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Abstract. Smart contracts are computer programs that are executed
by a network of mutually distrusting agents, without the need of an
external trusted authority. Smart contracts handle and transfer assets of
considerable value (in the form of crypto-currency like Bitcoin). Hence,
it is crucial that their implementation is bug-free. We identify the util-
ity (or expected payoff) of interacting with such smart contracts as the
basic and canonical quantitative property for such contracts. We present
a framework for such quantitative analysis of smart contracts. Such a
formal framework poses new and novel research challenges in program-
ming languages, as it requires modeling of game-theoretic aspects to ana-
lyze incentives for deviation from honest behavior and modeling utilities
which are not specified as standard temporal properties such as safety
and termination. While game-theoretic incentives have been analyzed in
the security community, their analysis has been restricted to the very spe-
cial case of stateless games. However, to analyze smart contracts, stateful
analysis is required as it must account for the different program states
of the protocol. Our main contributions are as follows: we present (i) a
simplified programming language for smart contracts; (ii) an automatic
translation of the programs to state-based games; (iii) an abstraction-
refinement approach to solve such games; and (iv) experimental results
on real-world-inspired smart contracts.

1 Introduction

In this work we present a quantitative stateful game-theoretic framework for
formal analysis of smart-contracts.

Smart Contracts. Hundreds of crypto-currencies are in use today, and invest-
ments in them are increasing steadily [24]. These currencies are not controlled
by any central authority like governments or banks, instead they are governed
by the blockchain protocol, which dictates the rules and determines the out-
comes, e.g., the validity of money transactions and account balances. Blockchain
was initially used for peer-to-peer Bitcoin payments [43], but recently it is also
used for running programs (called smart contracts). A smart contract is a pro-
gram that runs on the blockchain, which enforces its correct execution (i.e., that
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it is running as originally programmed). This is done by encoding semantics
in crypto-currency transactions. For example, Bitcoin transaction scripts allow
users to specify conditions, or contracts, which the transactions must satisfy
prior to acceptance. Transaction scripts can encode many useful functions, such
as validating that a payer owns a coin she is spending or enforcing rules for
multi-party transactions. The Ethereum crypto-currency [16] allows arbitrary
stateful Turing-complete conditions over the transactions which gives rise to
smart contracts that can implement a wide range of applications, such as finan-
cial instruments (e.g., financial derivatives or wills) or autonomous governance
applications (e.g., voting systems). The protocols are globally specified and their
implementation is decentralized. Therefore, there is no central authority and they
are immutable. Hence, the economic consequences of bugs in a smart contract
cannot be reverted.

Types of Bugs. There are two types of bugs with monetary consequences:

1. Coding errors. Similar to standard programs, bugs could arise from coding
mistakes. At one reported case [33], mistakenly replacing += operation with
=+ enabled loss of tokens that were backed by $800,000 of investment.

2. Dishonest interaction incentives. Smart contracts do not fully dictate the
behavior of participants. They only specify the outcome (e.g., penalty or
rewards) of the behaviors. Hence, a second source for bugs is the high level
interaction aspects that could give a participant unfair advantage and incen-
tive for dishonest behavior. For example, a naive design of rock-paper-scissors
game [29] allows playing sequentially, rather than concurrently, and gives
advantage to the second player who can see the opponent’s move.

DAO Attack: Interaction of Two Types of Bugs. Quite interestingly a coding
bug can incentivize dishonest behavior as in the famous DAO attack [48]. The
Decentralized Autonomous Organization (DAO) [38] is an Ethereum smart con-
tract [51]. The contract consists of investor-directed venture capital fund. On
June 17, 2016 an attacker exploited a bug in the contract to extract $80 mil-
lion [48]. Intuitively, the root cause was that the contract allowed users to first get
hold of their funds, and only then updated their balance records while a semantic
detail allowed the attacker to withdraw multiple times before the update.

Necessity of Formal Framework. Since bugs in smart contracts have direct eco-
nomic consequences and are irreversible, they have the same status as safety-
critical errors for programs and reactive systems and must be detected before
deployment. Moreover, smart contracts are deployed rapidly. There are over a
million smart contracts in Ethereum, holding over 15 billion dollars at the time
of writing [31]. It is impossible for security researchers to analyze all of them,
and lack of automated tools for programmers makes them error prone. Hence, a
formal analysis framework for smart contract bugs is of great importance.

Utility Analysis. In verification of programs, specifying objectives is non-trivial
and a key goal is to consider specification-less verification, where basic proper-
ties are considered canonical. For example, termination is a basic property in
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program analysis; and data-race freedom or serializability are basic properties
in concurrency. Given these properties, models are verified wrt them without
considering any other specification. For smart contracts, describing the correct
specification that prevents dishonest behavior is more challenging due to the
presence of game-like interactions. We propose to consider the expected user
utility (or payoff) that is guaranteed even in presence of adversarial behavior of
other agents as a canonical property. Considering malicious adversaries is stan-
dard in game theory. For example, the expected utility of a fair lottery is 0. An
analysis reporting a different utility signifies a bug.

New Research Challenges. Coding bugs are detected by classic verification, pro-
gram analysis, and model checking tools [23,39]. However, a formal framework
for incentivization bugs presents a new research challenge for the programming
language community. Their analysis must overcome two obstacles: (a) the frame-
work will have to handle game-theoretic aspects to model interactions and incen-
tives for dishonest behavior; and (b) it will have to handle properties that cannot
be deduced from standard temporal properties such as safety or termination, but
require analysis of monetary gains (i.e., quantitative properties).

While game-theoretic incentives are widely analyzed by the security commu-
nity (e.g., see [13]), their analysis is typically restricted to the very special case
of one-shot games that do not consider different states of the program, and thus
the consequences of decisions on the next state of the program are ignored. In
addition their analysis is typically ad-hoc and stems from brainstorming and
special techniques. This could work when very few protocols existed (e.g., when
bitcoin first emerged) and deep thought was put into making them elegant and
analyzable. However, the fast deployment of smart contracts makes it crucial to
automate the process and make it accessible to programmers.

Our Contribution. In this work we present a formal framework for quantitative
analysis of utilities in smart contracts. Our contributions are as follows:

1. We present a simplified (loop-free) programming language that allows game-
theoretic interactions. We show that many classical smart contracts can
be easily described in our language, and conversely, a smart contract pro-
grammed in our language can be easily translated to Solidity [30], which is
the most popular Ethereum smart contract language.

2. The underlying mathematical model for our language is stateful concurrent
games. We automatically translate programs in our language to such games.

3. The key challenge to analyze such game models automatically is to tackle the
state-space explosion. While several abstraction techniques have been consid-
ered for programs [14,35,45], they do not work for game-theoretic models with
quantitative objectives. We present an approach based on interval-abstraction
for reducing the states, establish soundness of our abstraction, and present a
refinement process. This is our core technical contribution.

4. We present experimental results on several classic real-world smart contracts.
We show that our approach can handle contracts that otherwise give rise
to games with up to 1023 states. While special cases of concurrent games
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(namely, turn-based games) have been studied in verification and reactive
synthesis, there are no practical methods to solve general concurrent quan-
titative games. To the best of our knowledge, there are no tools to solve
quantitative concurrent games other than academic examples of few states,
and we present the first practical method to solve quantitative concurrent
games that scales to real-world smart contract analysis.

