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Abstract

Background: International guidelines for variant interpretation in Mendelian disease set stringent criteria to report

a variant as (likely) pathogenic, prioritising control of false-positive rate over test sensitivity and diagnostic yield.

Genetic testing is also more likely informative in individuals with well-characterised variants from extensively

studied European-ancestry populations. Inherited cardiomyopathies are relatively common Mendelian diseases that

allow empirical calibration and assessment of this framework.

Methods: We compared rare variants in large hypertrophic cardiomyopathy (HCM) cohorts (up to 6179 cases) to

reference populations to identify variant classes with high prior likelihoods of pathogenicity, as defined by

etiological fraction (EF). We analysed the distribution of variants using a bespoke unsupervised clustering algorithm

to identify gene regions in which variants are significantly clustered in cases.

Results: Analysis of variant distribution identified regions in which variants are significantly enriched in cases and

variant location was a better discriminator of pathogenicity than generic computational functional prediction

algorithms. Non-truncating variant classes with an EF ≥ 0.95 were identified in five established HCM genes.

Applying this approach leads to an estimated 14–20% increase in cases with actionable HCM variants, i.e. variants

classified as pathogenic/likely pathogenic that might be used for predictive testing in probands’ relatives.
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Conclusions: When found in a patient confirmed to have disease, novel variants in some genes and regions are

empirically shown to have a sufficiently high probability of pathogenicity to support a “likely pathogenic”

classification, even without additional segregation or functional data. This could increase the yield of high

confidence actionable variants, consistent with the framework and recommendations of current guidelines. The

techniques outlined offer a consistent and unbiased approach to variant interpretation for Mendelian disease

genetic testing. We propose adaptations to ACMG/AMP guidelines to incorporate such evidence in a quantitative

and transparent manner.
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Background

Advances in sequencing technology have dramatically

expanded the scope for genetic testing in rare Mendelian

diseases, but have exposed variant interpretation as a

key limiting factor for clinical application. In an effort to

standardise variant assessment in clinical settings, guide-

lines from the American College of Medical Genetics

and Genomics/Association for Molecular Pathology

(ACMG/AMP) were produced in 2015 [1] and have now

been widely adopted [2]. These were in part prompted

by the plethora of erroneous variant-disease associations

in the research literature [3, 4] and the increasing real-

isation that individually rare variants are collectively

common for many genes, as highlighted by population

datasets such as the Exome Aggregation Consortium

(ExAC) [5]. A critical objective of the guidelines is to

limit false-positive results in clinical genetic testing in

order to avoid genetic misdiagnosis or false reassurance

through predictive testing of a variant that is not causal.

The ACMG/AMP guidelines outline how different

lines of evidence should be assessed when interpreting a

variant, and the strength of evidence required for a

pathogenic (or likely pathogenic) classification. However,

they are deliberately broad in scope, with the intention

that individual rules would be interpreted and adapted

for specific diseases within the overall framework [6].

They are conservative in nature and require substantial

evidence in order to classify a variant as disease-causing.

In practice, while novel truncating variants can be classi-

fied as pathogenic (when found in a gene where loss of

function is a known mechanism of disease and fulfilling

other conditions such as rarity), variant-specific evidence

(such as segregation in the family or prior functional evi-

dence of pathogenicity) is required for non-truncating

variants to be reported as pathogenic.

We have recently shown that clinical laboratories uti-

lising these stringent approaches to variant classification

are, as expected, under-calling pathogenic variants in

well-established cardiomyopathy genes [3], prioritising

high specificity at a cost of test sensitivity. Clinical out-

come data from the SHaRe registry of hypertrophic

cardiomyopathy (HCM) patients supports this finding,

as patients with variants of uncertain significance (VUS)

had outcomes intermediate between genotype-positive

and genotype-negative patients, indicating a substantial

proportion are likely to be pathogenic [7]. Some dis-

eases, including cardiomyopathies, are highly genetically

heterogeneous with thousands of distinct causative vari-

ants, many of which are private or only detected in a

handful of families, so interpretation of previously un-

seen variants is essential to provide a molecular diagno-

sis to many patients. As a consequence, the likelihood of

obtaining a positive genetic test result for patients is

often dependent on whether the putative causative vari-

ant has been previously identified and characterised.

