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Abstract
Coronavirus disease 2019 (COVID-19) is a disease caused by a novel strain of coronavirus, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), severely affecting the lungs. Our study aims to combine both quantitative and qualitative analy-
sis of the convolutional neural network (CNN) model to diagnose COVID-19 on chest X-ray (CXR) images. We investigated 
18 state-of-the-art CNN models with transfer learning, which include AlexNet, DarkNet-19, DarkNet-53, DenseNet-201, 
GoogLeNet, Inception-ResNet-v2, Inception-v3, MobileNet-v2, NasNet-Large, NasNet-Mobile, ResNet-18, ResNet-50, 
ResNet-101, ShuffleNet, SqueezeNet, VGG-16, VGG-19, and Xception. Their performances were evaluated quantitatively 
using six assessment metrics: specificity, sensitivity, precision, negative predictive value (NPV), accuracy, and F1-score. The 
top four models with accuracy higher than 90% are VGG-16, ResNet-101, VGG-19, and SqueezeNet. The accuracy of these 
top four models is between 90.7% and 94.3%; the F1-score is between 90.8% and 94.3%. The VGG-16 scored the highest 
accuracy of 94.3% and F1-score of 94.3%. The majority voting with all the 18 CNN models and top 4 models produced an 
accuracy of 93.0% and 94.0%, respectively. The top four and bottom three models were chosen for the qualitative analysis. 
A gradient-weighted class activation mapping (Grad-CAM) was used to visualize the significant region of activation for 
the decision-making of image classification. Two certified radiologists performed blinded subjective voting on the Grad-
CAM images in comparison with their diagnosis. The qualitative analysis showed that SqueezeNet is the closest model to 
the diagnosis of two certified radiologists. It demonstrated a competitively good accuracy of 90.7% and F1-score of 90.8% 
with 111 times fewer parameters and 7.7 times faster than VGG-16. Therefore, this study recommends both VGG-16 and 
SqueezeNet as additional tools for the diagnosis of COVID-19.

Keywords COVID-19 · Convolutional neural networks (CNN) · Transfer learning · Gradient-weighted class activation 
mapping (Grad-CAM)

Introduction

Coronavirus disease 2019 (COVID-19) is an illness caused 
by a novel coronavirus, which is now called severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). The 
first outbreak was on December 21, 2019, in Wuhan City, 
China [1]. The World Health Organization (WHO) declared 
COVID-19 a global pandemic on March 11, 2020. It has 
escalated to 180 million cases with 3.9 million deaths and 
165 million recovered as recorded on June 24, 2021 [2]. 
Among the worst-hit nations are the USA, India, and Brazil.

Effective screening is essential to triage the patients 
and treat them accordingly. COVID-19 is diagnosed by the 
real-time reverse transcription-polymerase chain reaction 
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(RT-PCR) of nasopharyngeal swabs [3]. Chest radiography 
imaging and computed tomography (CT) are essential sup-
plementary diagnostic tools for investigating patients sus-
pected of having COVID-19. It is also a vital tool for patient 
follow-up. However, it requires an experienced and certified 
radiologist to triage the patients accurately. CXR findings are 
often non-specific and thus challenging to categorize due to 
COVID-19 or not. Therefore, a computer-aided diagnosis 
with automatic classification of lung abnormalities would 
be beneficial to assist radiologists to confirm their diagnosis 
and speed up the process.

Recently, many researchers used a convolutional neural 
network (CNN), a deep learning algorithm to assist in the 
diagnosis of COVID-19. Deep learning uses automatic fea-
ture extraction and pattern recognition to classify an image. 
CNN is based on the shared-weight architecture of the con-
volution kernels or filters, which slide along input features 
and produce the feature maps. CNN uses fully connected 
networks where each neuron in one layer is connected to all 
neurons in the next layer. In each layer, the data are trans-
formed into a higher and more abstract level. The deeper the 
network, the more complex is the information learned. CNN 
is commonly used for image classification and segmentation.

Wang et al. proposed the COVID-Net model, which com-
bined human-driven principled network design prototyping 
with machine-driven design exploration to detect COVID-19 
cases from CXR images [4]. They used residual architecture 
design principles in the first stage of human-driven princi-
pled network design. Then they used generative synthesis 
to identify the optimal macro-architecture and micro-archi-
tecture designs for the COVID-Net model. They reported 
an accuracy of 92.6% on the test dataset, a sensitivity of 
87.1% for COVID-19 cases, and a high positive predictive 
value (PPV) of 96.4% for COVID-19 cases. Mangal et al. 
used a pre-trained CheXNet [5], which consists of a 121-
layer dense convolutional network (DenseNet) [6] backbone 
[7]. The final classifier was replaced with three classes (nor-
mal, pneumonia, and COVID-19) and four classes (normal, 
bacterial pneumonia, viral pneumonia, and COVID-19) of 
the classification layer. They showed an accuracy of 90.5% 
and 87.2% for three classes and four classes classification, 
respectively. Their study demonstrated a better performance 
than COVID-Net by > 0.1 area under the receiver operating 
characteristic (AUROC) curve in detecting pneumonia and 
COVID-19. Kumar et al. used deep features and a support 
vector machine (SVM) to detect COVID-19, pneumonia, 
and those with no infection [8]. They applied 13 pre-trained 
CNN models, which include AlexNet, VGG-16, VGG-19, 
GoogleNet, ResNet-18, ResNet-50, ResNet-101, Inception-
v3, Inception-ResNet-v2, DenseNet-201, XceptionNet, 
MobileNet-v2, and ShuffleNet. Their study found that the 
best model for detecting COVID-19 is ResNet-50 with an 
accuracy of 95.33%, sensitivity of 95.33%, false-positive rate 

(FPR) of 2.33%, and F1-score of 95.34%. Chaudhary et al. 
proposed the Fourier–Bessel series expansion (FBSE)-based 
dyadic decomposition (FBD) method to diagnose COVID-
19 [9]. The CXR images are decomposed into subband 
images, which are fed to the ResNet-50 pre-trained CNN 
model. Then, the deep features from each CNN are ensem-
bled before being fed to the softmax classifier. They reported 
an overall accuracy of 98.6%. They further expanded their 
work by using Fourier–Bessel series expansion-based 
decomposition (FBSED) for the image decomposition on 
X-ray and CT images and applied it to five different pre-
trained CNN models [10]. They demonstrated an accuracy 
of 100% on CXR images and 97.6% on CT images.