In summary, our contributions range from (i) modeling of smart contracts as
state-based games, to (ii) an abstraction-refinement approach to solve such
games, to (iii) experimental results on real-world smart contracts.

2 Background on Ethereum Smart Contracts

2.1 Programmable Smart Contracts

Ethereum [16] is a decentralized virtual machine, which runs programs called
contracts. Contracts are written in a Turing-complete bytecode language, called
Ethereum Virtual Machine (EVM) bytecode [53]. A contract is invoked by call-
ing one of its functions, where each function is defined by a sequence of instruc-
tions. The contract maintains a persistent internal state and can receive (trans-
fer) currency from (to) users and other contracts. Users send transactions to
the Ethereum network to invoke functions. Each transaction may contain input
parameters for the contract and an associated monetary amount, possibly 0,
which is transferred from the user to the contract.

Upon receiving a transaction, the contract collects the money sent to it,
executes a function according to input parameters, and updates its internal state.
All transactions are recorded on a decentralized ledger, called blockchain. A
sequence of transactions that begins from the creation of the network uniquely
determines the state of each contract and balances of users and contracts. The
blockchain does not rely on a trusted central authority, rather, each transaction
is processed by a large network of mutually untrusted peers called miners. Users
constantly broadcast transactions to the network. Miners add transactions to
the blockchain via a proof-of-work consensus protocol [43].

Subtleties. In this work, for simplicity, we ignore some details in the underlying
protocol of Ethereum smart contract. We briefly describe these details below:

– Transaction fees. In exchange for including her transactions in the blockchain,
a user pays transaction fees to the miners, proportionally to the execution
time of her transaction. This fact could slightly affect the monetary analysis
of the user gain, but could also introduce bugs in a program, as there is a
bound on execution time that cannot be exceeded. Hence, it is possible that
some functions could never be called, or even worse, a user could actively
give input parameters that would prevent other users from invoking a certain
function.
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– Recursive invocation of contracts. A contract function could invoke a function
in another contract, which in turn can have a call to the original contract.
The underling Ethereum semantic in recursive invocation was the root cause
for the notorious DAO hack [27].

– Behavior of the miners. Previous works have suggested that smart contracts
could be implemented to encourage miners to deviate from their honest behav-
ior [50]. This could in theory introduce bugs into a contract, e.g., a contract
might give unfair advantage for a user who is a big miner.

2.2 Tokens and User Utility

A user’s utility is determined by the Ether she spends and receives, but could
also be affected by the state of the contract. Most notably, smart contracts
are used to issue tokens, which can be viewed as a stake in a company or an
organization, in return to an Ether (or tokens) investment (see an example in
Fig. 1). These tokens are transferable among users and are traded in exchanges in
return to Ether, Bitcoin and Fiat money. At the time of writing, smart contracts
instantiate tokens worth billions of dollars [32]. Hence, gaining or losing tokens
has clear utility for the user. At a larger scope, user utility could also be affected
by more abstract storage changes. Some users would be willing to pay to have
a contract declare them as Kings of Ether [4], while others could gain from
registering their domain name in a smart contract storage [40]. In the examples
provided in this work we mainly focus on utility that arises from Ether, tokens
and the like. However, our approach is general and can model any form of utility
by introducing auxiliary utility variables and definitions.

Fig. 1. Token contract example.

3 Programming Language for Smart Contracts

In this section we present our programming language for smart contracts
that supports concurrent interactions between parties. A party denotes an
agent that decides to interact with the contract. A contract is a tuple C =
(N, I,M,R,X0, F, T ) where X := N ∪ I ∪ M is a set of variables, R describes
the range of values that can be stored in each variable, X0 is the initial values
stored in variables, F is a list of functions and T describes for each function, the
time segment in which it can be invoked. We now formalize these concepts.

Variables. There are three distinct and disjoint types of variables in X:
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– N contains “numeric” variables that can store a single integer.
– I contains “identification” (“id”) variables capable of pointing to a party in

the contract by her address or storing Null. The notion of ids is quite flexible
in our approach: The only dependence on ids is that they should be distinct
and an id should not act on behalf of another id. We simply use different
integers to denote distinct ids and assume that a “faking of identity” does
not happen. In Ethereum this is achieved by digital signatures.

– M is the set of “mapping” variables. Each m ∈ M maps parties to integers.

Bounds and Initial Values. The tuple R = (R,R) where R,R : N ∪ M → Z

represent lower and upper bounds for integer values that can be stored in a
variable. For example, if n ∈ N , then n can only store integers between R(n)
and R(n). Similarly, if m ∈ M is a mapping and i ∈ I stores an address to
a party in the contract, then m [i] can save integers between R(m) and R(m).
The function X0 : X → Z ∪ {Null} assigns an initial value to every variable.
The assigned value is an integer in case of numeric and mapping variables, i.e.,
a mapping variable maps everything to its initial value by default. Id variables
can either be initialized by Null or an id used by one of the parties.

Functions and Timing. The sequence F =< f1, f2, . . . , fn > is a list of functions
and T = (T , T ), where T , T : F → N. The function fi can only be invoked in
time-frame T (fi) =

[

T (fi), T (fi)
]

. The contract uses a global clock, for example
the current block number in the blockchain, to keep track of time.

Note that we consider a single contract, and interaction between multiple
contracts is a subject of future work.

3.1 Syntax

We provide a simple overview of our contract programming language. Our lan-
guage is syntactically similar to Solidity [30], which is a widely used language
for writing Ethereum contracts. A translation mechanism for different aspects is
discussed in [19]. An example contract, modeling a game of rock-paper-scissors,
is given in Fig. 2. Here, a party, called issuer has issued the contract and taken
the role of Alice. Any other party can join the contract by registering as Bob

and then playing rock-paper-scissors. To demonstrate our language, we use a
bidding mechanism.

Declaration of Variables. The program begins by declaring variables1, their type,
name, range and initial value. For example, Bids is a map variable that assigns
a value between 0 and 100 to every id. This value is initially 0. Line numbers
(labels) are defined in Sect. 3.2 below and are not part of the syntax.

Declaration of Functions. After the variables, the functions are defined one-by-
one. Each function begins with the keyword function followed by its name and

1 For simplicity, we demonstrate our method with global variables only. However, the
method is applicable to general variables as long as their ranges are well-defined at
each point of the program.
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Fig. 2. A rock-paper-scissors contract.

the time interval in which it can be called by parties. Then comes a list of input
parameters. Each parameter is of the form variable : party which means
that the designated party can choose a value for that variable. The chosen value
is required to be in the range specified for that variable. The keyword caller

denotes the party that has invoked this function and payable signifies that the
party should not only decide a value, but must also pay the amount she decides.
For example, registerBob can be called in any time between 1 and 10 by any of
the parties. At each such invocation the party that has called this function must
pay some amount which will be saved in the variable bid. After the decisions
and payments are done, the contract proceeds with executing the function.

Types of Functions. There are essentially two types of functions, depending on
their parameters. One-party functions, such as registerBob and getReward

require parameters from caller only, while multi-party functions, such as play
ask several, potentially different, parties for input. In this case all parties provide
their input decisions and payments concurrently and without being aware of the
choices made by other parties, also a default value is specified for every decision
in case a relevant party does not take part.

