells,
basement membrane swelling and changes to endothelial cells [4,5]. This early phase is
dose dependent and does not generally occur at doses <10 Gy [5]. Damaged cells lead
to cytokine release, e.g., TNF alpha, which leads to an acute inflammatory, exudative
pneumonitis: the intermediate phase. The final, fibrotic phase is a result of pathological
repair of the acute inflammatory insults. Fibroblasts produce collagen after stimulation
by the acute phase proteins, particularly TGF-beta. This leads to a lack of lung elasticity,
volume shrinkage and scarring. There is accompanying vascular damage, a decrease in
type I pneumocytes and a return of type II pneumocytes.

This three-stage model, which presents a dose-dependent response to radiation,
though widely cited, is a simplification. RILD is modulated by a host of genetic, en-
vironmental and psychological variables that are not yet well understood. An individual
patient’s response to thoracic irradiation is somewhat unpredictable and sometimes out of
proportion to the dose or volume of lung irradiated. Furthermore, radiological appearances
and clinical symptoms are often poorly correlated [6]. It has been suggested that the three-
stage model, derived largely from animal studies, or human studies where single dose,
whole lung irradiation is administered, may not be clinically applicable to fractionated
radiotherapy [5].

The incidence of symptomatic RILD is estimated to be 15–40% with a mortality rate of
<2–4% [7,8]. Clinically, radiation pneumonitis manifests within weeks to months after the
completion of radiotherapy. It presents with the classic triad of dyspnoea, non-productive
cough and hypoxaemia. Pulmonary function tests usually reveal a restrictive defect due to
volume loss. Gas exchange is also impaired and a fall in diffusion capacity may be seen.

Patient, tumour and treatment factors affect the likelihood of developing RILD [9] and
its severity. Chemotherapy can have a synergistic effect with radiotherapy to exacerbate
RILD [10]. Immuno-oncology (IO) therapy can cause pneumonitis, which is a widely
recognised complication [11]. Rates of interstitial lung disease with IO agents are reported
at rates between 2.7% and 3.5% [10]. It is likely that by priming the immune system, RT
exacerbates this [12,13]. A secondary analysis of KEYNOTE-001 demonstrated that previous
RT increased the incidence of pulmonary toxicity in patients receiving pembrolizumab [13].

A dose-response relationship can be plotted between Mean Lung Dose (MLD) and
probability of radiation pneumonitis (or RP). Various Vx values (% of lung volume re-
ceiving ≥ X Gy) are associated with RP risk. There is no sharp dose threshold below
which there is no risk of RP. Different dosimetric parameters are closely correlated within
individual datasets, suggesting that there is no optimum threshold [14]. Widely accepted
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clinically-useful normal lung tissue tolerance doses allow the reasonably effective and
safe deployment of radiation for lung tumours [14]. However, dose escalation remains
an important ambition for radiation oncologists with the hope of improving survival [15].
The improved outcomes achieved for this patient cohort mean that clinicians must now
pay more attention to the morbidity of treatment which patients can expect to endure
for a greater period of time than their historical counterparts due to prolonged overall
survival [16].

Despite a number of published classification systems [17–21], there are not clinically
useful RILD classification to allow detailed, quantitative analysis of the radiological changes
seen after RT, or that have known correlations with clinical or dosimetric measures. In order
to address this, in 2018, our group published a novel method to quantify RILD with twelve
automated image-based biomarkers to allow precise, objective and continuous measures
of changes on CT scans following RT [22]. The biomarkers track changes to the size and
shape of the lungs, the parenchyma and pleural thickness. The biomarkers have been used
to track the evolution of RILD over time and were able to differentiate patients into two
distinct subtypes according to the temporal pattern of radiological RILD manifested [23].