Recently, Loey et al. proposed a novel Bayesian optimi-
zation-based CNN model, which consists of two main com-
ponents [11]. The first component deploys CNN to extract 
and learn deep features related to COVID-19. The second 
component used a Bayesian-based optimizer to tune the 
CNN hyperparameters according to an objective function. 
They achieved an accuracy of 96%. Gour et al. developed an 
uncertainty-aware convolutional neural network (UA-Con-
vNet), which utilizes the EfficientNet-B3 model and Monte 
Carlo (MC) dropout [12]. The MC dropout was applied for 
M forward passes to obtain the posterior predictive distri-
bution, which was then used to get the mean prediction and 
model uncertainty. Their results demonstrated a G-mean of 
98.02% and sensitivity of 98.15% for the multiclass clas-
sification task; and, a G-mean of 99.16% and sensitivity of 
99.30% for the binary classification.

The majority of the above deep learning methods required 
large datasets of images (> 1000) for training and valida-
tion. In the case of limited datasets, several research groups 
used transfer learning on the state-of-the-art CNN models 
in detecting COVID-19 cases. Transfer learning exploits 
the capabilities of the pre-trained CNN to new data with a 
smaller population instead of training a CNN from scratch. 
The pre-trained model retains both its initial architecture and 
all the learned weights. Then, the CNN model can be used 
as a feature extractor via transfer learning [13]. Apostolo-
poulos et al. applied transfer learning on five CNN models 
including VGG-19, MobileNet-v2, Inception, Xception, and 
Inception-ResNet-v2 for automatic detection of COVID-19 
from CXR images [14]. They found that MobileNet-v2 is 
the most effective model with an accuracy of 96.78%, sen-
sitivity of 98.66%, and specificity of 96.46%. Minaee et al. 
applied transfer learning on four CNN models including 
ResNet-18, ResNet-50, SqueezeNet, and DenseNet-121 [15]. 
They reported a sensitivity of 98% for all four CNN mod-
els, whereas the SqueezeNet showed the highest specificity 
of 92.9%. Soares et al. used three CNN models including 
Xception, ResNet, and VGG-16 with transfer learning [16]. 
They showed that the VGG-16 model had the highest accu-
racy of 97.3%. Majeed et al. performed a more extensive 
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study with 12 CNN models and their proposed shallow CNN 
architecture called CNN-X for multiclass classification of 
COVID-19, bacteria, viral, and normal class [17]. The 12 
CNN models are AlexNet, GoogleNet, VGG-16, VGG-19, 
ResNet-18, ResNet-50, ResNet-101, Inception-v3, Incep-
tion-ResNet-v2, SqueezeNet, DenseNet-201, and Xception. 
Their study showed that Inception-v3 had the highest sen-
sitivity of 97.26%. VGG-19, DenseNet-201, and Xception 
equally demonstrated the highest specificity of 100%. Nayak 
et al. also applied similar comprehensive study on eight 
pre-trained CNN models, including VGG-16, Inception-v3, 
ResNet-34, MobileNet-v2, AlexNet, GoogleNet, ResNet-50, 
and SqueezeNet [18]. They have investigated several hyper-
parameters to improve performance. Their results showed 
that ResNet-34 achieved the highest performance with an 

accuracy of 98.33%, sensitivity of 100%, and specificity of 
96.67%.

The summary of the studies that used various CNN 
models with transfer learning to detect COVID-19 cases 
is recorded in Table 1. Each of these studies reported a 
different best CNN model for the detection of COVID-19 
cases. Therefore, it is inconclusive which CNN model with 
transfer learning is the best model for detecting COVID-19. 
Furthermore, none of these studies examines the subjective 
accuracy compared to the diagnosis of a certified radiolo-
gist. Therefore, there was no subjective qualitative analysis 
performed in the previous studies. We do not know whether 
the detection of COVID-19 is genuinely based on the essen-
tial characteristic feature of the COVID-19 abnormality in 
the lung.

Table 1  Summary of the studies using CNN models with transfer learning for the detection of COVID-19 cases

Authors Number 
of CNN 
models

Dataset ratio Accuracy Sensitivity Specificity

Apostolopoulos et al. [14] 5 Train: test
(not reported)

(2-class on Dataset_1)
VGG-19: 98.75%
MobileNet-v2: 97.40%
Inception: 86.13%
Xception: 85.57%
Inception-ResNet-v2: 

84.38%
(2-class on Dataset_2)
MobileNet: 96.78%

VGG-19: 92.85%
MobileNet-v2: 99.10%
Inception: 12.94%
Xception: 0.08%
Inception-ResNet-v2: 

0.01%
(2-class on Dataset_2)
MobileNet: 98.66%

VGG-19: 98.75%
MobileNet-v2: 97.09%
(2-class on Dataset_2)
MobileNet: 96.46%

Minaee et al. [15] 4 Train: test
2084:3100

– ResNet-18: 98%
ResNet-50: 98%
SqueezeNet: 98%
DenseNet-121: 98%

ResNet-18: 90.7%
ResNet-50: 89.6%
SqueezeNet: 92.9%
DenseNet-121: 75.1%

Soares et al. [16] 3 Train: valid: test
80:10:10

VGG-16: 97.3%
Xception: 95.9%
ResNet: 94.6%

– –

Majeed et al. [17] 12
and
CNN-X

Train: test
80:20

– AlexNet: 90.41%
GoogleNet: 93.15%
VGG-16: 84.93%
VGG-19: 0%
ResNet-18: 95.89%
ResNet-50: 95.89%
ResNet-101: 91.78%
Inception-v3: 97.26%
Inception-ResNet-v2:
95.89%
SqueezeNet: 93.15%
DenseNet-201: 90.41%
Xception: 93.15%
CNN-X: 93.15%