Summary. Putting everything together, in the contract specified in Fig. 2, any
party can claim the role of Bob between time 1 and time 10 by paying a bid
to the contract, if the role is not already occupied. Then at time 11 one of the
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parties calls play and both parties have until time 15 to decide which choice
(rock, paper, scissors or none) they want to make. Then the winner can call
getReward and collect her prize.

3.2 Semantics

In this section we present the details of the semantics. In our programming
language there are several key aspects which are non-standard in programming
languages, such as the notion of time progress, concurrency, and interactions of
several parties. Hence we present a detailed description of the semantics. We
start with the requirements.

Requirements. In order for a contract to be considered valid, other than following
the syntax rules, a few more requirements must be met, which are as follows:

– We assume that no division by zero or similar undefined behavior happens.
– To have a well-defined message passing, we also assume that no multi-party

function has an associated time interval intersecting that of another function.
– Finally, for each non-id variable v, it must hold that R(v) ≤ X0(v) ≤ R(v)

and similarly, for every function fi, we must have T (fi) < T (fi).

Overview of Time Progress. Initially, the time is 0. Let Ft be the set of functions
executable at time t, i.e., Ft = {fi ∈ F |t ∈ T (fi)}, then Ft is either empty
or contains one or more one-party functions or consists of a single multi-party
function. We consider the following cases:

– Ft empty. If Ft is empty, then nothing can happen until the clock ticks.
– Execution of one-party functions. If Ft contains one or more one-party func-

tions, then each of the parties can call any subset of these functions at time
t. If there are several calls at the same time, the contract might run them
in any order. While a function call is being executed, all parties are able to
see the full state of the contract, and can issue new calls. When there are
no more requests for function calls, the clock ticks and the time is increased
to t + 1. When a call is being executed and is at the beginning part of the
function, its caller can send messages or payments to the contract. Values of
these messages and payments will then be saved in designated variables and
the execution continues. If the caller fails to make a payment or specify a
value for a decision variable or if her specified values/payments are not in the
range of their corresponding variables, i.e. they are too small or too big, the
call gets canceled and the contract reverts any changes to variables due to
the call and continues as if this call had never happened.

– Execution of multi-party functions. If Ft contains a single multi-party function
fi and t < T (fi), then any party can send messages and payments to the
contract to specify values for variables that are designated to be paid or
decided by her. These choices are hidden and cannot be observed by other
participants. She can also change her decisions as many times as she sees fit.
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The clock ticks when there are no more valid requests for setting a value for
a variable or making a payment. This continues until we reach time T (fi). At
this time parties can no longer change their choices and the choices become
visible to everyone. The contract proceeds with execution of the function. If a
party fails to make a payment/decision or if Null is asked to make a payment
or a decision, default behavior will be enforced. Default value for payments
is 0 and default behavior for other variables is defined as part of the syntax.
For example, in function play of Fig. 2, if a party does not choose, a default
value of 0 is enforced and given the rest of this function, this will lead to a
definite loss.

Given the notion of time progress we proceed to formalize the notion of
“runs” of the contract. This requires the notion of labels, control-flow graphs,
valuations, and states, which we describe below.

Labels. Starting from 0, we give the contract, beginning and end points of every
function, and every command a label. The labels are given in order of appearance.
As an example, see the labels in parentheses in Fig. 2.

Entry and Exit Labels. We denote the first (beginning point) label in a function
fi by �i and its last (end point) label by �i.

Control Flow Graphs (CFGs). We define the control flow graph CFGi of the
function fi in the standard manner, i.e. CFGi = (V,E), where there is a vertex
corresponding to every labeled entity inside fi. Each edge e ∈ E has a condition
cond(e) which is a boolean expression that must be true when traversing that
edge. For more details see [19].

Valuations. A valuation is a function val, assigning a value to every variable.
Values for numeric variables must be integers in their range, values for identity
variables can be party ids or Null and a value assigned to a map variable m must
be a function val(m) such that for each identity i, we have R(m) ≤ val(m)(i) ≤
R(m). Given a valuation, we extend it to expressions containing mathematical
operations in the straight-forward manner.

States. A state of the contract is a tuple s = (t, b, l, val, c), where t is a time
stamp, b ∈ N ∪ {0} is the current balance of the contract, i.e., the total amount
of payment to the contract minus the total amount of payouts, l is a label (that
is being executed), val assigns values to variables and c ∈ P ∪{⊥}, is the caller of
the current function. c =⊥ corresponds to the case where the caller is undefined,
e.g., when no function is being executed. We use S to denote the set of all states
that can appear in a run of the contract as defined below.

Runs. A run ρ of the contract is a finite sequence {ρj = (tj , bj , lj , valj , cj)}
r

j=0

of states, starting from (0, 0, 0, X0,⊥), that follows all rules of the contract and
ends in a state with time-stamp tr > maxfi

T (fi). These rules must be followed
when switching to a new state in a run:

– The clock can only tick when there are no valid pending requests for running
a one-party function or deciding or paying in multi-party functions.
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– Transitions that happen when the contract is executing a function must follow
its control flow graph and update the valuation correctly.

– No variable can contain an out-of-bounds value. If an overflow or underflow
happens, the closest possible value will be saved. This rule also ensures that
the contract will not create new money, given that paying more than the
current balance of the contract results in an underflow.

– Each party can call any set of the functions at any time.

Remark 1. Note that in our semantics each function body completes its execu-
tion in a single tick of the clock. However, ticks might contain more than one
function call and execution.

Run Prefixes. We use H to mean the set of all prefixes of runs and denote the
last state in η ∈ H by end(η). A run prefix η′ is an extension of η if it can be
obtained by adding one state to the end of η.

Probability Distributions. Given a finite set X , a probability distribution on X
is a function δ : X → [0, 1] such that

∑

x∈X δ(x) = 1. Given such a distribution,
its support, Supp(δ), is the set of all x ∈ X such that δ(x) > 0. We denote the
set of all probability distributions on X by Δ(X ).

Typically for programs it suffices to define runs for the semantics. However,
given that there are several parties in contracts, their semantics depends on the
possible choices of the parties. Hence we need to define policies for parties, and
such policies will define probability distribution over runs, which constitute the
semantics for contracts. To define policies we first define moves.

Moves. We use M for the set of all moves. The moves that can be taken by
parties in a contract can be summarized as follows:

– Calling a function fi, we denote this by call(fi).
– Making a payment whose amount, y is saved in x, we denote this by pay(x, y).
– Deciding the value of x to be y, we denote this by decide(x, y).
– Doing none of the above, we denote this by ⊠.

Permitted Moves. We define Pi : S → M, so that Pi(s) is the set of permitted
moves for the party with identity i if the contract is in state s = (t, b, l, val, pj).
It is formally defined as follows:

– If fk is a function that can be called at state s, then call(fk) ∈ Pi(s).
– If l = �q is the first label of a function fq and x is a variable that can be

decided by i at the beginning of the function fq, then decide(x, y) ∈ Pi(s) for
all permissible values of y. Similarly if x can be paid by i, pay(x, y) ∈ Pi(s).

– ⊠ ∈ Pi(s).