Furthermore, the degree of certainty required to con-

sider a specific variant causal in an individual depends

on the use of that information. While predictive testing

or pre-implantation genetic diagnosis requires a high

degree of confidence, some treatment decisions may be

made at lower confidence. In early onset diabetes, a po-

tentially causative variant suggesting possible MODY

(maturity onset diabetes of the young) might trigger a

trial of sulfonylureas even if formally a VUS [8]. Di-

lated cardiomyopathy due to variation in lamin a/c is

associated with a poor prognosis, with a propensity for

life-threatening arrhythmia. A lower threshold for the

use of primary prevention implantable cardioverter

defibrillators may be adopted if a novel variant in

LMNA is identified, even if formally classified as a

VUS and predictive testing would not be undertaken

on the same variant [9–11].

The likelihood of obtaining a positive result, i.e. identify-

ing a pathogenic or likely pathogenic variant, is also

dependent on the ethnicity of the patient. Data from the

Partners Laboratory of Molecular Medicine (LMM) in

the USA showed that Caucasian patients are more

likely to get a positive result in cardiomyopathy genetic

testing than “underrepresented minorities” (including

African-Americans and Hispanics) and that the propor-

tion of patients with inconclusive results was signifi-

cantly greater in both Asians and “underrepresented

minorities” compared to Caucasians [12]. Similar findings

were observed specifically for HCM—the proportion of
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positive/uncertain results was 34.7%/13.9% for Caucasians

and 24.2%/20.6% for non-Caucasians (p < 0.0001) in the

LMM cohort (n = 2912) [13]. One of the likely reasons for

this discrepancy is that much of the research and clinical

testing in this condition has been done in Caucasian-ma-

jority populations, and therefore, Caucasians are more

likely to have a causative variant that has been previously

characterised. Inequalities in healthcare provision and

access to genetic testing in the USA may also exacerbate

this disparity [14]. While more genetic research in non-

Caucasian populations is clearly required, these findings

underline the need for improved variant analysis tech-

niques that reduce the reliance on prior characterisation

of individual variants and better distinguish poorly charac-

terised variants that have a high likelihood of pathogen-

icity from those that are unlikely to be disease-causing.

For genes with a significant excess of rare variation in

case cohorts over the general population, the etiological

fraction (EF) provides a quantitative estimate of the prob-

ability that a rare variant detected in an individual with dis-

ease is causative, and is dependent on the gene, variant

class and variant location within the gene/protein. Here, we

apply this approach in validated HCM genes to empirically

determine the probability that a novel variant found in a

case is pathogenic before considering other evidence and

further expand the framework to identify sub-genic regions

(“hotspots”) in which variants have an increased likelihood

of being actionable. For HCM, an actionable variant refers

to a variant classified as pathogenic or likely pathogenic

that can be used for cascade screening in the family of the

patient being tested, to identify individuals at risk, and

those free from risk, of developing HCM, as recommended

by current guidelines [15]. This provides a more quantita-

tive approach to variant classification, with the aim of ad-

dressing the substantial false-negative rate associated with

current stringent guidelines by increasing the yield of high

confidence pathogenic variants detected in these genes, as

well as enabling a more unbiased application of genetic

testing. We outline a potential framework to integrate this

approach with the ACMG/AMP guidelines for genes and

diseases with available case series to derive these estimates,

enabling such case-control data to be utilised in a more

quantitative and transparent manner. While highlighting

that variant interpretation is highly dependent on the con-

text of gene and disease, this approach is widely applicable

for other Mendelian diseases for which sufficient cases have

been genetically characterised.

Methods
Calculation of etiological fraction for significantly

enriched variant classes

The etiological fraction (EF) estimates the proportion of

risk that can be attributed to a specific exposure, in a

population with disease who have been exposed to a risk

factor [3]. In the context of Mendelian disease, exposure

refers to a rare protein-altering variant in a particular

gene, and the EF estimates the proportion of cases with

a rare variant in whom that variant is disease-causing.