However, the biomarkers characterised parenchymal change by simply thresholding
the lung tissue into ‘normal lung’ and ‘consolidation’ based on the HU value. This approach
was an over-simplification and was unable to distinguish the different morphological
subtypes of parenchymal change that could be seen in the images. Furthermore, the
dosimetric correlations presented in [23] used only global DVH metrics and did not study
the relationships between local dose and parenchymal change as, at that time, it was not
possible to perform meaningful lung registrations due to the magnitude of the geometrical
changes resulting from long-term RILD.

Our group has recently been undertaking work to address the issues raised above.
Firstly, we developed a novel deformable registration method that enabled us to register the
follow-up CT scans and the baseline scan despite the extreme geometrical and anatomical
changes secondary to RILD occurring between the images [24]. This technique, rather
than using the image intensities to guide the registrations, instead uses salient features
between the images such as the lung boundary, the major airways and the blood vessels, to
successfully register CT scans of the same patient up to 24 months apart. Secondly, we have
developed a novel automated classification of parenchymal texture at the voxel-wise level,
which enables us to study changes to parenchymal tissue due to RILD. To achieve this,
we trained a deep-learning network using a two-stage approach akin to active learning.
The technical details of this methodology are presented in an accompanying paper in this
special issue [25].

The work presented in this paper utilises the recent advances outlined above and
applied them to a clinical dataset to quantify parenchymal change due to RILD at a level
of detail not previously performed. This includes longitudinal analysis of the proportion
of the different tissue classes in the lungs, analysis of the relationships between the tissue
classes at each time point and global dose metrics and measures of respiratory function,
and investigating the relationship between local dose and changes to the parenchymal
tissue over time.

2. Materials and Methods

IDEAL-CRT [26] was a multicentre, UK, phase 1/2, single arm, dose escalation trial in
non-small cell lung cancer. Patients received isotoxically individualised tumour radiation
doses of 63 to 71 Gy in 5 weeks or 63 to 73 Gy in 6 weeks, delivered concurrently with two
cycles of cisplatin and vinorelbine. A total of 118 patients (Stage IIB-IV) were recruited
from 9 UK centres. All patients gave informed, written consent. Scans of 46 patients who
had CT scans at all follow-up points (3, 6, 12 and 24 months post RT) were available. For
the baseline scans, a diagnostic CT obtained just prior to RT was used rather than the
RT planning scan, as these were generally of superior quality. The RT planning scan, RT
structures and dose distribution data were also available for all patients. MRC dyspnoea
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scores and spirometry data at baseline and follow-up were available for most patients (see
Tables 1 and 2 for full details).

Table 1. Patient characteristics and accompanying respiratory data.

Patient Characteristics Number (%) Median (Range)

Age 64 (42–83)
Gender Male 31 (67)

Female 15 (33)
AJCC Stage IIB 3 (7)

IIIA 30 (65)
IIIB 13 (28)

Fractionation Schedule 6 weeks 36 (78)
5 weeks 10 (22)

Radiotherapy Technique Conformal 3D 45 (98)
VMAT 1 (2)

Prescribed dose (Gy) 66.75 (63–73)
PTV (Planning Tumour Volume) (cm3) 360.00 (139–821)

MLD (Mean Lung Dose) 14.56 (8.75–19.96)
Lung V20 Gy 22.58 (13.86–43.61)
Progression All 20 (43)

Loco-regional 15 (33)

Table 2. IDEAL-CRT Respiratory data available for patients included in this study.

Metric Time Point Available (out of 46)

FVC Baseline 46
3 m 43
6 m 40

12 m 40
24 m 35

FEV1 Baseline 46
3 m 43
6 m 40
12 m 40
24 m 36

TLCO Baseline 46
3 m 40
6 m 37
12 m 38
24 m 35

MRC Score Baseline 43
3 m 43
6 m 43
12 m 41
24 m 40

We have proposed a novel classification of lung parenchyma texture at the voxel-
wise level and developed a deep learning-based method of its automated annotation.
Following a detailed study of the texture changes seen in our patient cohort, and a review
of established classifications in the literature [17,18,20,21,27–32], we devised a five-class
classification based on the morphology and texture of the lung parenchyma. The full details
are presented in our accompanying paper in this Special Issue [25]. Table 3 lists the different
classes and Figure 1 shows examples of the classes on several CT slices.
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Table 3. Lung Parenchyma classification.