Policies and Randomized Policies. A policy πi for party i is a function πi : H →
A, such that for every η ∈ H, πi(η) ∈ Pi(end(η)). Intuitively, a policy is a way
of deciding what move to use next, given the current run prefix. A policy profile
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π = (πi) is a sequence assigning one policy to each party i. The policy profile π

defines a unique run ρπ of the contract which is obtained when parties choose
their moves according to π. A randomized policy ξi for party i is a function
ξi : H → Δ(M), such that Supp(ξi(s)) ⊆ Pi(s). A randomized policy assigns a
probability distribution over all possible moves for party i given the current run
prefix of the contract, then the party can follow it by choosing a move randomly
according to the distribution. We use Ξ to denote the set of all randomized policy
profiles, Ξi for randomized policies of i and Ξ−i to denote the set of randomized
policy profiles for all parties except i. A randomized policy profile ξ is a sequence
(ξi) assigning one randomized policy to each party. Each such randomized policy
profile induces a unique probability measure on the set of runs, which is denoted
as Prob

ξ [·]. We denote the expectation measure associated to Prob
ξ [·] by E

ξ [·].

3.3 Objective Function and Values of Contracts

As mentioned in the introduction we identify expected payoff as the canonical
property for contracts. The previous section defines expectation measure given
randomized policies as the basic semantics. Given the expected payoff, we define
values of contracts as the worst-case guaranteed payoff for a given party. We
formalize the notion of objective function (the payoff function).

Objective Function. An objective o for a party p is in one of the following forms:

– (p+ −p−), where p+ is the total money received by party p from the contract
(by “payout” statements) and p− is the total money paid by p to the contract
(as “payable” parameters).

– An expression containing mathematical and logical operations (addition, mul-
tiplication, subtraction, integer division, and, or, not) and variables chosen
from the set N ∪{m [i] |m ∈ M, i ∈ I}. Here N is the set of numeric variables,
m[i]’s are the values that can be saved inside maps.2

– A sum of the previous two cases.

Informally, p is trying to choose her moves so as to maximize o.

Run Outcomes. Given a run ρ of the program and an objective o for party p,
the outcome κ(ρ, o, p) is the value of o computed using the valuation at end(ρ)
for all variables and accounting for payments in ρ to compute p+ and p−.

Contract Values. Since we consider worst-case guaranteed payoff, we consider
that there is an objective o for a single party p which she tries to maximize
and all other parties are adversaries who aim to minimize o. Formally, given a
contract C and an objective o for party p, we define the value of contract as:

V(C, o, p) := sup
ξp∈Ξp

inf
ξ

−p∈Ξ
−p

E
(ξp,ξ

−p) [κ(ρ, o, p)] ,

2 We are also assuming, as in many programming languages, that True = 1 and
False = 0.
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This corresponds to p trying to maximize the expected value of o and all other
parties maliciously colluding to minimize it. In other words, it provides the worst-
case guarantee for party p, irrespective of the behavior of the other parties, which
in the worst-case is adversarial to party p.

3.4 Examples

One contribution of our work is to present the simplified programming language,
and to show that this simple language can express several classical smart con-
tracts. To demonstrate the applicability, we present several examples of classical
smart contracts in this section. In each example, we present a contract and a
“buggy” implementation of the same contract that has a different value. In Sect. 6
we show that our automated approach to analyze the contracts can compute con-
tract values with enough precision to differentiate between the correct and the
buggy implementation. All of our examples are motivated from well-known bugs
that have happened in real life in Ethereum.

Rock-Paper-Scissors. Let our contract be the one specified in Fig. 2 and
assume that we want to analyze it from the point of view of the issuer p. Also,
let the objective function be (p+ − p− + 10 · AliceWon) . Intuitively, this means
that winning the rock-paper-scissors game is considered to have an additional
value of 10, other than the spending and earnings. The idea behind this is similar
to the case with chess tournaments, in which players not only win a prize, but
can also use their wins to achieve better “ratings”, so winning has extra utility.

A common bug in writing rock-paper-scissors is allowing the parties to move
sequentially, rather than concurrently [29]. If parties can move sequentially and
the issuer moves after Bob, then she can ensure a utility of 10, i.e. her worst-case
expected reward is 10. However, in the correct implementation as in Fig. 2, the
best strategy for both players is to bid 0 and then Alice can win the game with
probability 1/3 by choosing each of the three options with equal probability.
Hence, her worst-case expected reward is 10/3.

Auction. Consider an open auction, in which during a fixed time interval every-
one is allowed to bid for the good being sold and everyone can see others’ bids.
When the bidding period ends a winner emerges and every other participant can
get their money back. Let the variable HighestBid store the value of the highest
bid made at the auction. Then for a party p, one can define the objective as:

p+ − p− + (Winner==p) × HighestBid.

This is of course assuming that the good being sold is worth precisely as much as
the highest bid. A correctly written auction should return a value of 0 to every
participant, because those who lose the auction must get their money back and
the party that wins pays precisely the highest bid. The contract in Fig. 3 (left)
is an implementation of such an auction. However, it has a slight problem. The
function bid allows the winner to reduce her bid. This bug is fixed in the contract
on the right.
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Fig. 3. A buggy auction contract (left) and its fixed version (right).

Three-Way Lottery. Consider a three-party lottery contract issued by a party
p. The other two players can sign up by buying tickets worth 1 unit each. Then
each of the players is supposed to randomly and uniformly choose a nonce. A
combination of these nonces produces the winner with equal probability for all
three parties. If a person does not make a choice or pay the fees, she will cer-
tainly lose the lottery. The rules are such that if the other two parties choose
the same nonce, which is supposed to happen with probability 1

3 , then the issuer
wins. Otherwise the winner is chosen according to the parity of sum of nonces.
This gives everyone a winning probability of 1

3 if all sides play uniformly at ran-
dom. However, even if one of the sides refuses to play uniformly at random, the
resulting probabilities of winning stays the same because each side’s probability
of winning is independent of her own choice assuming that others are playing
randomly. We assume that the issuer p has objective p+−p−. This is because the
winner can take other players’ money. In a bug-free contract we will expect the
value of this objective to be 0, given that winning has a probability of 1

3 . How-
ever, the bug here is due to the fact that other parties can collude. For example,
the same person might register as both players and then opt for different nonces.
This will ensure that the issuer loses. The bug can be solved by ensuring one’s
probability of winning is 1

3 if she honestly plays uniformly at random, no matter
what other parties do. For more details about this contract see [19].

Token Sale. Consider a contract that sells tokens modeling some aspect of
the real world, e.g. shares in a company. At first anyone can buy tokens at a
fixed price of 1 unit per token. However, there are a limited number of tokens
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available and at most 1000 of them are meant to be sold. The tokens can then
be transferred between parties, which is the subject of our next example. For
now, Fig. 4 (left) is an implementation of the selling phase. However, there is
a big problem here. The problem is that one can buy any number of tokens as
long as there is at least one token remaining. For example, one might first buy
999 tokens and then buy another 1000. If we analyze the contract from the point
of view of a solo party p with objective balance[p], then it must be capped by
1000 in a bug-free contract, while the process described above leads to a value
of 1999. The fixed contract is in Fig. 4 (right). This bug is inspired by a very
similar real-world bug described in [52].

Token Transfer. Consider the same bug-free token sale as in the previous
example, we now add a function for transferring tokens. An owner can choose
a recipient and an amount less than or equal to her balance and transfer that
many tokens to the recipient. Figure 5 (left) is an implementation of this concept.
Taking the same approach and objective as above, we expect a similar result.
However, there is again an important bug in this code. What happens if a party
transfers tokens to herself? She gets free extra tokens! This has been fixed in the
contract on the right. This example models a real-world bug as in [42].

