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1 INTRODUCTION 

1 Introduction 

In this paper we discuss the various criteria for the evaluation of superquadric models recovered 

from range data. By evaluation we mean the process of determining the suitability of a recovered 

model given the original data. In order to apply superquadric models in a general vision system 

it is imperative to evaluate them at different stages of scene description. The model recovery 

procedure consists of the optimization of an objective function, studied at length by Boult and 

Gross [BG87, BG881, Pentland [PensGI, and Bajcsy and Solina [BS87]. The objective function can 

be the superquadric inside-outside function [BG87, BG881, or its modified form [BS87, So1871, or a 

suitable Euclidean distance measure [Pen88]. The superquadric model recovered by a minimization 

procedure formulated in terms of average values of distance or the inside-outside function may 

not be acceptable even if the global fitting error is acceptable. The reason being that the model 

imposes symmetry and gives an overconstrained estimation of a large set of points in terms of a 

few parameters. While an object with a model in the superquadric model vocabulary will result in 

an acceptable global fitting error, the converse is not necessarily true. A different set of measures 

which analyze the recovered model locally as well as globally is needed for the complete evaluation. 

We present arguments to support our belief that both quantitative and qualitative measures are 

required to  completely evaluate the fit that is given by superquadric model. 

A shape recognition system using superquadrics as a part-model shape primitive needs mecha- 

nisms to evaluate the intermediate descriptions in order to extract the part-structure. Thus, in this 

paper we focus on the evaluation of recovered superquadric models rather than on formulation of 

the model recovery problem. We discuss two quantitative (global) measures and three qualitative 

measures. As we shall see, each one of them is individually insufficient to  provide an absolute 

criterion for the eval~a~tion of the fit. However, when they are actually combined and integrated 

they ma.y be used to  provide corroboration and guidance to the segmentation procedure. 

We will first present the definition of deformable superquadrics as given by Solina [So187, BS871, 

and then outline the model evaluation criteria that we developed. Finally we will provide some 

examples and discuss the effect of integrating the different criteria. 



2 SUPERQUADRICS : DEFORMABLE PART MODELS 

2 Superquadrics : Deformable Part Models 

Volumetric primitives give object-centered descriptions of the object parts. Generalized cylinders, 

[Kli78] proposed for applications in vision by Binford [Bin71], have been used as volumetric prim- 

itives for the rich vocabulary of shapes they provide. However, this vocabulary is very difficult 

to  recover from vision data, limiting the actual voca.bulary t o  simple linear-straight-homogeneous 

cylinders. Recently, Terzopolous et.al. [T'CVK88] suggested a deformable model based on the con- 

cept of generalized cylinders. The model requires segmented data  and user intervention for the 

initial approximation and is coniputationally expensive. Superquadric primitives can model only 

a subset of generalized cylinders shapes, but provide a good compromise for representational and 

computational effectiveness. They are ca.pable of modeling tapering and bending deformations, and 

are recovered effectively by a stable numerical procedure. 

Superquadrics are a family of para.metric shapes that  have been used as primitives for shape 

representation in computer vision [Pen86, So187, BG87] and computer graphics [Bar81, Bar841. 

Definition : A sllperquadric surfa.ce is defined as the closed surface spanned by the vector S 

having x,y and z components specified a.s functions of the angles 7 and w in the given intervals : 

We identify components as S,( 11, w), S,( 77, w), and S,( v, w)'. 

The implicit superquadric ecluation can be derived from the above definition by eliminating 7 

and w : 

Thus, alternatively we can define the sllperquadric in terms of its implicit equation, as the locus 

of the points (x,  y, z )  satisfying the above equation. 

The para,meters n l ,  a2, a.nd a3 determine the size of the superquadric in the x,y and z directions 

(in object-centered coordinate system) respectively; while and ~2 represent the squareness pa- 

rameters in the latitude and in the longitude plane. Based on these parameters, superquadrics can 

'Actually the component in the z-direction is independent of w but, we include it ,  a t  this point, only for symmetry. 