Class Description

1 Normal, healthy or emphysematous lung, without any high-density abnormality and representing most of the lung
parenchymal tissue prior to radiation, as well as areas not affected during the radiotherapy.

2 Areas mostly characterised by changes similar to ground-glass opacity.
3 Areas with mixed ground-glass opacity and overlaid reticulation.
4 Mostly solid lung tissue, either aerated opaque tissue or tissue with a density just below dense opacity.

5 Homogeneous, dense lung tissue, which could represent a number of pathological entities, including tumour,
pleural effusion or collapse.
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To automate the classification, the data were divided into a development set (40 pa-
tients) and a hold-out test set (6 patients). An initial manual labelling of the development
CT scans was performed by a radiation oncologist (E.C.) with review and refinement by a
thoracic radiologist (J.J.). As the manual labelling was challenging, and involved some un-
certainty in the labelling process, we decided to adopt a two-stage learning approach, akin
to active learning. We used the initial manual labels on the development dataset to train
an initial ensemble of Convolutional Neural Networks (CNNs), of which the results were
combined to form an initial automatic labelling of the development data. The initial manual
and automatic labels were carefully reviewed and edited to produce a single revised set of
ground-truth labels for the second stage of training and evaluation. An expanded ensemble
of CNNs were then trained on the revised labels, and the results were evaluated on the
hold-out test set. The ground truth labels on the hold-out test set were generated entirely
manually, but only after the revised ground truth labels on the development set had been
generated to ensure they were consistent with the revised labels.

In order to propagate the Planning Tumour Volume (PTV) and local dose distribution
onto the baseline and follow-up CT scans, the planning RT scans were registered with
each of the five available diagnostic CT scans obtained before and following treatment;
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see Figure 2 for an example. This was performed using our recently developed novel
deformable registration method, which aligns images based on the salient features between
the images. Briefly, this method does not use the intensity information in the images to
align the images, but instead uses segmentations of the lungs and major airways, together
with blood vessels detected using a ‘vesselness’ filter [33]. These features are then used to
drive a multi-channel deformable registration. The lung segmentations were performed
manually and the airways segmentations were performed automatically using the open-
source Pulmonary Toolkit [34] and subsequently reviewed and manually edited if needed
using ITK-SNAP [35]. The ‘vesselness’ [33] of each scan was calculated using the Pulmonary
Toolkit. The multi-channel registrations were performed using the opensource NiftyReg
software [36]. For each patient, the planning scans were registered to all of the diagnostic
CT scans, and the registration results were used to propagate the PTV and local dose
distribution onto the scans at all time points. All registrations were manually reviewed and
judged to be of sufficient quality, except for one patient, who could not be registered due
to the severity of lung damage, meaning airways and vessels could not be aligned. Full
details have been published elsewhere [24].
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To analyse the prevalence of each parenchymal class at the different timepoints, the
relative volume (as a percentage of the total lung volume) of each parenchymal class at
every time point was calculated for each individual, and the mean values over all 46 patients
were calculated and visualised as pie charts.

To analyse the evolution of the parenchymal classes over time, the difference in the
relative volumes of the parenchymal classes was calculated between each follow-up CT
scan and the pre-RT scan, for each individual. For this analysis, the voxels within the PTV
were excluded from all timepoints so that presence of the tumour in the baseline scan did
not influence the analysis and only the effects on lung tissue were studied. The registration
results are required to transform the PTV on to each of the follow-up CT scans, so the one
patient for whom the registrations failed was excluded from this (and all further) analysis.
The differences in the relative volumes of the parenchymal classes, and their distribution
over all individuals, were visualised using boxplots. A Friedman test was used to test for
statistical differences between the distributions at different time points.
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The relationship between the global dose and the change in the prevalence of the
different tissue classes at each timepoints was analysed. For each follow-up CT scan, the
Pearson correlation was calculated between the relative volume change of each tissue class
and the following dosimetric parameters: V5, V10, . . . , V60, Mean Lung Dose (MLD), Max
Lung Dose, the GTV volume and the PTV volume.