The EF is derived from the attributable risk percent

(ARP) among exposed, i.e. expressing the risk as a pro-

portion rather than a percentage, and derived from the

odds ratio (OR) as described below, where the OR pro-

vides an accurate estimate of the relative risk (RR)—the

ratio of risk among exposed to risk among unexposed

[16]. The odds ratio (OR) is calculated by Altman [17]:

OR ¼ a=bð Þ= c=dð Þ

where a = disease cases with a variant, b = controls/ref-

erence population with a variant, c = disease cases with-

out a variant, and d = controls/reference population

without a variant. The 95% confidence intervals (CI) for

OR values are calculated by:

95%CI ¼ exp ln ORð Þ−1:96 � SE ln ORð Þf gð Þ to expð ln ORð Þ

þ 1:96 � SE ln ORð Þf gÞ

where the standard error of the log OR was given by:

SE ln ORð Þf g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

a
þ

1

b
þ
1

c
þ

1

d

r

The EF is derived from the OR:

EF ¼ OR−1ð Þ=OR

95% CIs for EF values are calculated as described by

Hildebrandt et al. [18].

EF and OR values were calculated for both truncating

(frameshift, nonsense, splice donor site, splice acceptor

site) and non-truncating (missense, small in-frame inser-

tions/deletions) variants in HCM genes where a significant

excess of rare variants in cases over the ExAC reference

population was observed [19]. For the eight core sarco-

meric genes (MYBPC3, MYH7, TNNT2, TNNI3, TPM1,

MYL2, MYL3, ACTC1), the case cohorts were derived

from published data from the Oxford Molecular Genetics

Laboratory (OMGL) and the Laboratory of Molecular

Medicine (LMM), Partners Healthcare, comprising be-

tween 4185 and 6179 unrelated HCM probands [3, 13].

The OMGL cohort comprises apparently unrelated index

cases referred from Clinical Genetics centres across the

UK, with initial clinical diagnosis of HCM made by a

consultant cardiologist. Data on patient ethnicity is not

available for this cohort but is expected to be broadly rep-

resentative of the UK population. The LMM HCM cohort

comprised unrelated probands referred for HCM clinical

genetic testing. Any individuals with an unclear clinical

diagnosis of HCM, or with left ventricular hypertrophy

due to an identified syndrome such as Fabry or Danon

disease, or unaffected individuals with a family history
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of HCM were excluded. The LMM cohort was 62%

Caucasian (see Alfares et al. for full details on ethnicity

[13]), but data on ethnicity for individual patients was

not available. For the minor HCM genes (CSRP3, FHL1,

PLN, TNNC1), combined cohorts from OMGL and LMM,

a prospective research cohort from our laboratory and

published cohorts were used as previously described [19],

comprising between 2061 and 5440 unrelated HCM pro-

bands. For FLNC and FHOD3, recently published cohorts

of 448 [20] and 3189 [21] HCM patients respectively were

used. All rare variants were included for these calculations,

regardless of the clinical classification of the variants.

For all genes, ExAC was used as the reference population

database for background variation as previously described

[3]. To account for variable coverage of the exome sequen-

cing in ExAC, the sample total for each gene was adjusted

by calculating the mean number of called genotypes for each

variant. Rare variants were defined as those with a filtering

allele frequency in ExAC below the maximum credible allele

frequency for HCM [22], defined as 4 × 10−5 (prevalence = 1

in 500, allelic heterogeneity = 0.02, penetrance = 0.5, mono-

allelic inheritance, as calculated at http://cardiodb.org/allele-

frequencyapp/). To confirm that this frequency was the

most appropriate threshold to use, a sensitivity analysis was

performed with other thresholds (0.0001, 0.0005, 0.001),

showing that OR and EF values decreased with higher f-

requency thresholds (Additional file 1: Table S1).

EFs as a means of quantifying performance of variant

classifiers

The EF is dependent on the relative frequencies of vari-

ants in cases and population controls. While applying

strict thresholds for rarity will focus on variants more

likely to be disease-causing, thereby increasing the EF, this

is usually not sufficient to adequately distinguish between

benign and pathogenic variation for non-truncating vari-

ants. Therefore, additional methods are required to dis-

criminate between causative and background variants. A

perfect discriminator of pathogenic and benign variants

will identify the proportion of causative variants that is

equal to the case excess and yield an EF of 1.0, with the

proportion of benign variants equal to the population r-

eference frequency of ExAC (and an EF of 0)—see hypo-

thetical example in Fig. 1. In practice, it is unlikely that

full discrimination will be achieved but this EF-based ap-

proach allows us to evaluate methods that aim to differen-

tiate between pathogenic and benign variants. In this

study, we compare the widely used and generic missense

functional prediction scores with gene and disease-specific

variant clustering. This EF-based approach also offers the

advantage of not requiring predefined lists of irrefutable

pathogenic and benign variants, which can be limited

when performing analyses on specific genes.