However, when deformations are applied w becomes a n  effective component of the z-direction. 
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model a, la,rge set of standard building blocks, such as spheres, cylinders, parallelepipeds as well as 

shapes in between. 

If both ~1 and ~2 are equal to  1, the surface defines an  ellipsoid. Cylindrical shapes are obtained 

for ~1 < 1 and EZ = 1. Parallelopipeds are obtained for both ~1 and ~g < 1. In our approach, the 

model recovery procedure allows and ~2 to  assume values in the interval [ 0  . . . 11. For values of ~1 

and ~2 > 1 the resulting parametrized shapes define objects which are not in the set of primitives 

we are interested in portraying. For instance, E I , E ~  = 2 yield objects which are diamond-shaped 

bevels and as their value increases they become pinched. 

2.1 Applying Deformations to  Superquadrics 

The representational power of superquadrics is augmented by the application of various deforma- 

tions to  the basic model. The deformations which we have included in our vocabulary are tapering 

and bending. For notation purposes we define S' as the model to which deformations have been 

applied and identify each of the components in the x,y, and z directions respectively by Sx, Sy , SZ 

and a#lternatively as (X, Y, Z )  , accordingly to the definition of the implicit equation. 

Tapering: Linear tapering along the z-axis transforms the basic superquadric model from S to  

S', where (x,  y, z) is transformed to (X,  Y, 2).  The transformed model is given by : 

X = fx(z) x where f,(z) = % z + 1 

Y = fy(z) y where fy(z) = % + 1  
a3 

z = z  

where I(,, K y ,  -1 5 I<z, K y  5 1, represent the tapering with respect to  the x and y plane relative 

to  the z direction. 

Bending: Bending deformation of the superquadric surface vector is defined by the following 

transformation : 

X = x + cos(cr)(R - r), 

Y = y + sin(cr)(R - r ) ,  

Z = sin(?)(& - r) .  
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Where k is the curvature and r is the projection of x and y components onto the bending plane 

Z - r :  

Bending transforms r  into 

R = - c o ~ ( ~ ) ( k - l  - r) ,  

Where y is the bending angle 

Combination of Tapering and Bending: The two independent deformations are applied by 

computing the corresponding homogeneous transformation matrices. It is possible to apply both 

transformations to  a superquadric model sequentially. However, since matrix multiplication is 

not commutative, the order in which deformations are applied is important. The model recovery 

procedure has adopted the following structure to transform an object-centered superquadric model 

to a deformed ~uperqua~dric in general position and orientation. 

Thus, bending and tapering introduce two parameters each in the final superquadric equation, 

bringing the total parameter count to 15. The minimization procedure is capable of recovering all 

15 parameters simultaneously for a given data set. The above equation identifies the volumetric 

model used to  describe parts in our system. Therefore, whenever we talk about a superquadric 

model, we shall refer to a model as defined by St  above. 

3 Criteria for Model Evaluation 

A superquadric model obtained by 1ea.st-square fitting the inside-outside function is an overcon- 

strained estimation of data, with more constraints than parameters. This is the case since the 

set of constraints, or data points, is generally two orders of magnitude larger than the number of 

parameters. As in any parametric approach the goal is to model a large set of data using the least 

number of parameters. However, such a compact representation does not always recover correct 

model for given data . It assigns equal importance to each point, independent of its location, with 
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the central goal of including the point in the global estimation. The model recovered by such a 

procedure needs to  be analyzed, with respect to quantitative and qualitative criteria, in order to 

determine its suitability in describing the data. With this in mind, we have identified the following 

measures for model evaluation in the context of the shape recognition problem : 

1. The Goodness-of-fit measure, 6, based on the inside-outside function. 

2. The Mean-distance measure, M, based on the true minimum Euclidean distance of indi- 

vidual points from the model surface. 

3. The Min-distance map produced by mapping the magnitude of the minimum Euclidean 

distance of individual points from the model surface in image coordinate system. 

4. The Contour-difference map produced by comparing the apparent contour formed by the 

model in the viewpoint direction with the occluding contour of the object. 