The relationships between the changes in the tissue classes and the changes in lung
function were also investigated. Four different respiratory parameters related to lung
function, FVC, FEV1, TLCO and MRC score, were measured at most timepoints for most
patients (Table 1b). The changes in the respiratory parameters between each follow-up
timepoint and the baseline measurements were calculated, and the Pearson correlation was
calculated between the changes in respiratory parameters and the changes in tissue classes.

The relationship between the local dose distribution and the tissue classes distribution,
and how this changed over the timepoints, was also explored. Each diagnostic CT scan was
divided into subvolumes based on the propagated dose distributions, with a subvolume
for each 5 Gy physical dose band up to 65 Gy, and then a final subvolume for all lung
voxels receiving more than 65 Gy. For each patient and timepoint, the relative volumes
of the tissue classes within each subvolume were calculated, and the average values were
calculated for all patients. These results were visualised and qualitatively analysed using a
stacked bar graph.

All statistical analysis was performed using Microsoft Excel for Mac Version 16.16.27,
RStudio Version 1.2.1335 and IBM SPSS Statistics Version 27.

3. Results

The characteristics of the 46 patients included in this study are summarised in Table 1.
The parenchymal tissue classes developed in our accompanying paper [25] are described
in Table 3 and examples are given in Figure 1. The classes (1–5) were designed to represent
texture with increasing density.

Figure 3 shows the mean proportion of each parenchymal class over all 46 patients at
each timepoint. It can be seen that the prevalence of the different classes is broadly similar
between the different timepoints, although the exact proportion of each class does vary
between the timepoints. Class 1 is most prevalent for all timepoints and ranges from 90.6%
at 6 months to 93.5% at the pre-RT scan. The next most prevalent class is Class 2, which
ranges from 4.0–6.5%, followed by Class 5, which ranges from 1.4% to 2.9%. Note, as the
PTV voxels were not excluded from this analysis, most of the Class 5 tissue in the pre-RT
scan corresponds to the tumour. Classes 3 and 4 both represent very small proportions of
the lungs, ranging from 0.25–0.74% and 0.29–1.25%, respectively.