Fig. 4. A buggy token sale (left) and its fixed version (right).

Translation to Solidity. All aspects of our programming language are already
present in Solidity, except for the global clock and concurrent interactions. The
global clock can be modeled by the number of the current block in the blockchain
and concurrent interactions can be implemented using commitment schemes. For
more details see [19].

4 Bounded Analysis and Games

Since smart contracts can be easily described in our programming language,
and programs in our programming language can be translated to Solidity, the



Quantitative Analysis of Smart Contracts 753

Fig. 5. A buggy transfer function (left) and its fixed version (right).

main aim to automatically compute values of contracts (i.e., compute guaranteed
payoff for parties). In this section, we introduce the bounded analysis problem
for our programming language framework, and present concurrent games which
is the underlying mathematical framework for the bounded analysis problem.

4.1 Bounded Analysis

As is standard in verification, we consider the bounded analysis problem, where
the number of parties and the number of function calls are bounded. In standard
program analysis, bugs are often detected with a small number of processes, or a
small number of context switches between concurrent threads. In the context of
smart contracts, we analogously assume that the number of parties and function
calls are bounded.

Contracts with Bounded Number of Parties and Function Calls. Formally, a con-
tract with bounded number of parties and function calls is as follows:

– Let C be a contract and k ∈ N, we define Ck as an equivalent contract that
can have at most k parties. This is achieved by letting P = {p1, p2, . . . , pk}
be the set of all possible ids in the contract. The set P must contain all ids
that are in the program source, therefore k is at least the number of such ids.
Note that this does not restrict that ids are controlled by unique users, and
a real-life user can have several different ids. We only restrict the analysis to
bounded number of parties interacting with the smart contract.

– To ensure runs are finite, number of function calls by each party is also
bounded. Specifically, each party can call each function at most once dur-
ing each time frame, i.e. between two consecutive ticks of the clock. This
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closely resembles real-life contracts in which one’s ability to call many func-
tions is limited by the capacity of a block in the blockchain, given that the
block must save all messages.

4.2 Concurrent Games

The programming language framework we consider has interacting agents that
act simultaneously, and we have the program state. We present the mathematical
framework of concurrent games, which are games played on finite state spaces
with concurrent interaction between the players.

Concurrent Game Structures. A concurrent two-player game structure is a tuple
G = (S, s0, A, Γ1, Γ2, δ), where S is a finite set of states, s0 ∈ S is the start state,
A is a finite set of actions, Γ1, Γ2 : S → 2A \ ∅ such that Γi assigns to each state
s ∈ S, a non-empty set Γi(s) ⊆ A of actions available to player i at s, and finally
δ : S × A × A → S is a transition function that assigns to every state s ∈ S and
action pair a1 ∈ Γ1(s), a2 ∈ Γ2(s) a successor state δ(s, a1, a2) ∈ S.

Plays and Histories. The game starts at state s0. At each state si ∈ S, player
1 chooses an action ai

1 ∈ Γ1(si) and player 2 chooses an action ai
2 ∈ Γ2(si).

The choices are made simultaneously and independently. The game subsequently
transitions to the new state si+1 = δ(si, a1, a2) and the same process continues.
This leads to an infinite sequence of tuples p =

(

si, a
i
1, a

i
2

)∞

i=0
which is called

a play of the game. We denote the set of all plays by P. Every finite prefix
p[..r] :=

(

(s0, a
0
1, a

0
2), (s1, a

1
1, a

1
2), . . . , (sr, a

r
1, a

r
2)

)

of a play is called a history and
the set of all histories is denoted by H . If h = p[..r] is a history, we denote the
last state appearing according to h, i.e. sr+1 = δ(sr, a

r
1, a

r
2), by last(h). We also

define p[.. − 1] as the empty history.

Strategies and Mixed Strategies. A strategy is a recipe that describes for a player
the action to play given the current game history. Formally, a strategy ϕi for
player i is a function ϕi : H → A, such that ϕi(h) ∈ Γi(last(h)). A pair
ϕ = (ϕ1,ϕ2) of strategies for the two players is called a strategy profile. Each such
ϕ induces a unique play. A mixed strategy σi : H → Δ(A) for player i given the
history of the game. Intuitively, such a strategy suggests a distribution of actions
to player i at each step and then she plays one of them randomly according to
that distribution. Of course it must be the case that Supp(σi(h)) ⊆ Γi(last(h)).
A pair σ = (σ1, σ2) of mixed strategies for the two players is called a mixed
strategy profile. Note that mixed strategies generalize strategies with random-
ization. Every mixed strategy profile σ = (σ1, σ2) induces a unique probability
measure on the set of plays, which is denoted as Prob

σ[·], and the associated
expectation measure is denoted by E

σ[·].

State and History Utilities. In a game structure G, a state utility function u for
player 1 is of the form u : S → R. Intuitively, this means that when the game
enters state s, player 1 receives a reward of u(s). State utilities can be extended
to history utilities. We define the utility of a history to be the sum of utilities
of all the states included in that history. Formally, if h =

(

si, a
i
1, a

i
2

)r

i=0
, then
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u(h) =
∑r

i=0 u(si). Given a play p ∈ P, we denote the utility of its prefix of
length L by uL(p).

Games. A game is a pair (G, u) where G is a game structure and u is a utility
function for player 1. We assume that player 1 is trying to maximize u, while
player 2’s goal is to minimize it.

Values. The L-step finite-horizon value of a game (G, u) is defined as

υL(G, u) := sup
σ1

inf
σ2

E
(σ1,σ2) [uL(p)] , (1)

where σi iterates over all possible mixed strategies of player i. This models the
fact that player 1 is trying to maximize the utility in the first L steps of the run,
while player 2 is minimizing it. The values of games can be computed using the
value-iteration algorithm or dynamic programming, which is standard. A more
detailed overview of the algorithms for games is provided in [19].

Remark 2. Note that in (1), limiting player 2 to pure strategies does not change
the value of the game. Hence, we can assume that player 2 is an arbitrarily
powerful nondeterministic adversary and get the exact same results.

4.3 Translating Contracts to Games

The translation from bounded smart contracts to games is straightforward,
where the states of the concurrent game encodes the states of the contract. Cor-
respondences between objects in the contract and game are as follows: (a) moves
in contracts with actions in games; (b) run prefixes in contracts with histories
in games; (c) runs in contracts with plays in games; and (d) policies (resp., ran-
domized policies) in contracts with strategies (resp., mixed strategies) in games.
Note that since all runs of the bounded contract are finite and have a limited
length, we can apply finite horizon analysis to the resulting game, where L is the
maximal length of a run in the contract. This gives us the following theorem:

Theorem 1 (Correspondence). Given a bounded contract Ck for a party p

with objective o, a concurrent game can be constructed such that value of this
game, υL(G, u), is equal to the value of the bounded contract, V(Ck, o, p).

For details of the translation of smart contracts to games and proof of the
theorem above see [19].