AlexNet: 88.03%
GoogleNet: 96.15%
VGG-16: 97.86%
VGG-19: 100%
ResNet-18: 98.72%
ResNet-50: 97.01%
ResNet-101: 97.86%
Inception-v3: 92.74%
Inception-ResNet-v2:
99.57%
SqueezeNet: 99.57%
DenseNet-201: 100%
Xception: 100%
CNN-X: 97.86%

Nayak et al. [18] 8 Train: test
286:120

ResNet-34: 98.33%
ResNet-50: 97.50%
GoogleNet: 96.67%
VGG-16: 95.83%
AlexNet: 97.50%
MobileNet-v2: 95.83%
Inception-v3: 92.50%
SqueezeNet: 96.67%

ResNet-34: 100%
ResNet-50: 100%
GoogleNet: 96.67%
VGG-16: 96.67%
AlexNet: 98.33%
MobileNet-v2: 93.33%
Inception-v3: 88.33%
SqueezeNet: 95%

ResNet-34: 96.67%
ResNet-50: 95%
GoogleNet: 96.67%
VGG-16: 95%
AlexNet: 96.67%
MobileNet-v2: 98.33%
Inception-v3: 96.67%
SqueezeNet: 98.33%
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Therefore, our study aims to combine quantitative 
and qualitative analysis of the CNN models with trans-
fer learning. This is an interdisciplinary study between 
computer scientists and radiologists. We investigated 18 
CNN models with transfer learning for the detection of 
COVID-19 cases. It includes AlexNet, DarkNet-19, Dark-
Net-53, DenseNet-201, GoogLeNet, Inception-ResNet-
v2, Inception-v3, MobileNet-v2, NasNet-Large, NasNet-
Mobile, ResNet-18, ResNet-50, ResNet-101, ShuffleNet, 
SqueezeNet, VGG-16, VGG-19, and Xception. Their perfor-
mances were evaluated using six assessment metrics includ-
ing specificity, sensitivity, precision, negative-predictive 
value (NPV), accuracy, and F1-score. From these assess-
ment metrics, the top four models with accuracy higher than 
90% and the bottom three models were chosen for qualita-
tive analysis. A gradient-weighted class activation mapping 
(Grad-CAM) was used to visualize the significant region of 
activation for the decision-making in image classification. 
Two certified radiologists performed blinded subjective vot-
ing on the Grad-CAM heatmaps in comparison with their 
diagnosis. This is a new contribution to the existing study, 
where we have adopted the qualitative assessment of the 
Grad-CAM heatmaps to enhance the evaluation of the CNN 
models. This study investigated the best CNN model with 
transfer learning to diagnose COVID-19 by combining both 
quantitative and qualitative analysis.

The main contributions of this work are:

• Quantitative analysis using six assessment metrics on 
18 CNN models with transfer learning for diagnosing 
COVID-19 on CXR images. This is an objective assess-
ment by computer.

• Identification of COVID-19 pneumonia-related lung 
changes on CXR identified visually by two certified radi-
ologists on 50 CXR images. This is the ground truth of 
the diagnosis.

• Qualitative analysis of the top four and bottom three 
CNN models using Grad-CAM heatmaps, performed by 
two certified radiologists in comparison with the ground 
truth. This is a subjective assessment by radiologists.

Material and Methods

Overview of 18 CNN Architectures

VGG uses up to 19 weight layers, which is a very deep con-
volutional network during its era for large-scale image clas-
sification. They explored the conventional Convolutional 
Networks (ConvNets) and increased the depth of architecture 
with very small (3 × 3) convolution filters [19]. Our study 
used two versions of VGG, which are VGG-16 and VGG-19, 
where the number represents the number of layers. ResNet 

explicitly reformulates the layers as learning residual func-
tions with reference to the layer inputs. Their baselines were 
inspired by the VGG nets except that this model has fewer 
filters and lower complexity. [20]. Our study used three 
versions of ResNet, which are ResNet-18, ResNet-50, and 
ResNet-101, where the number represents the number of 
layers. AlexNet comprises 5 convolution layers and 3 fully 
connected layers with a final 1000-way softmax layer. They 
used the “dropout” regularization method to reduce overfit-
ting and non-saturating neurons to make training faster [21]. 
SqueezeNet is a small CNN architecture with equivalent 
accuracy to AlexNet although it is 50 times fewer parameters 
and 510 times smaller than AlexNet. It replaced the 3 × 3 
filters with 1 × 1 filters, decreased the number of input chan-
nels to 3 × 3 filters, and downsample late in the network so 
that the convolution layers have a large activation map [22].

Inception-v3 scales up the networks by factorizing con-
volutions and aggressive dimension reductions inside the 
neural network. They demonstrated the training of high-
quality networks on relatively modest size training sets using 
the combination of lower parameter count and additional 
regularization with batch-normalized auxiliary classifiers 
and label smoothing. They showed high-quality results for 
low receptive field resolution of 79 × 79, which could help 
detect relatively small objects [23]. GoogLeNet applies the 
Inception network, and its architecture is based on the Heb-
bian principle and the intuition of multi-scale processing. 
The main benefit is that it allows the increase of the depth 
and width of the network without a huge computational 
complexity [24]. Inception-ResNet-v2 combined the ideas 
of residual connections and the Inception architecture. It 
shows the benefit of accelerating the Inception networks’ 
training speed and improving the recognition performance 
significantly [25]. Xception architecture was inspired by 
the Inception module, but it is entirely based on depth-wise 
separable convolutions with linear residual connections. It 
uses the same number of parameters as Inception-v3 but in 
a more efficient use of these parameters [26].