Figure 4 shows a boxplot for each parenchymal class, presenting the difference in the
relative volume of that class between each of the follow-up CT scans and the pre-RT scan
for the 45 patients that were successfully registered. Each of the classes displays its own
distinctive temporal pattern. Prevalence of Class 1, which best represents undamaged tissue,
shows a consistent decrease compared to pre-RT. This is most pronounced at 6 months
and then gradually returns towards baseline at later timepoints. Classes 2 and 3, which
represent ground glass and are, therefore, radiological markers of pneumonitis, are most
prevalent at 3–6 months and then return towards baseline values at 24 months. Classes
4 and 5, which represent more solid textured parenchyma, behave differently from each
other. Class 4 peaks at 6 months, while Class 5 continues to increase in prevalence up
to 24 months. The latter correlates with the increased incidence of late lung fibrosis and
collapse. The former may be an intermediary stage between the more acute Classes
(2 and 3) and Class 5, representing evolving fibrosis. Friedman tests showed that there
were statistically significant differences between the volumes at the time points connected
by a horizontal line.
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Figure 5 shows a Pearson correlation matrix for a number of global dose metrics
and the relative volume changes of the different tissue classes at 3 months. Mild to
moderate correlations are seen (up to r = 0.5). As expected, volume of Class 1 is negatively
correlated with dose, while the other tissue classes show a positive correlation. The
strongest correlation between the tissue classes is a negative correlation (r =−0.91) between
the volumes of Class 1 and Class 2, suggesting that the decrease in default lung tissue at
3 months is mostly a result of an increase in ground glass texture (a classical radiological
hallmark of radiation pneumonitis). The dosimetric variables that most strongly correlated
with change in tissue class volume are lung V20–V50 Gy and mean lung dose. Lung V30
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Gy was correlated with change in Classes 1, 2, 3 and 4 with r values of −0.45, 0.5, 0.31 and
0.42, respectively. Change in Class 5 shows the least strong correlations with global dose.
Similar patterns are seen at other follow-up time points (see Figures S1–S3).
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Figure 6 shows a Pearson correlation matrix presenting the relationship between
change in respiratory outcome metrics between baseline and 24 months and the changes in
volume of tissue classes at 24 months. A moderate correlation was seen between change
in Classes 1 and 2, and changes in the FVC, DCLO and MRC dyspnoea score. A weak
correlation was observed between changes in volume of Classes 4 and 5 and changes in the
MRC dyspnoea score. However, at earlier time points, the correlations were weaker. See
Figures S4–S6 for the other time points.
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Figure 7 represents the relationship between the local dose and the distribution of the
tissue classes, and how this changed over the different timepoints. It can be seen that the
prevalence of tissue Classes 2–5 increases more in regions of higher dose, and remains fairly
constant in regions of low dose, indicating that the changes to the tissue classes are indeed
caused by radiation. It can also be seen that the dose response and temporal evolution is
different for the different tissue classes. There is an initial increase in Class 2 at 3 months,
which is approximately linearly related to local dose, and then a gradual decrease over
later timepoints. There is also an increase in Class 3 at 3 months, but this occurs more
evenly over the mid- and high-dose regions, and then rapidly decreases at later time points.
Likewise, Class 4 increases at 3 months in the mid- and high-dose regions, but interestingly,
decreases in the mid-dose regions but continues to increase in the high-dose regions at
6 months, and then gradually decreases in all regions at 12 and 24 months. Class 5 increases
over all time points, but at 3 months, the increase is approximately the same in the mid- and
high-dose regions, whereas at later time points, there is an increasingly linear relationship
between the increase in Class 5 and the local dose.
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Figure 7. Stacked bar graph visualising the relationship between the local dose and the distri-
bution of the tissue classes, and how this changed over the different timepoints. The different
colours correspond to the different tissue classes and each column represents a 5 Gy dose bin from
0–5 Gy–60–65 Gy (with a final column for >65 Gy) from each of the different time points.
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4. Discussion

The relationships between radiotherapy dose, radiological changes and clinical out-
comes are complicated. There are a large number of important clinical variables that make
its analysis complex. Nonetheless, in this work, we have demonstrated that our novel
classification system of lung parenchyma is a useful tool for studying RILD and uncov-
ering patterns in its evolution and relationship to dose. Our classification system tracks
longitudinal change that are related to both global and local prescribed RT dose. The global
metrics with the strongest correlations were seen at 3 months and include r values of up to
0.5 between Class 2 and lung V30 Gy. Classes 1–4 all showed consistent mild to moderate
correlation with a number of global dose metrics. Clinical outcomes (spirometry and MRC
dyspnoea score) were available for most patients but only showed weak correlations with
parenchymal changes. This is likely due to the number of confounders that can affect these
measures. Spirometry is a summary measure of lung physiology and is determined by
co-morbidities and patient compliance, amongst other things. Signals from spirometry that
are directly affected by RILD can easily be lost amongst the noise of other variables [37].
The MRC dyspnoea score has even greater problems due to its subjective nature, and is
significantly influenced by cardiac, orthopaedic and psychological morbidity as well as
RILD and other respiratory conditions.

Given the complexity discussed above, this work was motivated by the recognition
that the relationship between radiotherapy dose, radiological changes and clinical out-
come is not yet adequately understood. There are several widely used clinical scoring
systems for RILD based on a combination of symptoms and radiological severity [38].
The morphological changes are described imprecisely and terms such as ‘patchy’ and
‘dense’ are not formally defined. The clinical outcomes are categorised largely on their
required therapeutic interventions and there is little emphasis on the functional impact on
the patient [6].