5. The Z-distance map produced by measuring the distance of the points in the range image 

and the superquadric surface in the viewing direction. 

Of the aforementioned measures, the first two yield global and quantitative results while the 

last three give local and qualitative outcomes. We will now discuss each of these measures in detail. 

3.1 Goodness-of-fit measure 

The modified inside-outside function for an object-centered superquadric model is given by 

It determines where a point lies relative to the superquadric surface. If F(x ,  y, z )  = 1, point 

(x ,y ,z)  lies on the surface of the superquadric. If F(x ,  y,z) < 1, the point lies inside and if 

F(x ,  y, z )  > 1, the point lies outside the superquadric. The minimization procedure optimizes the 

inside-outside function of deformed s~perqua~drics in general position given by : 

Where + , O ,  $ define the orientation a,nd p,,py,p, define position of superquadric in space. 
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Goodness-f-fit is defined as : 

where n is the number of points. The minimization procedure gives a best fitting superquadric 

according to  the inside-outside function. The G value for a superquadric model reflects how well 

the model fits the data. Ideally it should be as close to  0 as possible. Intuitively, a high value of G 

indicates bad fit. For a given model, as we go away from the surface, the value of F increases. It is 

not related to the true Euclidean distance in the sense that two points equidistant from the model 

have different values of F in general. What is the meaning of a particular point having a value of 

F? We provide an interpretation for the modified inside-outside function F in the next section. 

3.1.1 Interpretation of F 

The outermost exponent in the inside-outside function F was added by Solina [So1871 to cancel 

out the effect of EI  in the equation. This modification resulted in a better recovery of cylindrical 

objects. Solina noticed the qualita.tive effect of the modification,but no mathematical justification 

was given for it. We provide an explanation which gives an intuitive meaning to the values of the 

inside-outside function, and makes it possible to  use this measure for model evaluation. 

Consider a superquadric S = ( X ?  Y, 2) defined in terms of the explicit superquadric equation. 

Let P = (x, y, z )  be a.n arbitrary point in space. Now we can scale the three axes of S by a factor 

p such that the point P will lie on the scaled superquadric Sf = (Xf,Y', 2') : 

We will now show that F and p are related. 

The implicit form of Sf(q,w) can be written as : 

Now, solving for ,L3 : 
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Figure 1: ,B expansion and contraction of a superquadric model. left: ,B = 1.2, right: ,B = 0.8. 

It follows from the definition of F that : 

This result shows that the value of the inside-outside function F for a point (x, y, z )  is given by 

the square of the factor by which the superquadric S is scaled to  make it pass through (x', yl, 2'). 

This factor can be seen as the amount a superquadric has to be expanded or contracted (figure 1) 

to  make it pass through an arbitrary point in 3 space. This result provides an intuitive explanation 

for the values of F, with values > 1 indicating dilation and < 1 indicating contraction of the 

superquadric model. 

The obvious question to  ask is whether this explanation can be extended to  the tapered or bent 

models? Since tapering is defined in terms of as (the dimension along the major axis), it is not 

possible to obtain a, closed form solution for P .  Thus, the above interpretation is only approximately 

true for tapered models. For the models with bending deformation, however, the interpretation is 

valid. Since the minimization problem is formulated in terms of the inside-outside function, its 

values are available with the model parameters, and does not require explicit computation. 

Based on the quantitative result provided by G ,  one may determine whether the model provides 

an underestima.tion or overestimation of the data. Such a conclusion is, however, biased for this 
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is simply an average of the values. In fact, if the data is obtained from an object which has a 

small concavity or convexity, then relying only on this measure might lead to  the false conclusion 

where the superquadric provides a good model despite the fact that such irregularity can not be 

accounted for. Thus, this measure alone can not provide for a qualitative description of the data. 

This consideration leads us to the conclusion that other measures are needed to corroborate the 

hypothesis put forward by the value of G .  