DarkNet-19 uses 3 × 3 filters and doubles the number 
of channels after every pooling step. It uses global average 
pooling to make predictions and a 1 × 1 filter to compress 
the feature representation between 3 × 3 convolutions [27]. 
DarkNet-53 is a variant of DarkNet-19, where it has 53 con-
volutional layers [28]. DenseNet-201 uses a feed-forward 
to link each layer to every other layer. In each layer, the 
feature maps of all the preceding layers are used as inputs. 
Its feature maps are then used as inputs into all the following 
layers. It solves the vanishing gradient problem, improves 
feature propagation, encourages feature reuse, and reduces 
the number of parameters [6].

MobileNet-v2 is a mobile architecture based on an 
inverted residual structure and linear bottleneck. The short-
cut connections are between the thin bottleneck layers. The 
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intermediate expansion layer used lightweight depth-wise 
convolutions to filter the features. Its architecture consists 
of an initial fully convolution layer with 32 filters and 19 
residual bottleneck layers [29]. ShuffleNet utilizes pointwise 
group convolution and channel shuffle. It reduces the com-
putation cost while maintaining accuracy. Its computation 
is 13 times faster than AlexNet for comparable classification 
accuracy. It was designed for mobile devices [30]. NasNet 
designs a new search space to search for an architectural 
building block on a small dataset and then transfer the block 
to a larger dataset. They used the neural architecture search 
(NAS) as the primary search method. The model used a new 
regularization technique called “Scheduled Drop Path” that 
improves generalization [31]. Our study used two versions of 
NasNet, which are NasNet-Large and NasNet-Mobile.

Dataset Preparation

The CXR images in our study were obtained from the 
public and private domains. The dataset from the public 
domain is called COVIDx [32], which consists of CXR 
images from five sources: Actualmed COVID-19 Chest 
X-Ray Dataset Initiative (Actmed) [33], COVID-19 Image 
Data Collection: Prospective Predictions Are the Future 
(COHEN) [34], Fig. 1 COVID-19 Chest X-Ray Dataset 
Initiative (Fig1) [35], (COVID-19 Radiography Database 
(SIRM) [36], and RSNA Pneumonia Detection Chal-
lenge (RSNA) [37]. The dataset from the public domain 
are available in the websites listed in the references. The 
dataset from the private domain was provided by the 
Department of Biomedical Imaging, Faculty of Medi-
cine, University of Malaya (UM), Malaysia. The dataset 
from the private domain is not available to the public fol-
lowing the ethnic agreement which is specified for this 

study only. We obtained both CXR images of normal and 
COVID-19 subjects from both public and private domains. 
We chose the CXR images in the posteroanterior (PA) 
and anteroposterior (AP) views of the lung for this study. 
The number of images from each domain and source is 
recorded in Table 2. The size of the normal images range 
from 1024 × 1024 (smallest) to 2520 × 3032 (largest); the 
COVID-19 images range from 220 × 206 (smallest) to 
4280 × 3520 (largest). There are no specific gray levels 
in the public domain images since they were taken from 
various databases. The private domain DICOM images 
were 12-pixel depth indicating 4096 gray levels in each 
CXR image. Figure 1 shows a COVID-19 CXR image and 
a normal lung CXR image provided by UM.

The 18 CNN models were trained with a combined 
dataset consisting of 200 normal CXR images (100 from 
COVIDx and 100 from UM) and 200 COVID-19 CXR 
images (100 from COVIDx and 100 from UM). These 
images were split to a ratio of 7:3 for training and valida-
tion. For each class (normal and COVID-19), 140 images 
were used for training, and 60 images were used for valida-
tion. The remaining images were used for testing the CNN 
models to evaluate their performances. The testing dataset 
consists of 150 normal CXR images (100 from COVIDx 

Fig. 1  CXR images for a a 
patient diagnosed with COVID-
19 and b a normal lung

Table 2  The number of CXR images obtained from the public and 
private domain

Class Dataset

Public (COVIDx) Private (UM) Total

Normal RSNA (200) UM (150) 350
COVID-19 Actmed (58)

COHEN (65)
Fig1 (35)
SIRM (42)
(Total 200)

UM (150) 350
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and 50 from UM) and 150 COVID-19 CXR images (100 
from COVIDx and 50 from UM). The dataset split for 
training, validation, and testing is recorded in Table 3.

Hardware and Software

The training, validation, and testing of the CNN models 
were performed using an Intel(R) Core (TM) i5-10,500 CPU 
@ 3.10 GHz with 8 GB RAM. The YAKAMI DICOM Tool 
[38] was used to convert the DICOM images to JPEG file 
format. Then, the Deep Network Designer Toolbox in MAT-
LAB R2020b (The Mathworks, Inc.) was used for training 
and testing the 18 CNN models. The MATLAB Grad-CAM 
Library [39] was used to run the Gradient-weighted Class 
Activation Mapping (Grad-CAM) to visualize the classifica-
tion decision. 

Transfer Learning

Our study applied transfer learning to the 18 CNN models 
available in MATLAB’s Deep Network Designer. The 18 
CNN models were previously trained using the ImageNet 
images [40]. Since we do not have a large dataset of CXR 

images to train a deep learning model from scratch, transfer 
learning was applied to the pre-trained CNN models. In this 
approach, the CNN models are used as a feature extractor 
while keeping their initial architecture. Referring to Fig. 2, 
the lower layers for the feature extractor portion are frozen. 
The original fully connected, softmax and classification 
output layers are removed and replaced with a new set with 
an output size of 2 to indicate the binary classification of 
COVID-19 or normal classes. We did not attempt to opti-
mize the CNN models or adjust their weights in the feature 
learning portions. The transfer learning approach is a more 
efficient and common way for the considerably small size 
of data; therefore, we do not need to train the CNN models 
from scratch.

This study used the recommended default hyperparam-
eter settings provided by MathWorks’ Deep Learning Guide. 
Figure 3 is the training setting used for all the CNN models 
in this study. No tuning approach was done since it is not the 
main focus of this study.