Assessing performance of missense functional prediction

scores in HCM genes

Functional prediction scores from the dbNSFP database

[23] (version 3.2) were downloaded for all missense

variants in the 13 HCM genes. Eight scores that provide

binary predictions, i.e. damaging vs benign/neutral,

were assessed—fathmm-MKL coding, FATHMM, LRT,

Mutation assessor, MutationTaster, Polyphen2-HDIV,

PROVEAN and SIFT, as well as the CADD algorithm

(damaging variants were defined with a CADD phred

Fig. 1 The use of etiological fractions to evaluate variant classification methods. Illustration of how EFs can be used to evaluate methods for

distinguishing pathogenic from benign variants (for a hypothetical gene). The overall EF of 0.85 [1] is based on a case frequency of 9.5% and a

reference frequency of 1.5%. The aim of variant classification methods is to fully distinguish between pathogenic variants (producing an EF of 1.0

with frequency equal to case excess [2]) and benign variants (producing an EF of 0 with frequency equal to population reference, here ExAC [3]).

We propose that an EF of 0.95 would be required to indicate a likely pathogenic variant
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score ≥ 15). A consensus prediction between the 9 scores

was defined as being damaging if greater than 50% of the

scores that predicted a damaging effect. Additionally, two

consensus algorithms, MetaLR and MetaSVM [24], were

also evaluated. The proportion of available predictions for

each score for all potential missense variants in each gene

was calculated to identify algorithms that do not provide

comprehensive predictions for specific genes.

To test the effectiveness of these prediction scores for

individual HCM genes, missense variants of known con-

sequence (pathogenic and benign missense) were identi-

fied. Pathogenic variants were defined by rarity in ExAC

as described above and:

1) Classified as pathogenic (P) or likely pathogenic

(LP) in HCM patients by two or more clinical

laboratories (OMGL, LMM and ClinVar submitters)

2) Classified as P/LP by one clinical laboratory with no

conflicting classifications (VUS or benign) by other

laboratories

3) Significantly enriched in the OMGL/LMM cohorts

compared to ExAC (Fisher’s exact test)

Benign variants were defined as:

1) Presence in more than one individual in ExAC and

not associated with any disease in ClinVar (P/LP/VUS)

or HGMD

2) Associated with disease in ClinVar (though not P

or LP) or HGMD but at a frequency > 0.001 in ExAC.

The sensitivity (true positive rate) and specificity (true

negative rate) was calculated for the 9 functional predic-

tion scores and 3 consensus scores for each of the 8 core

sarcomeric genes (there were insufficient known patho-

genic variants for the minor genes). As an alternative

method for assessing these predictors, EFs were calcu-

lated for deleterious variants using the case and ExAC

cohorts described above.

Clustering algorithm to detect regional enrichment of

variants

Protein regions enriched for rare variants were identified

using a bespoke unsupervised clustering algorithm de-

veloped within this project. The algorithm is based on a

sliding window scanning the protein sequences from

their N-terminal to C-terminal residues, with a binomial

test used to detect whether there is significant variation

enrichment within the tested window compared with the

rest of the protein.

The results of this first step are influenced by the size of

the sliding window, with a spectrum ranging from small

windows enabling detection of smaller, highly enriched

variation hotspots but prone towards overfitting (in the

most extreme case each residue with multiple variant al-

leles is considered a cluster), to large windows enabling

detection of more extended enriched regions such as large

protein domains but at the risk of too low a resolution (in

the most extreme case, a unique cluster starting at the first

variant residue and ending at the last). In terms of model

performance, the former situation is characterised by spe-

cificity = 1 (no variant-free residues are within clusters)

and sensitivity close to 0 (the vast majority of variant resi-

dues are excluded from clusters), whereas the latter results

in the opposite situation (many variant-free residues are

included in the unique cluster [specificity close to 0] but

also all variant amino-acids are [sensitivity = 1]). For this

reason, the algorithm automatically selects the optimal

window size for each protein by searching for one mini-

mising the difference between sensitivity and specificity

(in this case the mean difference between cases and con-

trols for each gene). Of note, the sparseness of the data

(resulting in a strong imbalance between positive data

points [variant residues] and negative data points [var-

iant-free residues]) make all classic model performance

measures (e.g. accuracy, AUC, PPV) biased towards re-

sults obtained with smaller window sizes.