To elaborate on this point, we provide examples of real objects and the corresponding su- 

perqua.dric fits obtained by the model recovery program developed by Solina [So1871 (shown in 

figure 2). The Goodness-of-fit values for the models are listed in table 1. From the table we can 

observe that the model for the vase provides the best fitting value, while the composite object ( a  

cylinder glued to a box) has the worst fitting value as expected. The other two examples, however, 

indicate that 6 is insufficient to  explain the quality of the fit. In fact, in case of the arch, the model 

is intuitively more a.ccepta.ble thaa tha.t of the cup, but has a higher value of 6. This shows that 

the Goodness-of-fit measure ca.nnot be the only measure to evaluate the quality of the fit. 

In the next section we propose an iterative solution to  the true Euclidean distance from a point 

in 3 space and a superquadric surface. We then use the computed distance to derive a quantitative 

interpretation of fit, which we call the Mean-distance measure. 

3.2 Euclidean distance measure 

The distance of an arbitrary point in 3 spa.ce from a given superquadric model is difficult to  compute 

because of multiple solutions of the analytical formulation of the problem as the non-linear root 

finding problem. Furthermore, it is not possible to obtain a closed-form solution for the problem. 

Boult aad Gross [BG88] present a, minimization of the error of fit function, based on the Eu- 

clidean distance between each data point and the corresponding point on the superquadric along 

the line connecting the center of the superquadric a.nd the data point. They note that the mea- 

sure thus derived overestimates the distance and is in particular less accurate for squarish models. 

Attempting to  use such an a.pproa,ch in evaluation of deformed superquadrics yields a less reliable 

source of information. For this reason we have sought to  determine the true Euclidean measure for 

each individual point. 



3 CRITERIA FOR MODEL EVALUATION 10 

la) A Vase. 

(b) An Arch. 

(d) A Composite object. 

Figure 2: Range Images of real objects and their corresponding superquadric models. 
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The formulation of the superquadric recovery procedure does not require the computation of 

the Euclidean measure at  any stage. Furthermore, the inside-outside function and the distance 

measure are not related in the sense that two points which are located at  the same distance from 

the superquadric surface do not have the same value of F in general. Thus, we have posed the 

problem in terms of an iterative procedure to  minimize the distance d for a given point and a given 

(deformed) superquadric (figure 3). 

Superquadric surfaces are parametrized by 77 and w, and are differentiable everywhere. The 

distance function d is convex for the points lying outside the superquadric model, but not for the 

points inside the model. So global minima is not guaranteed for the inside points in case of squarish 

models. Since our method for computing the initial guess traces the locus of (q, w), that could lead 

the approximation to choose the side of the squarish models with local minima instead of global 

minima. Therefore, for the inside points in such models, we also need to  investigate the directions 

orthogonal to  the direction of the local minima. 

The problem is formulated as : 

Problem definition : Given a point P = (xl ,  yl, zl) in space, minimize the following function 

of two variables : 

where x(7, w ) ,  y(7, w), z(q, w )  are the position vectors of the (deformed) superquadric S' 

To ensure a fast convergence to the right solution a good initial approximation was required, 

as often is the case with iterative methods. Guided by the intuitive consideration that in a sphere 

the minimum distance of a point to the sphere's surface lies in the radial direction, we realized that 

the same approach for determining minimum distance could be applied superquadrics. However, 

while in the former case there is a direct correspolldence to the minimum distance, in the latter 

the resulting distance could only be taken as an approximation of the minimum distance. As we 

later discovered, [BG88] had proposed a simi1a.r approach in constructing a minimizing function to 

be used in determining the best fit model for the data, as discussed above. Our method differs in 

that we are actually computing the true Euclidean distance and employ it both to corroborate the 

qua.lity of the fit as well as to guide the fitting of the minimization process. 

The approximation is obtained by extending the expansion/contraction approach introduced in 

the previous section (figure 3). 
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Figure 3: Euclidean distance and init ial approximation for  the iterative procedure. 