Assessment Metric

There are four possible outcomes in a confusion matrix for 
binary classification: true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN). True positive 
(TP) refers to the number of cases correctly classified as 
positive where the disease is present. True negative (TN) 
refers to the number of cases correctly classified as negative 
where the disease is absent. False negative (FN) refers to the 
number of cases wrongly classified as negative where the 
disease is present. False positive (FP) refers to the number 

Table 3  The implementation details of the dataset split for training, 
validation, and testing

Class Training Validation Testing Total

Normal 140 60 150 350
COVID-19 140 60 150 350

Fig. 2  A pre-trained CNN architecture is adapted with transfer learning to perform a binary classification (COVID-19 or normal)
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of cases wrongly classified as positive where the disease is 
absent.

The TP, TN, FN, and FP are used to calculate the assess-
ment metrics including specificity, sensitivity, precision, NPV, 
accuracy, and F1-score. These metrics are used to evaluate the 
performance of the 18 CNN models in this study. The formulas 
for the specificity, sensitivity (or recall), precision, NPV, accu-
racy, and F1-score are given in Eq. (1) to Eq. (6), respectively:

(1)Specificity =
TN

TN+FP
,

(2)Sensitivity/Recall =
TP

TP+FN
,

(3)Precision =
TP

TP +FP
,

Majority Voting

Majority voting has been adopted with deep learning to 
improve the COVID-19 detection accuracy [41, 42]. Our 
study used the hard approach of majority voting, which gives 
a label of the class for each image according to the highest 
number of labels (votes) among all the CNN models. It is 
applied for the 18 CNN models, then repeated for the top 4 
CNN models with an accuracy higher than 90%.

Qualitative Analysis with Grad‑CAM

The prediction made by the CNN models can be evaluated 
quantitatively using the assessment metrics described earlier. 
However, we do not know which part of the images was 
used as the features in the decision-making for the predic-
tion. Therefore, it is equally important to display some sort 
of “visual explanation” for the decision made by the CNN 
models. We used Grad-CAM for this purpose [39]. It uses 
the gradients of any target concept flowing into the final 
convolutional layer to produce a coarse localization map 
highlighting the significant regions in the image for the pre-
diction. It is a useful tool to interpret the model’s decision. 
For the 18 CNN models, the feature map layer was specified 
for each model to produce the Grad-CAM heatmap as shown 
in Table 4.

From the quantitative analysis, we chose the top four and 
bottom three CNN models for further qualitative analysis. 
We produced the Grad-CAM heatmaps of the testing dataset 
with COVID-19 (50 CXR images from UM). Two certi-
fied radiologists with more than 5 and 10 years of CXR 
interpretation experience independently evaluated these 
CXR images by drawing a contour over the infected region 
within the lung using the ITK-SNAP software [43]. For each 
CXR image, the radiologists were given seven Grad-CAM 
heatmaps (top four and bottom three) to vote for the closest 
heatmap with their diagnosis indicated by the contour of the 
infected region. If there were more than one heatmap with 
the correct region identified by the CNN model, they were 
all given one vote. If all the heatmaps showed the wrong 
region, no vote was given for that image. This process was 

(4)Negative Predictive Value (NPV) =
TN

TN + FN
,

(5)Accuracy =
TP + TN

TP+TN+ FP+FN
,

(6)

F1 score =
2 × Precision × Recall

Precision + Recall
=

2 × TP

(2 × TP) + FN + FP
.

Fig. 3  Training setting of the hyperparameters for all the CNN mod-
els
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repeated for 50 CXR images with seven heatmaps each. 
The bottom three CNN models were included in this vote 
to ensure that they were the least accurate model compared 
to the top four models. The radiologists performed blind 
analysis during the voting without knowing the name of the 
CNN models. We aim to find the most suitable CNN models 
for COVID-19 detection by combining both quantitative and 
qualitative analysis. 

Results

Quantitative Analysis

Table 5 records the depth of layers, total layers (convolution, 
dense, pooling, etc.), and the number of parameters (in mil-
lion) for the 18 CNN models, arranged from the highest to 
the lowest number of parameters. All the models used the 
same input image size of 224 × 224 × 3. Figure 4 shows the 
training time (left bars), and the validation and testing accu-
racy (right bars) for each model arranged from the highest to 
the lowest number of parameters. Generally, a model with a 
larger number of parameters requires a longer training time.

SqueezeNet used the lowest number of parameters (1.24 
million) and the shortest training time (514 s = 8 min 34 s), 
yet a relatively good validation accuracy of 92.5% and test-
ing accuracy of 90.67%. VGG-16 has the highest valida-
tion accuracy of 96.67% and testing accuracy of 94.33%, 
but a relatively long training time (3942 s = 1 h 5 min 42 s). 

In general, there is a tradeoff in achieving higher accuracy. 
Nevertheless, NasNet-Large used the longest training time 
yet it has the lowest validation and testing accuracy. There-
fore, the relation between the training time with the valida-
tion and testing accuracy is inconclusive among these 18 
CNN models.

Table 6 records the classification results (TP, FP, FN, and 
TN) for the 18 CNN models, arranged from the highest to 
the lowest number of parameters, and for the majority vot-
ing with 18 models and the top 4 models. These values were 
used to calculate the assessment metric specificity, sensi-
tivity, precision, NPV, accuracy, and F1-score as recorded 
in Table 7. The 18 CNN models were arranged from the 
highest to the lowest accuracy (%) in Table 7. It was found 
that VGG-16 has the highest accuracy of 94.3%, highest 
specificity of 93.5%, highest precision of 93.3%, and highest 
F1-score of 94.3%. VGG-19 demonstrated the highest sensi-
tivity value of 95.6% and the highest NPV value of 96.0%. 
DarkNet-19 and GoogLeNet also demonstrated the high-
est NPV value of 96.0%. The top 4 models were identified 
based on an accuracy higher than 90%, which are VGG-16, 
ResNet-101, VGG-19, and SqueezeNet. The majority vot-
ing with 18 models produced an accuracy of 93.0%, which 
is lower than the majority voting with the top 4 models with 
an accuracy of 94.0%.