Remark 3. In standard programming languages, there are no parties to interact
and hence the underlying mathematical models are graphs. In contrast, for smart
contracts programming languages, where parties interact in a game-like manner,
we have to consider games as the mathematical basis of our analysis.
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5 Abstraction for Quantitative Concurrent Games

Abstraction is a key technique to handle large-scale systems. In the previous
section we described that smart contracts can be translated to games, but due
to state-space explosion (since we allow integer variables), the resulting state
space of the game is huge. Hence, we need techniques for abstraction, as well
as refinement of abstraction, for concurrent games with quantitative utilities. In
this section we present such abstraction refinement for quantitative concurrent
games, which is our main technical contribution in this paper. We show the
soundness of our approach and its completeness in the limit. Then, we introduce
a specific method of abstraction, called interval abstraction, which we apply to
the games obtained from contracts and show that soundness and refinement are
inherited from the general case. We also provide a heuristic for faster refining of
interval abstractions for games obtained from contracts.

5.1 Abstraction for Quantitative Concurrent Games

Abstraction considers a partition of the state space, and reduces the number of
states by taking each partition set as a state. In case of transition systems (or
graphs) the standard technique is to consider existential (or universal) abstrac-
tion to define transitions between the partition sets. However, for game-theoretic
interactions such abstraction ideas are not enough. We now describe the key
intuition for abstraction in concurrent games with quantitative objectives and
formalize it. We also provide a simple example for illustration.

Abstraction Idea and Key Intuition. In an abstraction the state space of the
game (G, u) is partitioned into several abstract states, where an abstract state
represents a set of states of the original game. Intuitively, an abstract state
represents a set of similar states of the original game. Given an abstraction our
goal is to define two games that can provide lower and upper bound on the value
of the original game. This leads to the concepts of lower and upper abstraction.

– Lower abstraction. The lower abstraction (G↓, u↓) represents a lower bound on
the value. Intuitively, the utility is assigned as minimal utility among states
in the partition, and when an action profile can lead to different abstract
states, then the adversary, i.e. player 2, chooses the transition.

– Upper abstraction. The upper abstraction (G↑, u↑) represents an upper bound
on the value. Intuitively, the utility is assigned as maximal utility among
states in the partition, and when an action profile can lead to different
abstract states, then player 1 is chooses between the possible states.

Informally, the lower abstraction gives more power to the adversary, player 2,
whereas the upper abstraction is favorable to player 1.

General Abstraction for Concurrent Games. Given a game (G, u) consisting of a
game structure G = (S, s0, A, Γ1, Γ2, δ) and a utility function u, and a partition

Π of S, the lower and upper abstractions, (G↓ = (Sa, sa0, A
a, Γ

↓
1 , Γ

↓
2 , δ↓), u↓) and

(G↑ = (Sa, sa0, A
a, Γ

↑
1 , Γ

↑
2 , δ↑), u↑), of (G, u) with respect to Π are defined as:
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– Sa = Π ∪ D, where D = Π × A × A is a set of dummy states for giving more
power to one of the players. Members of Sa are called abstracted states.

– The start state of G is in the start state of G↑ and G↓, i.e. s0 ∈ sa0 ∈ Π.
– Aa = A∪Π. Each action in abstracted games either corresponds to an action

in the original game or to a choice of the next state.
– If two states s1, s2 ∈ S, are in the same abstracted state sa ∈ Π, then they

must have the same set of available actions for both players, i.e. Γ1(s1) =
Γ1(s2) and Γ2(s1) = Γ2(s2). Moreover, sa inherits these action sets. Formally,

Γ
↓
1 (sa) = Γ

↑
1 (sa) = Γ1(s1) = Γ1(s2) and Γ

↓
2 (sa) = Γ

↑
2 (sa) = Γ2(s1) = Γ2(s2).

– For all π ∈ Π and a1 ∈ Γ
↓
1 (π) and a2 ∈ Γ

↓
2 (π), we have δ↓(π, a1, a2) =

(π, a1, a2) ∈ D. Similarly for a1 ∈ Γ
↑
1 (π) and a2 ∈ Γ

↑
2 (π), δ↑(π, a1, a2) =

(π, a1, a2) ∈ D. This means that all transitions from abstract states in Π go
to the corresponding dummy abstract state in D.

– If d = (π, a1, a2) ∈ D is a dummy abstract state, then let Xd = {π′ ∈
Π | ∃ s ∈ π δ(s, a1, a2) ∈ π′} be the set of all partition sets that can be

reached from π by a1, a2 in G. Then in G↓, Γ
↓
1 (d) is a singleton, i.e., player 1

has no choice, and Γ
↓
2 (d) = Xd, i.e., player 2 can choose which abstract state

is the next. Conversely, in G↑, Γ
↑
2 (d) is a singleton and player 2 has no choice,

while Γ
↑
1 (d) = Xd and player 1 chooses the next abstract state.

– In line with the previous point, δ↓(d, a1, a2) = a2 and δ↑(d, a1, a2) = a1 for
all d ∈ D and available actions a1 and a2.

– We have u↓(sa) = mins∈sa{u(s)} and u↑(sa) = maxs∈sa{u(s)}. The utility of
a non-dummy abstracted state in G↓, resp. G↑, is the minimal, resp. maximal,
utility among the normal states included in it. Also, for each dummy state
d ∈ D, we have u↓(d) = u↑(d) = 0.

Given a partition Π of S, either (i) there is no lower or upper abstraction cor-
responding to it because it puts states with different sets of available actions
together; or (ii) there is a unique lower and upper abstraction pair. Hence we
will refer to the unique abstracted pair of games by specifying Π only.

Remark 4. Dummy states are introduced for conceptual clarity in explaining the
ideas because in lower abstraction all choices are assigned to player 2 and upper
abstraction to player 1. However, in practice, there is no need to create them,
as the choices can be allowed to the respective players in the predecessor state.

Example. Figure 6 (left) shows a concurrent game with (G, u) with 4 states. The
utilities are denoted in red. The edges correspond to transitions in δ and each
edge is labeled with its corresponding action pair. Here A = {a,b}, Γ1(s0) =
Γ2(s0) = Γ2(s1) = Γ1(s2) = Γ2(s2) = Γ2(s3) = A and Γ1(s1) = Γ1(s3) = {a}.
Given that action sets for s0 and s2 are equal, we can create abstracted games
using the partition Π = {π0, π1, π2} where π1 = {s0, s2} and other sets are single-
tons. The resulting game structure is depicted in Fig. 6 (center). Dummy states
are shown by circles and whenever a play reaches a dummy state in G↓, player 2
chooses which red edge should be taken. Conversely, in G↑ player 1 makes this
choice. Also, u↑(π0) = max{u(s0), u(s2)} = 10, u↓(π0) = min{u(s0), u(s2)} = 0
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Fig. 6. An example concurrent game (left), abstraction process (center) and the cor-
responding G↓ without dummy states (right).

and u↑(π1)u
↓(π1) = u(s1) = 10, u↑(π2) = u↓(π2) = u(s3) = 0. The final

abstracted G↓ of the example above, without dummy states, is given in Fig. 6
(right).

5.2 Abstraction: Soundness, Refinement, and Completeness in
Limit

For an abstraction we need three key properties: (a) soundness, (b) refinement
of the abstraction, and (c) completeness in the limit. The intuitive description
is as follows: (a) soundeness requires that the value of the games is between
the value of the lower and upper abstraction; (b) refinement requires that if
the partition is refined, then the values of lower and upper abstraction becomes
closer; and (c) completeness requires that if the partitions are refined enough,
then the value of the original game can be approximated. We present each of
these results below.