Faria et al. have highlighted that two of the most commonly used scoring systems
(RTOG/EORTC and NCI-CTC) are very poorly correlated with each other, and that radio-
logical toxicity was rarely associated with symptoms [6]. Tucker et al. [38] have similarly
shown that using NCI-CTC, CTCAE and RTOG as scoring systems for RILD give rise to
markedly different normal tissue complication probabilities for a particular MLD, suggest-
ing that the existing radiobiological models of RILD are not reliable.

A number of attempts have been made to improve upon these manual classification sys-
tems. Computational approaches have the advantages of allowing quantitative, continuous,
objective and automated classification of radiological or functional lung damage. One of
the most common approaches has been to use Hounsfield Unit (HU) density [31,32,39–55].
Palma et al. [52] performed deformable image registration on the phase of the planning
scan with the lung volume most similar to the 3-month follow-up CT images of patients
treated with SABR. Rigid registration was applied manually and then a modified B-spline
Free Form Deformation algorithm was used to warp structures to achieve the required 3D
displacement. Voxel HU density histograms were created and mean lung densities were de-
rived. There was very poor correlation between HU density changes in the whole lung and
the severity of physician graded radiological pneumonitis; however, local density changes
around the PTV correlated strongly with increased radiological pneumonitis (Spearman’s
r = 0.75).

A more recent example of the same technique [54] studied 31 patients receiving SABR
to investigate the relationship between normal lung CT density changes with dose accuracy
and outcome. Each patient was assigned a CTCAE RP grade. HU changes in 5 Gy dose bins
from 5–45 Gy were assessed in the peri-tumoural region (ITV+ 3 cm margin). The 0–5 Gy
lung volume was used as a baseline correction of the density changes. The average lung
density changes in the peritumoural region for each of the 5–45 Gy dose bins were tabulated
and compared across different dose algorithms. There was a strong positive relationship
between peritumoural lung density changes and RP grade (Spearman’s r = 0.76). Positive
correlation was also observed between RP and HU changes in the region covered by V20
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for all algorithms (Spearman’s r ≥ 0.738). Additionally, V20, MLD and gEUD (generalised
equivalent uniform dose) were significantly correlated with RP grade (p < 0.01).

Bernchou [32,56,57] et al. used a similar approach to investigate longitudinal change
of HU density after IMRT for NSCLC. They found that normal tissue showed a significant
increase in HU density after RT within even low dose areas. They noted that the evolution
of changes differed between the low- and high-dose regions. Lung parenchyma receiving
doses <45 Gy underwent a decrease in HU density after 3 months, while areas receiv-
ing 50–60 Gy became denser between 3–9 months before then decreasing again. Beyond
12 months, the density changes stabilise across all dose intervals. The bimodal time distri-
bution supports a model of RILD characterised by early (RP) and late (fibrotic) changes.

The advantage of using HU density includes its quantitative, objective and auto-
mated characterisation of RILD. There are similarities between RILD graded by traditional,
physician-assessed measures and using HU density. However, the technique has impor-
tant limitations. Firstly, by simply recording HU density, it is not possible to distinguish
different causes for HU changes, for example tumour recurrence, infection, intravascular
contrast injection or lobar collapse. Parenchymal changes are heterogenous in aetiology
and morphology and to reduce them to mean HU discounts information contained in the
CT scan. Simply measuring different average HU in an area of lung cannot distinguish
between a small change in density at all voxels or a large increase in density across a small
number of voxels. Furthermore, HU density can be confounded by a number of scan
artefacts, such as the use of contrast, the presence of vessels, differing scan acquisition
protocols, respiratory motion, etc. The advantage of our classification system over the ones
above is that by developing a novel texture-based analysis, we are able to describe density
changes with greater richness than simply using HU density.