Table 4  The selected feature map layer used to produce Grad-CAM 
heatmap in each CNN models

CNN models Feature map layer

AlexNet relu5
DarkNet-19 conv19
DarkNet-53 res23
DenseNet-201 conv5_block32_concat
GoogLeNet inception_5b-output
Inception-ResNet-v2 conv_7b_ac
Inception-v3 mixed10
MobileNet-v2 out_relu
NasNet-Large activation_520
NasNet-Mobile activation_188
ResNet-101 res5c_relu
ResNet-18 res5b_relu
ResNet-50 activation_49_relu
ShuffleNet node_199
SqueezeNet relu_conv10
VGG-16 relu5_3
VGG-19 relu5_4
Xception block14_sepconv2_act

Table 5  The depth of layers, total layers, number of parameters, and 
image input size for the 18 CNN models are arranged from the high-
est to the lowest number of parameters

*The NASNet-Mobile and NASNet-Large networks do not consist of 
a linear sequence of modules

CNN model Depth of layer Total
layers

Param-
eters 
(million)

VGG-19 19 47 144
VGG-16 16 41 138
NasNet-Large * 1243 88.9
AlexNet 8 25 61
Inception-ResNet-v2 164 824 55.9
ResNet-101 101 347 44.6
DarkNet-53 53 184 41.6
ResNet-50 50 177 25.6
Inception-v3 48 315 23.9
Xeception 71 170 22.9
DarkNet-19 19 64 20.8
DenseNet201 201 708 20
ResNet-18 18 71 11.7
GoogLeNet 22 144 7
NasNet-Mobile * 913 5.3
MobileNet-v2 53 154 3.5
ShuffleNet 50 172 1.4
SqueezeNet 18 68 1.24
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The assessment metric results in Table 7 are plotted in 
Fig. 5 from the highest to the lowest number of parameters 
as the plot moves from the left to the right side. DarkNet-53 
demonstrated the most consistent values among the six 
assessment metrics, while Xception has the largest varia-
tion of values. It is observed that there is no specified trend 
of performance with the number of parameters used in each 
CNN model. Our study focuses on the performance of differ-
ent types of CNN models, instead of the number of parame-
ters, to diagnose COVID-19. The majority voting with either 
18 or the top 4 models produced consistently higher values 
of all the assessment metrics. The confusion matrices of the 
top 4 models, the majority voting with 18 models, and the 
majority voting with the top 4 models are plotted in Fig. 6.

Qualitative Analysis

From the above quantitative results in Table 7 and Fig. 5, 
it is inconclusive which CNN model is the best model for 
identifying COVID-19 from the normal lung CXR images. 
Therefore, it is necessary to perform qualitative analysis to 
investigate the most suitable CNN model for diagnosing 

COVID-19. Figure 7(a) and b show the Grad-CAM heat-
maps of the 18 CNN models for the correctly classified 
COVID-19 and normal CXR images, respectively. The red 
region is the most significant region where the CNN models 
extracted the “features” during the prediction process. The 
blue region is the least significant region for decision-mak-
ing. It is observed that some of the red regions for decision-
making are not within the thoracic cavity. Therefore, the 
prediction performed by some CNN models was based on 
the features of a wrong region although it produced the true 
positive (TP) or true negative (TN) results. The ground truth 
of the infected lung area is shown in the bottom right corner 
of Fig. 7(a) by two radiologists. The majority voting method 
does not have a Grad-CAM heatmap because it is a differ-
ent approach that produces the label of the images based on 
the majority votes of the prediction from each CNN model.

To identify which CNN model interpreted the correct 
region within the lung during the classification process, 
the qualitative analysis of these heatmaps is necessary with 
the assistance of the radiologist. Only the top four mod-
els (VGG-16, ResNet-101, VGG-19, and SqueezeNet) and 
bottom three models (NasNet-Mobile, NasNet-Large, and 

Fig. 4  Training time (left bars), 
validation, and testing accuracy 
(right bars) for 18 CNN models, 
with descending order of the 
number of parameters (writ-
ten in bracket, in the unit of 
million)
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Table 6  Classification results 
(TP, FP, FN, TN) for the 18 
CNN models, arranged in the 
descending order of the number 
of parameters; and for the 
majority voting with 18 models 
and the top 4 models

CNN model COVID (TP) COVID (FP) Normal (FN) Normal
(TN)

VGG-19 129 21 6 144
VGG-16 140 10 7 143
NasNet-Large 101 49 21 129
AlexNet 140 10 23 127
Inception-ResNet-v2 119 31 9 141
ResNet-101 137 13 12 138
DarkNet-53 134 16 15 135
ResNet-50 139 11 21 129
Inception-v3 127 23 10 140
Xception 90 60 17 133
DarkNet-19 119 31 6 144
DenseNet-201 118 32 13 137
ResNet-18 138 12 23 127
GoogLeNet 115 35 6 144
NasNet-Mobile 115 35 24 126
MobileNet-v2 136 14 25 125
ShuffleNet 138 12 27 123
SqueezeNet 139 11 17 133
Majority voting (18 models) 138 12 9 141
Majority voting (top 4 models) 142 8 10 140

Table 7  Assessment metric values for the 18 CNN models (arranged from the highest to the lowest accuracy) and for the majority voting with 18 
and the top 4 models

The highest value for each type of assessment metric is highlighted in bold font

CNN model Specificity (%) Sensitivity (%) Precision (%) NPV (%) F1-Score (%) Accuracy (%)

Majority voting
(top 4 models)

94.6 93.4 94.7 93.3 94.0 94.0

Majority voting
(18 models)