Corresponding to  the point P = (xp, yp, z p )  in 3 space, there is a point Qo = (so,  yo, 2 0 ) ~  on 

the original superquadric S : 

20  = .PIP, 

Yo = Y P I P ,  

250 = .PIP, 

The point Q in Cartesian coordinate system can be written as Qo = (qo,wo) in the parametrized 

form. Thus, an initial approximation of q and w is easily obtained. If the superquadric in consid- 

eration is deformed, then deformations are also applied to the point P. Such deformations allow 

us to determine p in function of the deformed superquadric for we would like ,O to closely relate 

the two superquadrics in question and yield the best initial approximation possible. We observed, 

in the previous section, that while there is a closed-form solution for j3 when the deformation in 

question is simply bending, no such solution is possible when dealing with tapering. However, we 

have noticed that by applying the tapering deformation to P we can recover an approximation 

for p which is effectively more accurate than if P is recovered without the tapering deformation 

altogether. 

The points P and Qo correspond to the same q and w values, and Qo is likely to be very close 

to  the point Q* = (q*,w*), denoted in figure 3 by R, such that the distance between Q* and P is 

'The subscript is meant to indicate that it represents the first approximation 
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Table 1: Table of the quantitative measures of the four objects. 

Goodness-of-fit 

(6 )  

Mean-distance 

(MI  

minimal. Effectively we are updating the position of Qi such that the angle O between the normal 

t o  the surface and the vector through Q; and P decreases. We have noticed that when P is located 

in proximity t o  one of the axes the initial a.pproximation was often extremely good, within one or 

two decimal digits of the computed minimum distance. Therefore, the objective is t o  find R. 

The function d (7 ,  w) is minimized given the initial approximation 70 and wo using a quasi- 

Newton method3. A line search is used to  locate a new point, as described in [DS83]. 

The method requires only function values; a finite-difference method is used t o  estimate the 

gradient internally. Though d is differentiable at all points (even with deformations), we have 

found that supplying an external gradient does not speed up the iterative process in general. The 

method was found to be accurate up to  the sixth decimal place for experimental data. However, 

we can settle for lower accuracy for fa.ster convergence. The method has been successfully tested 

on deformed superquadrics. We now use the computed Euclidean distance to  derive a quantitative 

interpretation of the fit. 

3.2.1 Mean-distance measure 

Vase 

0.0012 

3.18 mm. 

As was pointed out by Boult [BG88], obta.ining the true Euclidean measure is helpful in interpreting 

the recovered model since such a mea.sure is not affected by the scaling factor of the superquadric, 

i.e. i t  can be considered as an absolute fit measure. We define the measure of the Mean-distance 

for a given superqua.dric, M ( ,S ) ,  a.s the avenge of the minimum distance over all the points : 

3Minimization routine dbconf from the IMSL version 10.0 library was used with double precision mathematics. 

Arch 

0.0056 

3.15 mm. 

Cup 

0.0037 

7.52 mm. 

Composite object 

0.008 

16.29 mm. 
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This measure provides us with a value which is in effect the distance from the model to  the data 

point. Thus, a low distance value accounts, in general, for a good overall fit. 

Since M is a quantitative measure, and in particular an average, it may erroneously suggest a 

good fit when effectively that is not the case. If, in fact, we have an object which presents some 

surface irregularities, we may be induced into believing that we not only have a good fit but that 

the model accounts for the object thoroughly. The low value for M is derived by averaging over 

all the points. Hence, we notice that the quantitative interpretation falls short of giving enough 

information to  build our confidence on the quality of the fit. In view of this limitation we now 

discuss the qualitative interpretation of the Euclidean distance as a map of the magnitude of the 

Euclidean distance associated with individual points and represented like a range image. 

3.3 Min-Distance Map 

The minimum distance map, interpreted as a range image, provides an interpretation for the quality 

of the fit. As one would expect, large values identify points which are not well accounted for by 

the proposed model. One would like to be able to use this information to  identify areas of poor fit. 

These areas could suggest potential local deformation orland object segmentation. 