Soundness. Soundness means that when we apply abstraction, value of the
original game must lie between values of the lower and upper abstractions. Intu-
itively, this means abstractions must provide us with some interval containing
the value of the game. We expect the value of (G↓, u↓) to be less than or equal
to the value of the original game because in (G↓, u↓), the utilities are less than in
(G, u) and player 2 has more power, given that she can choose which transition
to take. Conversely, we expect (G↑, u↑) to have a higher value than (G, u).

Formal Requirement for Soundness. An abstraction of a game (G, u) leading to
abstraction pair (G↑, u↑), (G↓, u↓) is sound if for every L, we have υ2L(G

↓, u↓) ≤
υL(G, u) ≤ υ2L(G

↑, u↑). The factor 2 in the inequalities above is due to the
fact that each transition in the original game is modeled by two transitions in
abstracted games, one to a dummy state and a second one out of it. We now
present our soundness result.

Theorem 2 (Soundness, Proof in [19]). Given a game (G, u) and a partition
Π of its state space, if G↑ and G↓ exist, then the abstraction is sound, i.e. for
all L, it is the case that υ2L(G

↓, u↓) ≤ υL(G, u) ≤ υ2L(G
↑, u↑).
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Refinement. We say that a partition Π2 is a refinement of a partition Π1,
and write Π2 ⊑ Π1, if every π ∈ Π1 is a union of several πi’s in Π2, i.e. π =
⋃

i∈I πi and for all i ∈ I, πi ∈ Π2. Intuitively, this means that Π2 is obtained
by further subdividing the partition sets in Π1. It is easy to check that ⊑ is a
partial order over partitions. We expect that if Π2 ⊑ Π1, then the abstracted
games resulting from Π2 give a better approximation of the value of the original
game in comparison with abstracted games resulting from Π1. This is called the
refinement property.

Formal Requirement for the Refinement Property. Two abstractions of a game
(G, u) using two partitions Π1,Π2, such that Π2 ⊑ Π1, and leading to abstracted

games (G↑
i , u

↑
i ), (G

↓
i , u

↓
i ) corresponding to each Πi satisfy the refinement property

if for every L, we have υ2L(G
↓
1, u

↓
1) ≤ υ2L(G

↓
2, u

↓
2) ≤ υ2L(G

↑
2, u

↑
2) ≤ υ2L(G

↑
1, u

↑
1).

Theorem 3 (Refinement Property, Proof in [19]). Let Π2 ⊑ Π1 be two
partitions of the state space of a game (G, u), then the abstractions corresponding
to Π1,Π2 satisfy the refinement property.

Completeness in the Limit. We say that an abstraction is complete in the
limit, if by refining it enough the values of upper and lower abstractions get as
close together as desired. Equivalently, this means that if we want to approximate
the value of the original game within some predefined threshold of error, we can
do so by repeatedly refining the abstraction.

Formal Requirement for Completeness in the Limit. Given a game (G, u), a fixed
finite-horizon L and an abstracted game pair corresponding to a partition Π1,
the abstraction is said to be complete in the limit, if for every ǫ ≥ 0 there exists
Π2 ⊑ Π1, such that if (G↓

2, u
↓
2), (G

↑
2, u

↑
2) are the abstracted games corresponding

to Π2, then υL(G
↑
2, u

↑
2) − υL(G

↓
2, u

↓
2) ≤ ǫ.

Theorem 4 (Completeness in the Limit, Proof in [19]). Every abstraction
on a game (G, u) using a partition Π is complete in the limit for all values of L.

5.3 Interval Abstraction

In this section, we turn our focus to games obtained from contracts and provide
a specific method of abstraction that can be applied to them.

Intuitive Overview. Let (G, u) be a concurrent game obtained from a contract as
in the Sect. 4.3. Then the states of G, other than the unique dummy state, corre-
spond to states of the contract Ck. Hence, they are of the form s = (t, b, l, val, p),
where t is the time, b the contract balance, l is a label, p is the party calling
the current function and val is a valuation. In an abstraction, one cannot put
states with different times or labels or callers together, because they might have
different moves and hence different action sets in the corresponding game. The
main idea in interval abstraction is to break the states according to intervals
over their balance and valuations. We can then refine the abstraction by making
the intervals smaller. We now formalize this concept.
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Objects. Given a contract Ck, let O be the set of all objects that can have an
integral value in a state s of the contract. This consists of the contract balance,
numeric variables and m[p]’s where m is a map variable and p is a party. More
precisely, O = {B}∪N ∪{m[p]|m ∈ M, p ∈ P} where B denotes the balance. For
an o ∈ O, the value assigned to o at state s is denoted by os.

Interval Partition. Let Ck be a contract and (G, u) its corresponding game. A
partition Π of the state space of G is called an interval partition if:

– The dummy state is put in a singleton set πd.
– Each π ∈ Π except πd has associated values, tπ, lπ, pπ and for each o ∈ O,

oπ, oπ, such that π = {s ∈ S|s = (tπ, b, lπ, val, pπ) and for all o ∈ O, oπ ≤
so ≤ oπ}. Basically, each partition set includes states with the same time,
label and caller in which the value of every object o is in an interval [oπ, oπ].

We call an abstraction using an interval partition, an interval abstraction.

Refinement Heuristic. We can start with big intervals and continually break them
into smaller ones to get refined abstractions and a finer approximation of the
game value. We use the following heuristic to choose which intervals to break:
Assume that the current abstracted pair of games are (G↓, u↓) and (G↑, u↑)
corresponding to an interval partition Π. Let d = (πd, a1, a2) be a dummy state

in G↑ and define the skewness of d as υ(G↑
d
, u↑)−υ(G↓

d
, u↓). Intuitively, skewness

of d is a measure of how different the outcomes of the games G↑ and G↓ are,
from the point when they have reached d. Take a label l with maximal average
skewness among its corresponding dummy states and cut all non-unit intervals
of it in more parts to get a new partition Π

′. Continue the same process until
the approximation is as precise as desired. Intuitively, it tries to refine parts of
the abstraction that show the most disparity between G↓ and G↑ with the aim
to bring their values closer. Our experiments show its effectiveness.

Soundness and Completeness in the Limit. If we restrict our attention to interval
abstractions, soundness is inherited from general abstractions and completeness
in the limit holds because Π∗ is an interval partition. Therefore, using interval
abstractions is both sound and complete in the limit.

Interval Refinement. An interval partition Π
′ is interval refinement of a given

interval partition Π if Π
′ ⊑ Π. Refinement property is inherited from general

abstractions. This intuitively means that Π
′ is obtained by breaking the intervals

in some sets of Π into smaller intervals.

Conclusion. We devised a sound abstraction-refinement method for approximat-
ing values of contracts. Our method is also complete in the limit. It begins
by converting the contract to a game, then applies interval abstraction to the
resulting game and repeatedly refines the abstraction using a heuristic until the
desired precision is reached.
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6 Experimental Results

Implementation and Optimizations. The state-space of the games corre-
sponding to the smart contracts is huge. Hence the original game corresponding
to the contract is computationally too expensive to construct. Therefore, we
do not first construct the game and then apply abstraction, instead we first
apply the interval abstraction, and construct the lower and upper abstraction
and compute values in them. We optimized our implementation by removing
dummy states and exploiting acyclicity using backward-induction. More details
are provided in [19].