To look for the optimal window size, the algorithm

starts by testing 19 different sizes ranging from 5% of

the protein to 95%. Subsequently, the algorithm picks

the best one (if any) and tests 18 sizes around it at a

10-fold finer resolution (e.g. if the initial best window

size is 10%, the next iteration will be on windows be-

tween 5.5% and 14.5%). This iterative process is repeated

until a performance plateau is reached (i.e. none of the

18 new window sizes decreases the difference between

sensitivity and specificity by more than 0.001 compared

with the previous iteration). Once the optimal window

size is detected, multiple testing correction is applied to

each definitive window significantly enriched for vari-

ation, on the basis of the average number of times each

protein residue has been tested (which depends on the

number of iterations made, and on the size of the tested

windows). Whenever a significant enrichment is detected

within a window, its coordinates (start/end) are stored

until the whole protein is scanned and, subsequently,

merged with any other significantly enriched window to

obtain a first “raw” set of variation-rich clusters.

After this first step, the algorithm performs a “bound-

ary trimming” procedure at both ends of each cluster.

This step controls for potential inclusion of variant-free

(or non-enriched) distal cluster tails that may have been

included within a significantly enriched window due to var-

iants occurring more proximally. The algorithm performs

the same procedure at both the N- and the C-terminal clus-

ter boundaries, starting with a single-residue window in-

cluding only the most external amino-acid, and iteratively

extending it as far as the cluster median residue. Before
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each extension, the binomial test is used to check if

there is a significant depletion of variants compared

to the rest of the cluster. The algorithm stores each

test’s p value and tested region coordinates and even-

tually trims the cluster by removing the most (if any)

significantly variation-depleted tail, to obtain a final,

refined set of clusters. One last binomial test is per-

formed on the refined clusters to measure the signifi-

cance of their rare variant enrichment.

Distinguishing pathogenic from benign variants using

clustering in case and control cohorts

EFs were calculated based on these clusters and com-

pared to those produced by a consensus of missense

functional prediction scores from the dbNSFP database

[23] (MetaLR, MetaSVM and a consensus of 9 individual

predictors as described above). These consensus scores

were also evaluated in genes where no clustering of case

variants was observed.

Using EFs to increase the yield of putatively pathogenic

variants in HCM cohorts

Sarcomeric gene rare variants in the OMGL/LMM clin-

ical cohort [3] were re-assessed based on the analysis de-

scribed above. The proportion of patients with variants

that would be upgraded to likely pathogenic based on

the revised ACMG/AMP guidelines was calculated, i.e.

those previously classified as VUS but in a variant class

with an EF ≥ 0.95 for missense variants or EF ≥ 0.90 for

inframe indels (as inframe indels will also activate the

PM4 rule regarding variants that change protein length

and therefore only the moderate PM1 rule would be

required for a likely pathogenic classification).

Analysis of prospective HCM cohort

The effect of the new EF-based ACMG/AMP rules on the

yield of actionable variants was assessed on a prospective

cohort of 684 HCM patients recruited at the Royal

Brompton & Harefield Hospitals NHS Foundation Trust,

London, UK [19]. The ACMG/AMP rules described below

were used to classify variants from the valid HCM genes

defined in this study, with rule implementation as de-

scribed in the CardioClassifier resource [6]. The following

rules could be activated by automated script:

� PM2—filtering allele frequency in ExAC < 4 × 10−5.

This rule must be activated to denote a causative

variant for this analysis.

� PVS1—truncating variants in MYBPC3, TNNT2,

TNNI3, CSRP3, FHL1, PLN (genes statistically

enriched in HCM cohorts versus ExAC).

� PS4—individual variant statistically enriched in cases

over controls, based on LMM/OMGL cohort versus

ExAC with the rule activated if the case count was > 2

and the Fisher’s exact test p value < 1.79 × 10−6

(Bonferroni correction).