The distance map provides values which are in general not immediately fitted by a continuous 

function of second or third order. That, in particular, holds for a surface which is in itself not 

regular. Thus, we propose to cluster points which have equal distance values and then identify 

regions. However, we expect, in general, that the distance value varies from point to point. Hence, 

limiting a given region to points which have exactly equal distance may yield a map which, in 

general, would be no more informa.tive that the original one. 

3.3.1 Clustering Criteria 

In order to successfully cluster points into the same region we require that the given points meet 

the following criteria : Equal Discretized Distance and Sptial Adjacency. 

The first criterion actually defines a filter for the range image while the second one describes a 

criterion to  spatially relate points which have equal filtered value. 

The discretization of the dista.nce for a.ny given point is obtained by incrementing or decrement- 

ing it to  the multiple of the thresholding interval t which is closer to it. The thresholding value t 
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is not arbitrary but is related to the value of M. This process emphasizes regions which have large 

discrepancy. By focusing on these particular areas, the Min-Distance Map may be employed as a 

guide to  successively refine the model. 

To simplify the process of determining Spatial Adjacency, we take advantage of the data struc- 

ture representation of the image provided in image-coordinate system. Hence, we apply two inverse 

transformations. The first one takes the point from object-coordinate system to world-coordinate 

system; while the second transforms the point from world-coordinate system to image-coordinate 

system. We note that due to  rounding-ff errors the mapping fails to  provide a bijection between 

object-coordinate system and image-coordinate system. However, this lack of correspondence im- 

pairs our ability to fully recover the regions, but only apparently. In fact, the rounding-off errors 

due t o  the inverse transforn~ations will be uniformly distributed over the image and hence not 

effectively influence the region identification process. 

3.3.2 Region Properties 

Regions are recovered by a simple region growing technique which allows us to group points together. 

Once the regions have been identified in the map, we would like to study their properties and 

relations. 

We apply a preliminary screening to the study of the regions. We would like at first to  eliminate 

those regions which present little i~lformatio~l and are effectively a handicap to obtain a global 

understanding of the fit. Therefore, we look at the small regions (few pixels in area) and observe 

whether their distribution may actually be symptomatic of a highly patterned or irregular surface. 

If this is not the case they can be "absorbed" by the enveloping region. 

We then identify intrinsic as well as relative properties of the regions. The former category is 

comprised of : 

a Size thresholded value (effectively the thresholded value), area, volume. 

a Shape defined in terms of its eccentricity, convexity, etc. 

a In-Out Value determined by the value of the inside-outside function on the region. 

While the first two give quantitative information on the fit by relating the "Sizes" of the regions, 

the last one yields qualitative information on the type of estimate given by the fit. Namely there 
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might be regions for which the superquadric provides an underestimation or an overestimation of fit. 

These can be plainly identified by picking a point in a given region and applying the inside-outside 

function. 

The latter category focuses on rela,tion amongst the properties such as : 

Size distribution and hierarchy. 

On-Top-of relation and hierarchy-graph. 

These relations and others give information on the areas of the superquadric which least account 

for the data. 

In the remaining portion of this section we present Min-distance map for the objects in figure 2, 

and then discuss the limitations of this measure. 

3.3.3 Min-Distance Map: Examples 

The example we discuss are representative both of the value that the Min-Distance Map provides 

as well as of the limitations that are encountered. The figures 4.a-4.d have all been scaled so that 

the respective regions are visible. Regions with high value (white) identify points which are further 

away from the model. The adjacent histograms are meant to give a preliminary interpretation on 

the type of the fit. They are presented in relation to both the table 1 and the respective figures. 

Vase: As we can see in table 1, the va.se has a small value for M. That, as was previously pointed 

out, is a sign of good fit. As we notice in figure 4.a and the respective histogram, that is indeed the 

case. The histogram gives us some summary information on the cumulative quality for the regions. 

Most of them are identifiable in the lower range quite below the average distance. 

Arch: In this example the low value in the table 1 would seem to be indicative of a good fit. 