92.2 93.9 92.0 94.0 92.9 93.0

VGG-16 93.5 95.2 93.3 95.3 94.3 94.3
ResNet-101 91.4 91.9 91.3 92.0 91.6 91.7
VGG-19 87.3 95.6 86.0 96.0 90.5 91.0
SqueezeNet 92.4 89.1 92.7 88.7 90.8 90.7
DarkNet-53 89.4 89.9 89.3 90.0 89.6 89.7
ResNet50 92.1 86.9 92.7 86.0 89.7 89.3
AlexNet 92.7 85.9 93.3 84.7 89.5 89.0
Inception-v3 85.9 92.7 84.7 93.3 88.5 89.0
ResNet-18 91.4 85.7 92.0 84.7 88.7 88.3
DarkNet-19 82.3 95.2 79.3 96.0 86.5 87.7
MobileNet-v2 89.9 84.5 90.7 83.3 87.5 87.0
ShuffleNet 91.1 83.6 92.0 82.0 87.6 87.0
Inception-ResNet-v2 82.0 93.0 79.3 94.0 85.6 86.7
GoogLeNet 80.4 95.0 76.7 96.0 84.9 86.3
DenseNet-201 78.7 90.1 81.1 91.3 85.0 84.0
NasNet-Mobile 78.3 82.7 76.7 84.0 79.6 80.3
NasNet-Large 72.5 82.8 67.3 86.0 74.3 76.7
Xception 68.9 84.1 60.0 88.7 70.0 74.3
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Xception) from Table 7 were chosen to produce the Grad-
CAM heatmaps for 50 CXR images (from UM datasets) for 
the qualitative analysis. Figure 8 shows another COVID-19 
CXR image with the ground truth drawn by two radiolo-
gists and seven Grad-CAM heatmaps of the top four and 
bottom three models. The radiologists voted the best heat-
map by comparing them with the contour of the infected 
region drawn by themselves. The result of their voting is 
recorded in Table 8. The total number of voting is unequal 
between the two radiologists because in any case without a 
correct heatmap, no score was given. Referring to Table 8, 
SqueezeNet has the highest score (printed in bold) on its 
Grad-CAM heatmaps to the radiologist’s diagnosis. The bot-
tom three models have the least score among both radiolo-
gists. This result confirms that the poorly performed CNN 
models in terms of quantitative analysis agreed with the 
qualitative analysis by the radiologists.

Discussion

This study has demonstrated both quantitative and qualita-
tive analysis of 18 CNN models with transfer learning to 
diagnose COVID-19 on CXR images. The state-of-the-art 
CNN models can classify COVID-19 from normal lung 
CXR images with accuracy between 74.3% and 94.3% in 
our study as recorded in Table 7. Six assessment metrics 
were calculated including specificity, sensitivity, precision, 
NPV, accuracy, and F1-score. Yet, it is difficult to conclude 
which is the most suitable model from the quantitative analy-
sis result. Most of the CNN models produced competitively 
good results of assessment metric values. Referring to 
Table 7, the top four CNN models with accuracy higher than 
90% are VGG-16, ResNet101, VGG-19, and SqueezeNet. 
The majority voting with the hard approach produced aN 

accuracy of 94.0% when combining the top 4 models and 
93.0% when combining all the 18 models. The slightly lower 
accuracy in combining 18 models is due to the averaging 
effect from the poorer models.

To date, the majority of the CNN studies for the detec-
tion of COVID-19 excluded qualitative analysis by radi-
ologists. The new contribution from our study is the sub-
jective qualitative analysis of the CNN models by certified 
radiologists alongside the quantitative analysis. Our study 
has combined both objective assessment (quantitative 
analysis by computer) and subjective assessment (qualita-
tive analysis by radiologists) to enhance the evaluation of 
the CNN models. It gives us better confidence in our inves-
tigation of the best CNN model for diagnosing COVID-19 
on CXR images.

Mangal et al. used RISE [44] to generate saliency maps 
to visualize their model’s predictions [7]. The saliency map 
specifies parts of the input image that contribute to the activ-
ity of a specific layer or the decision of the neural network. 
It is a local gradient-based backpropagation interpretation 
method. However, a study showed that saliency maps are not 
totally reliable, where the data preprocessing such as input 
invariance and normalization could produce an undesirable 
effect on the saliency maps [45]. Another study found that 
the saliency map is vulnerable to adversarial attacks [46]. 
Therefore, our study only considers the Grad-CAM for the 
visualization of the model’s predictions.

The Grad-CAM heatmap is a good visualization tool 
to illustrate the significant region used by each model for 
feature extraction and decision-making. Our study reveals 
that the Grad-CAM heatmaps of SqueezeNet are the clos-
est to two independent radiologists’ subjective diagnoses of 
COVID-19. SqueezeNet demonstrated an accuracy of 90.7% 
and an F1-score of 90.8%. Nevertheless, VGG-16 demon-
strated the highest accuracy of 94.3% and F1-score of 94.3% 

Fig. 5  Assessment metrics for the 18 CNN models, arranged from the highest to the lowest number of parameters as the plot moves from the left 
to right, and for the majority voting with 18 models and the top 4 models
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among all the CNN models. Although VGG-16 was not the 
highest voted model by radiologists, it does not rule out its 
credential for diagnosing COVID-19. Visual assessment is 
subject to human error and inter-observer discrepancies.

VGG is one of the most commonly used CNN models 
given its high accuracy in large-scale image recognition 
[19]. It uses very deep convolutional networks, a depth 

of 16 or 19 weight layers, which is beneficial for clas-
sification accuracy on a wide range of datasets and tasks. 
SqueezeNet maintains a competitive accuracy but with 
the least number of parameters (1.24 million) as shown 
in Table 5 and the shortest training time (8 min 34 s) as 
shown in Fig. 4. Its design strategies were to replace 3 × 3 
filters with 1 × 1 filters, decrease the number of input 

Fig. 6  Confusion matrices 
for the top 4 models (VGG-
16, ResNet-101, VGG-19, 
SqueezeNet), majority voting 
with 18 models and the top 4 
models
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channels, and downsample late in the network to achieve 
large activation in the convolution layers. VGG-16 is 1.04 
times more accurate than SqueezeNet, but SqueezeNet 
used 111 times fewer parameters than VGG-16 and its 
training time was 7.7 times faster than VGG-16. The 
CNN model with fewer parameters has the advantage of 

more efficient distributed training and less overhead when 
exporting new models to clients [22]. Both VGG-16 and 
SqueezeNet could be recommended as supplementary 
tools to aid CXR interpretation to determine COVID-19 
or normal findings.