Other groups have developed sophisticated techniques for analysing the lung
parenchyma after radiotherapy [50,51] by using radiomics. While these techniques can
uncover relationships between texture information in the images and the development of
radiation pneumonitis and/or the radiotherapy dose, the radiomic features they use to do
this do not provide a direct classification of the radiological changes, as seen in the scans
by a human observer, as the tissue classes used in this work aim to do. The long-term aim
of this work is to better understand the radiological manifestations of RILD, their evolution
over time, and the complex relationships they have with dose, clinical outcomes, and other
factors. Therefore, we have developed novel tools, such as the automated parenchymal
tissue classification system presented in our accompanying paper [25], and our method
for registering heavily damaged lungs [24], which will enable us to achieve a better under-
standing of RILD, rather than employing radiomics or modern learning-based approaches
that may produce strong predictive models but do not provide any insights that can help
further our understanding of RILD.

One of the potential weaknesses of our classification system is that the individual
classes binned several distinct radiological entities. Class 5, for example, which represents
opacity on a CT scan, could be the result of tumour, lung collapse or pleural effusion. Pleural
effusions, in particular, often take up a significant proportion of the intrathoracic cavity.
Being idiosyncratic and temporally unstable, they may have weakened the dosimetric
correlations seen with this class. It may be helpful to introduce additional classes to
represent for example, tumour, atelectasis and pleural effusion in order to further increase
the utility of the classification schema. Nonetheless, we have developed a far richer
classification of texture changes than that employed by using HU density alone.

The study presented in this paper is limited due to relatively low patient numbers,
and therefore, did not aim to provide definitive clinical conclusions about RILD. Rather, it
is a proof of principal study that aimed to demonstrate the potential of our tools to provide
valuable insights into RILD, and the relationships between parenchymal tissue damage and
the global and local dose and respiratory function. Another limitation of this study is that
our dataset is from a trial with an isotoxic dose design, and there may be less heterogeneity
between patients than in a non-trial data set, which may have masked correlations between
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dose and parenchymal texture. The IDEAL trial was published in 2016, and accordingly,
most of the patients received 3D conformal RT. In future work, we will fully automate our
methods so that they can be applied to large datasets with many patients. We will then
employ these to study both large retrospective cohorts of non-trial patients, including those
treated with VMAT radiotherapy [58], as well as prospective datasets that will include
richer clinical data, such as patients’ reported outcome measures.

5. Conclusions

We have demonstrated that the recent tools we have developed for studying the
radiological manifestations of RILD can provide novel insights into the temporal evolution
of RILD and its relationship to global and local dose and respiratory outcomes. Our
registration method for heavily damaged lungs was able to successfully register the pre-
RT scan to the follow-up CT scans in 45 of 46 patients. The parenchymal tissue classes
we developed demonstrated statistical correlation to both global and local dose metrics
in our study, and have a distinct evolution over time. The dosimetric variables most
strongly correlated with change in tissue class volume are lung V20, V30 Gy and mean
lung dose. Although less strong, there is a relationship between the tissue class changes
and respiratory outcomes, particularly the MRC dyspnoea score, which directly represents
a patient’s functional status. We have demonstrated the potential of using our tools to
analyse and understand the evolution of the radiological manifestation of RILD in greater
detail than previously possible, and we hope this can ultimately be used to inform the
refinement of RT treatment in order to reduce the burden of morbidity on lung cancer
patients as they begin to live longer with their disease.
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10.3390/cancers14040946/s1, Figure S1: Pearson Correlation Matrix of Dosimetric metrics against
Parenchymal Classes at 6 months, Figure S2: Pearson Correlation Matrix of Dosimetric metrics against
Parenchymal Classes at 12 months, Figure S3: Pearson Correlation Matrix of Dosimetric metrics
against Parenchymal Classes at 24 months, Figure S4: Pearson Correlation Matrix of Respiratory
metrics against Parenchymal Classes at 3 months, Figure S5: Pearson Correlation Matrix of Respi-
ratory metrics against Parenchymal Classes at 6 months, Figure S6: Pearson Correlation Matrix of
Respiratory metrics against Parenchymal Classes at 12 months.
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