� PM4—protein length changing variant, i.e. an

inframe indel or stop lost variant.

� PP3—missense variant with multiple lines of

computational evidence suggesting a deleterious

effect, i.e. of the 8 predictors assessed (SIFT,

PolyPhen2 var., LRT, Mutation Taster, Mutation

Assessor, FATHMM, CADD and Grantham scores),

only 1 predicts benign and < 3 have unknown

classifications, or if ≥ 3 have unknown classifications,

all others predict damaging.

� PM5/PS1—novel missense change at an amino acid

where a different missense variant is pathogenic

(PM5) or novel missense variant with same amino

acid change as an established pathogenic variant

(PS1). Pathogenicity here is defined as a pathogenic

classification in ClinVar by multiple submitters with

no conflicting evidence.

Rare variants (i.e. with rule PM2 activated) were then

manually assessed for human genetic evidence in ClinVar

entries and published reports using the following rules:

� PP1—co-segregation with disease. This rule was

defined as supporting for ≥ 3 observed meioses,

moderate for ≥ 5 meioses and strong for ≥ 7 meioses.

� PS2/PM6—de novo inheritance (with/without

confirmed paternity and maternity).

� The PS3 rule relating to effects in functional studies

was not applied due to the lack of standardisation

and validation in functional assays for HCM

variants.

The number of patients with variants that still remained

as VUS, i.e. unactionable according to current guidelines,

but that would be upgraded to at least likely pathogenic

based on the revised ACMG/AMP guidelines was calcu-

lated as described for the clinical HCM cohort, i.e. those

in a variant class with an EF ≥ 0.95 for missense variants

(activating PM1_strong) or EF ≥ 0.90 for inframe indels

(activating PM1_moderate).

Genotype-phenotype analyses to validate variant

pathogenicity

The clinical characteristics of two HCM cohorts were used

to support the pathogenicity of variants upgraded on the

basis of an EF ≥ 0.95. For the prospective HCM cohort, left

ventricular (LV) mass values indexed to body surface area

were derived from cardiac magnetic resonance imaging

and compared between cases with pathogenic or likely

pathogenic variants (current ACMG/AMP guidelines),

VUS upgraded to likely pathogenic with EF rules, other

VUS and genotype-negative cases (only variants in thick
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filament genes MYH7 and MYBPC3 were analysed due to

the distinctive patterns of LV hypertrophy observed in

cases with variants in thin filament genes [25]).

Outcome data was assessed using the Sarcomeric Hu-

man Cardiomyopathy Registry (SHaRe), a multi-centre

international repository that aggregates clinical and genetic

data from patients with cardiomyopathies including HCM.

A total of 2694 HCM patients with both right-censored

outcome data and known sarcomeric genotype were ana-

lysed—1254 patients with at least one pathogenic or likely

pathogenic variant in any of the 8 sarcomeric genes; 1199

patients with no sarcomeric variants; and 241 patients with

VUS in any of the sarcomeric genes. Of the 241 patients

with VUS, 69 were reclassified as pathogenic as they had

variants with an EF ≥ 0.95. Survival curves were calculated

by Kaplan-Meier analysis with log-rank test for the propor-

tion of patients free of the overall composite outcome for

each of the four genotype groups [7].

Detection of enriched variant clusters in RYR2

Non-truncating variants in RYR2 are causative in up to

50% of patients with catecholaminergic polymorphic ven-

tricular tachycardia (CPVT), a rare inherited arrhythmia

affecting approximately 1 in 10,000 people. Variants in

cases have been shown to cluster in specific regions of

RYR2, which codes for a ryanodine receptor 4867 amino

acids in length, with a subset of its 105 exons thought to

account for the majority of disease-causing variation [26].

However, the relatively high level of background benign

variation in RYR2 increases the uncertainty in interpreting

novel variants detected in CPVT cases [27]. For RYR2

variants in CPVT, rare variants were defined as those with

a filtering allele frequency in ExAC below the max-

imum credible allele frequency for CPVT [22], defined

as 1 × 10−5 (prevalence = 1 in 10,000, allelic heterogen-

eity = 0.1, penetrance = 0.5, monoallelic inheritance, as

calculated at http://cardiodb.org/allelefrequencyapp/).