Fig. 7  The Grad-CAM heatmaps of 18 CNN models for a correctly classified a COVID-19 CXR (116_1.Ser2.Img1.jpg) where the ground truth 
identified by two radiologists are in grayscale with red contour indicating the affected area and b normal CXR (102.Ser1.Img1_anon.jpg)
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Although the CXR images could be pre-processed to 
exclude the artifacts of text, medical traces, or other ana-
tomical regions, they would become tailor-made lung images 
in this investigation. In any natural image classification, a 
“complex” or “crowded” image should not be avoided dur-
ing a fair evaluation process of a CNN model. Therefore, 
we did not selectively choose “perfect” lung images for this 
study. On the other hand, we adopted the qualitative assess-
ment to enhance the evaluation of the CNN models in diag-
nosing COVID-19.

Our study used CXR as opposed to chest CT because 
CXR is the most used imaging tool for the assessment of 
COVID-19 patients in many parts of the world. It is used 

for baseline assessments, to assess disease severity and 
follow-up. It is done more commonly than CT as it can be 
done faster and easily at the patient’s bedside. It uses low 
resources and does not incur long machine downtime or 
extensive room and machine cleaning as CT does. Therefore, 
CXR is widely used as a supplementary imaging tool to aid 
the diagnosis of COVID-19 pneumonia. RT-PCR is accurate 
and indeed the gold standard, however, RT-PCR results take 
a long time, often 24 h and up to 4 to 5 days during the peak 
of the pandemic. CXR is fast, cheap, and readily available 
thus CXR features that are suggestive of COVID-19 can 
be used to triage patients with a high index of suspicion of 
COVID-19. These patients can be isolated and treated as 
highly suspicious of COVID-19 pneumonia while awaiting 
the formal RT-PCR results. The RT-PCR test only gives a 
result as positive or negative of COVID-19 infection without 
any information on its severity. On the other hand, CXR 
provides information about the status of infection and the 
disease severity. Furthermore, CXR imaging is an efficient 
and cost-effective procedure with relatively cheap and port-
able equipment which could be performed rapidly in isolated 
rooms for COVID-19 patients. In addition, CXR images can 
be used as an input to the automatic diagnosis with the CNN 
model with high accuracy. A reliable CNN tool in the diag-
nosis of COVID-19 pneumonia with this inexpensive and 
easily available imaging tool will be highly beneficial.

Fig. 8  COVID-19 CXR image 
(115_1.Ser1.Img1) with ground 
truth identified by two radiolo-
gists; Grad-Cam heatmaps of 
the top four and bottom three 
models

Table 8  The voting results by two blinded radiologists on 50 Grad-
CAM heatmaps of top 4 and bottom 3 CNN models

CNN architecture Radiologist A Radiologist B

VGG-16 7 14
ResNet101 8 3
VGG-19 4 16
SqueezeNet 11 20
NasNet-Mobile 3 1
NasNet-Large 0 0
Xception 4 0
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There are a few shortcomings in this study yet to be 
improved in future studies. Our study used a consider-
ably small dataset for the training, validation, and testing. 
However, it is possible given the advantage of the transfer 
learning on the CNN model. We have adopted diverse CXR 
images from the west (public domain, COVIDx) and east 
(private domain, UM). Future work could explore a larger 
number of datasets to verify the findings. The training and 
validation datasets could be expanded through data augmen-
tation, i.e., rotations, translations, image scaling, reflections, 
shearing, and cropping transformation. It may overcome the 
overfitting of the training dataset encountered during the 
training process. Future work may explore training with a 
higher number of epochs to improve accuracy. The hyperpa-
rameters such as learning rates and different solvers can be 
experimented with to determine the best learning rate and 
solvers for the models to be trained on. The binary classifica-
tion of either COVID-19 or normal lung is not directly appli-
cable in actual clinical diagnosis. There could be other types 
of pneumonia infection that might be wrongly classified as 
COVID-19. Therefore, a multiclass classification model is 
necessary for a practical clinical diagnosis. Nevertheless, 
the automated diagnosis with the CNN model should only 
be used as a secondary tool to assess clinical suspicion of 
COVID-19. RT-PCR test remains the confirmatory test for 
this disease. Future work could develop a CNN model to 
monitor or classify stages of severity of lung deformation 
after the diagnosis of COVID-19.

Conclusion

The main contribution of this study is the combination of 
both objective quantitative and subjective qualitative analy-
sis in evaluating the performance of CNN models with trans-
fer learning to diagnose COVID-19. In this study, the quan-
titative analysis of 18 CNN models with transfer learning 
revealed that the top four models for diagnosing COVID-19 
on CXR images are VGG-16, ResNet-101, VGG-19, and 
SqueezeNet. The VGG-16 scored the highest accuracy of 
94.3% and the highest F1-score of 94.3%. The majority 
voting with all the 18 CNN models and top 4 models pro-
duced an accuracy of 93.0% and 94.0% respectively. The 
qualitative analysis using Grad-CAM heatmaps of the top 
four and bottom three models revealed that SqueezeNet is 
the closest model to the subjective diagnosis of two certi-
fied radiologists. SqueezeNet demonstrated a competitively 
good accuracy of 90.7% and F1-score of 90.8% with the 
shortest training time of 8 min 34 s. It used 111 times fewer 
parameters than VGG-16 and its training time was 7.7 times 
faster than VGG-16. Therefore, our study recommends both 

VGG-16 and SqueezeNet as additional tools for the diagno-
sis of COVID-19. 
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