While for most of the points the fit is rather satisfactory (see the histogram in figure 4.b), there is 

a rather well defined area which is clearly overestimated by the superquadric. 

Cup: In figure 4.c we notice that both the measure as well as the figure present several areas 

where the fit is insufficient to describe the data. In particular it is interesting that the region of the 

handle as well as the concavity of the object are highlighted. Those are regions in which further 
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(a) Vase. Left: Continuous difference map. Right: Thresholded map. 
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Figure 4: Continuous and Thresholded difference maps: Histograms and respective images. 
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action must be taken toward a possible segmentation as well as the incorporation of the presence 

of the cavity in the object. 

Composi te  Object :  This, perhaps, is the most interesting of the object so far observed. The 

distance map in figure 4.d highlights regions which are clearly not well interpreted by the fit, see 

figure 7. The region information will be now relevant toward determining a better niodel when seen 

in conjunction to  the maps defined later on. 

3.3.4 Limitat ions  of Min-Distance M a p  

This measure provides valuable information, as we have seen; however, there are situations in 

which it is insufficient to use it as the only measure to  determine the quality of the fit. Observe, 

for instance, that if the object in figure 6 (the arch) had been scanned from a viewpoint where 

no points in the cavity were visible, the Min-Distance Map would concur with the quantitative 

measures. That would lead us to believe that the model S, which was derived by the fitting 

procedure, is actually optimal. Yet, one can verify by inspection, that there is actually more to  the 

data representation which is not accounted for by the model provided. 

This consideration simply tells us that the minimum distance, as well as the ones previously 

discussed, are insufficient criteria for deciding on the feasibility of a proposed model. 

3.4 Viewpoint-dependent Qualitative Measures 

Having discussed the global measures and the qualitative interpretation of the true Euclidean 

distance mea.sure,we now discuss the view-dependent measures which analyze the superquadric 

model in the viewing direction. The two qualitative measures are the contour-difference map 

and the z-distance map. These measures are easy to compute and analyze, and provide local 

ana.lysis of regions of underestimation and overestimation. The contour-difference map is obtained 

by compa,ring the occluding contour of the object with the projected apparent contour of the 

superqua.dric model. The z-depth difference map encodes the distance of each point from the 

model in z direction. It differs from the min-distance ma.p in the sense that it is not the minimum 

distance and is available only if the ima,ge point has a corresponding point on the model in the 

given direction. In this section we will outline methods for generating the apparent contour of the 
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superquadrics and the z-distance map. 

3.4.1 Apparent Contours of Superquadrics 

Definition: The Contour-generator (or occluding contour) is defined as the locus of the points 

(a  closed curve) on the superquadric surface where the surface-normal vector is perpendicular to  

the viewpoint vector. 

Let V = (V,, Vy, V,) be the viewpoint vector, and N = (n,, n,, n,) be any surface-normal 

vector. The Occluding contour is then given by : 

We now derive a closed-form solution for the contour generator on a non-deformed superquadric 

surface : 

Substituting for N gives 

Solving for 7 gives the closed-form solution for generating the apparent contour : 

Figure 5 (a  and b) shows the apparent contours of superquadrics generated by the above 

equation. Unfortunately, there is no closed-form solution for a general deformed superquadric, 

as the surface-normal vector N has to undergo deformation by the following rule (derived by 

Barr [Bar84]) : 

N' = det J  J - I ~ N  

where J is the Jacobian of the deformed superquadric. To trace the apparent contour of a deformed 

superquadric, the angles 7 and LJ are varied systematically on the superquadric Surface. Points on 

the contour are accumulated in such a. way that a closed contour is formed (see figure 5(c)). This 

contour is then orthographically projected on the image-coordinate system to make comparisons 

with the image contour. 
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Figure 5: Apparent contours of Superquadrics : for non-deformed box and cylinder, and for a 

tapered box. 