Experimental Results. We present our experimental results (Table 1) for the
five examples mentioned in Sect. 3.4. In each of the examples, the original game
is quite large, and the size of the state space is calculated without creating them.
In our experimental results we show the abstracted game size, the refinement of
games to larger sizes, and how the lower and upper bound on the values change.
We used an Ubuntu machine with 3.2 GHz Intel i7-5600U CPU and 12 GB RAM.

Interpretation of the Experimental Results. Our results demonstrate the effec-
tiveness of our approach in automatically approximating values of large games
and real-world smart contracts. Concretely, the following points are shown:

– Refinement Property. By repeatedly refining the abstractions, values of lower
and upper abstractions get closer at the expense of a larger state space.

– Distinguishing Correct and Buggy Programs. Values of the lower and upper
abstractions provide an approximation interval containing the contract value.
These intervals shrink with refinement until the intervals for correct and
buggy programs become disjoint and distinguishable.

– Bug Detection. One can anticipate a sensible value for the contract, and an
approximation interval not containing the value shows a bug. For example,
in token sale, the objective (number of tokens sold) is at most 1000, while
results show the buggy program has a value between 1741 and 2000.

– Quantification of Economic Consequences. Abstracted game values can also
be seen as a method to quantify and find limits to the economic gain or loss
of a party. For example, our results show that if the buggy auction contract
is deployed, a party can potentially gain no more than 1000 units from it.

7 Comparison with Related Work

Blockchain Security Analysis. The first security analysis of Bitcoin protocol
was done by Nakamoto [43] who showed resilience of the blockchain against
double-spending. A stateful analysis was done by Sapirshtein et al. [47] and by
Sompolinsky and Zohar [49] in which states of the blockchain were considered.
It was done using MDPs where only the attacker decides on her actions and the
victim follows a predefined protocol. Our paper is the first work that is using
two-player and concurrent games to analyze contracts and the first to use stateful
analysis on arbitrary smart contracts, rather than a specific protocol.
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Table 1. Experimental results for correct and buggy contracts. l := υ(G↓, u↓) denotes
the lower value and u := υ(G↑, u↑) is the upper value. Times are in seconds.
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Smart Contract Security. Delmolino et al. [29] held a contract programming
workshop and showed that even simple contracts can contain incentive misalign-
ment bugs. Luu et al. [41] introduced a symbolic model checker with which
they could detect specific erroneous patterns. However the use of model checker
cannot be extended to game-theoretic analysis. Bhargavan et al. [9] translated
solidity programs to F ∗ and then used standard verification tools to detect vul-
nerable code patterns. See [7] for a survey of the known causes for Solidity bugs
that result in security vulnerabilities.

Games and Verification. Abstraction for concurrent games has been considered
wrt qualitative temporal objectives [3,22,28,44]. Several works considered con-
current games with only pure strategies [28,36,37]. Concurrent games with pure
strategies are extremely restrictive and effectively similar to turn-based games.
The min-max theorem (determinacy) does not hold for them even in special
cases of one-shot games or games with qualitative objectives.

Quantitative analysis with games is studied in [12,17,21]. However these
approaches either consider games without concurrent interactions or do not con-
sider any abstraction-refinement. A quantitative abstraction-refinement frame-
work has been considered in [18]; however, there is no game-theoretic interac-
tion. Abstraction-refinement for games has also been considered [20,36]; however,
these works neither consider games with concurrent interaction, nor quantitative
objectives. Moreover, [20,36] start with a finite-state model without variables,
and interval abstraction is not applicable to these game-theoretic frameworks.
In contrast, our technical contribution is an abstraction-refinement approach for
quantitative games and its application to analysis of smart contracts.

Formal Methods in Security. There is a huge body of work on program anal-
ysis for security; see [1,46] for survey. Formal methods are used to create safe
programming languages (e.g., [34,46]) and to define new logics that can express
security properties (e.g., [5,6,15]). They are also used to automatically verify
security and cryptographic protocols, e.g., [2,8,11] for a survey. However, all of
these works aimed to formalize qualitative properties such as privacy violation
and information leakage. To the best of our knowledge, our framework is the first
attempt to use formal methods as a tool for reasoning about monetary loses and
identifying them as security errors.

Bounded Model Checking (BMC). BMC was proposed by Biere et al. in 1999 [10].
The idea in BMC is to search for a counterexample in executions whose length
is at most k. If no bug is found then one increases k until either a bug is found,
the problem becomes intractable, or some pre-known upper bound is reached.

Interval Abstraction. The first infinite abstract domain was introduced in [25].
This was later used to prove that infinite abstract domains can lead to effective
static analysis for a given programming language [26]. However, none of the
standard techniques is applicable to game analysis.
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8 Conclusion

In this work we present a programming language for smart contracts, and an
abstraction-refinement approach for quantitative concurrent games to automat-
ically analyze (i.e., compute worst-case guaranteed utilities of) such contracts.
This is the first time a quantitative stateful game-theoretic framework is studied
for formal analysis of smart contracts. There are several interesting directions
of future work. First, we present interval-based abstraction techniques for such
games, and whether different abstraction techniques can lead to more scalability
or other classes of contracts is an interesting direction of future work. Second,
since we consider worst-case guarantees, the games we obtain are two-player
zero-sum games. The extension to study multiplayer games and compute values
for rational agents is another interesting direction of future work. Finally, in this
work we do not consider interaction between smart contracts, and an extension
to encompass such study will be a subject of its own.
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D. (eds.) FM 2012. LNCS, vol. 7436, pp. 1–5. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32759-9 1

2. Abadi, M., Rogaway, P.: Reconciling two views of cryptography. In: van Leeuwen,
J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol.
1872, pp. 3–22. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44929-
9 1

3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055622

4. Anonymous Author: King of the ether (2017). www.kingoftheether.com
5. Arden, O., Liu, J., Myers, A.C.: Flow-limited authorization. In: CSF, pp. 569–583

(2015)
6. Arden, O., Myers, A.C.: A calculus for flow-limited authorization. In: CSF (2016)
7. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-

tracts. IACR Cryptology ePrint Archive, 1007 (2016)
8. Avalle, M., Pironti, A., Sisto, R.: Formal verification of security protocol imple-

mentations: a survey. Formal Aspects Comput. 26(1), 99–123 (2014)
9. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: PLAS.

ACM (2016)
10. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

11. Blanchet, B., Chaudhuri, A.: Automated formal analysis of a protocol for secure
file sharing on untrusted storage. In: SP, pp. 417–431. IEEE (2008)

https://doi.org/10.1007/978-3-642-32759-9_1
https://doi.org/10.1007/978-3-642-32759-9_1
https://doi.org/10.1007/3-540-44929-9_1
https://doi.org/10.1007/3-540-44929-9_1
https://doi.org/10.1007/BFb0055622
www.kingoftheether.com
https://doi.org/10.1007/3-540-49059-0_14


Quantitative Analysis of Smart Contracts 765

12. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 14

13. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Sok:
research perspectives and challenges for bitcoin and cryptocurrencies. In: SP, pp.
104–121. IEEE (2015)

14. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

15. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. In: Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, pp. 233–271. The Royal Society (1989)

16. Buterin, V., et al.: Ethereum white paper (2013)
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