3.4.2 2-distance map 

For the purpose of comparing the superquadric model with given surface points to  generate a 

difference map, we have to compute the distance of every given point from the superquadric surface 

along a given direction4. There are two ways of doing this : 

1. Compute the distance in world-coordinate system. 

2. Reconstruct the superquadric surface in the image-coordinate system by sampling the su- 

perquadric surface and then perform point by point comparison in z direction to  compute the 

difference map. 

The first method needs the occluding contour of the superquadric to determine if a point has 

distance from the superquadric surface along the given direction. The second method samples the 

superquadric surface and transfol-111s the superquadric into image-coordinate system, where the 

z-distance map is obtained by simply subtracting the depth values at each image point. Given the 

projected superquadric, the occluding contour of the superquadric can also be traced by the same 

4Since the range images are stored in Z-depth format, We are effectively "Looking from above" along Z .  
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Figure 6: Box with a circular cutout (an arch) : Though the volumetric model gives acceptable 

fit in terms of q'uantitative measures, it does not account for the cutout. 

method as image-contour tracing. We have used the second method to generate z-difference and 

contour-difference maps. 

4 Quantitative v/s Qualitative measures 

We now present examples of real objects shown in figure 2, of varying complexity, which highlight 

the need for different measures for tlze complete evaluation of the fit of the superquadric models. For 

all the objects (figures 6-9) the superquadric model and occluding contour, projected superquadric 

model and its occluding contour, the contour-difference map, and the z-depth-difference map are 

computed. 

While the volumetric model gives a holistic explanation of the whole object it can miss details 

that are beyond the scope of the model. An overall measure of goodness of fit, like the residual 

from Goodness-of-fit fit, or the distance measure does not always give an accurate evaluation of the 

appropriateness of the volumetric model. Although models can have acceptable overall goodness- 

of-fit, like the volumetric model for the box with cut-out (figure 6 and table l), they need not be 

the acceptable representations of the objects. On the other hand, for value of the goodness-of-fit 
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Figure 7: A composite object : T h e  two boundaries coincide in only part o f  the  image alerting t o  

the fact that the object has parts. 

in same range, volumetric model for the vase (figure 8) is an acceptable volumetric representation 

of the actual object. In this particular example, as we have seen, it is possible to further account 

for the irregularity of the surface. 

The qualitative measure obtained by comparing the local boundary of the object in the range 

image with the boundary of the recovered volumetric model can point out the limitations of the 

volumetric model and suggest improvements in segmentation or refinement in shape representation. 

When boundaries do not coincide, preference should be given to  the actual boundary in the range 

ima.ge, but the possibility of missing data  (due to self occlusion) must also be considered. For the 

arch example (figure 6), contour and z-depth maps provide ample evidence for an  unacceptable 

volumetric model. The z-distance map provides enough information to model the missing part of 

the box as negative volume by fitting a superquadric model for it. 

The vase in figure 8 is formed by three second-order surface patches, collectively organized in 

a cylindrical shape. At the volumetric level, a cylindrical model is sufficient to describe the overall 

shape. 

Contour analysis signals the presence of details on the object and accepts the superquadric 
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Figure 8: Object with surface detail (A vase) : The difference between the two outlines is 

negligible compared to the overall size of the object. 

Figure 9: Object with hole and cavity : Both quantitative and qualitative measures indicate 

unacceptable model. Z-depth-difference and contour-difference help in segmentation of the object. 
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model. However, the superquadric model is accepted only after the surface comparison yields 

acceptable error. Thus, both qualitative measures are essential for model evaluation. The min- 

distance map may be incorporated at this point t o  account for these irregularities in the surface 

and guide both the surface-fitting modules as well as give directions for both further deformations 

or object segmentation. 

For objects with parts (figure 7 and 9), both quantitative and qualitative measures will in- 

dicate unacceptable superquadric model. Based on difference measures and other considerations 

[Gup89], part segmentation needs to  be performed in order t o  describe individual parts in terms of 

superquadrics. Details of how segmentation will be carried out based on these measures are beyond 

the scope of this paper. In conclusion, we have shown that by considering the various qualitative 

and quantitative measures it is possible to  evaluate the superquadric models recovered from the 

range data. 
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