For variants without a filtering allele frequency, i.e. de-

tected in a maximum of one individual for any major

ExAC sub-population, those with an overall ExAC allele

count less than three were deemed to be rare. All mis-

sense and single amino acid inframe insertions/dele-

tions were included as non-truncating variants.

Case clusters were defined as described above using a re-

cently published cohort of 1200 referral cases for CPVT

and 155 well-phenotyped cases (78 classified as strong

CPVT and 77 classified as possible CPVT) [27]. For cal-

culating EFs, only the 1200 referral cases were used for

comparison with ExAC. Although this will yield more

conservative EFs than using definitively diagnosed cases

or a mix of diagnosed and referral (the yield of RYR2

variants in the referral series was 18.2% compared to

59% in the well-phenotypes cases [27]), the EFs gener-

ated will be more relevant and applicable to real world

referral genetic testing for CPVT. We compared results

from our detected clusters with previously defined hot-

spot regions (exons 3–15, 44–50, 83–90 and 93–105)

[26] and a recently refined set of exons based on variant

enrichment in cases (3, 8, 14, 43, 47–49, 81, 83, 88–90,

93, 95, 97–101, 103, 105), using the same case cohort

as here but calculated on an exon-by-exon basis [27].

Results

In established HCM-associated genes, the majority of rare

variants found in cases are pathogenic

We compared the prevalence of rare variants of different

classes in established HCM-associated genes between

HCM cases and population controls, and calculated the

odds ratio (OR) for disease. From this, we derived the

etiological fraction (EF) which, under a Mendelian disease

model, provides an estimate of the proportion of rare vari-

ants found in affected individuals that are disease-causing,

and therefore, the probability that an individual variant

(found in a patient with disease) is pathogenic.

The etiological fraction (EF) and odds ratio (OR) for

predicted non-truncating (missense, small in-frame in-

sertions/deletions) and predicted truncating (frameshift,

nonsense, splice donor site, splice acceptor site) variants

in validated HCM genes [19] are shown in Table 1.

Truncating variants in MYBPC3, which we can estimate

based on case and reference frequencies are causative in

over 9% of HCM cases, have an EF>0.99 confirming that

this variant class has a high likelihood of pathogenicity

concordant with pedigree and functional studies. Trun-

cating variants in other genes with an excess over ExAC are

less prevalent (occurring in < 0.2% of cases in each gene),

but the probability that a variant found in a case is causal is

nonetheless high (> 0.84). While non-truncating variants

are more prevalent in the general population, leading to a

lower signal to noise ratio and reduced interpretative confi-

dence for individual variants, the majority of such variants

are causal, when found in an individual with confirmed dis-

ease. However, at the gene level, only variants in TPM1

yield an EF ≥ 0.95.

Evaluation of missense functional prediction scores

The EF can be used to assess variant prioritisation algo-

rithms, empirically estimating the proportion of variants

that are pathogenic after applying a filter or prioritisa-

tion strategy. Some of the most commonly used tools for

evaluating variants are missense functional prediction

algorithms.

To initially evaluate the performance of these compu-

tational algorithms for HCM gene variants, the results

of nine predictors (FATHMM, fMKL, LRT, mutation

assessor, mutation taster, Polyphen-2, PROVEAN and

SIFT, as well as CADD which integrates multiple anno-

tations into one metric) and three consensus methods
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(MetaLR, MetaSVM [24] and a consensus of the nine al-

gorithms) from the dbNSFP database [23] were assessed

using known pathogenic (n = 298) and benign (n = 349)

variants in the eight sarcomeric genes (see the “Methods”

section). These algorithms generally provide high sen-

sitivity but limited specificity, as has been previously

reported, although in contrast the FATHMM predictor

(and MetaLR and MetaSVM consensus scores that

incorporate FATHMM) has a low sensitivity for detec-

tion of pathogenic variants for MYBPC3 and MYL2

(Additional file 1: Table S2). We also noted that

dbNSFP does not provide predictions for certain gene/

algorithm combinations (Additional file 1: Table S3).

Clustering analysis identifies interpretable “hot spots”,

within which novel variants have a high probability of

pathogenicity

For genes with an EF < 0.95 for rare non-truncating

variants, we examined the regional distribution of variants

found in cases along the protein sequence. A novel clus-

tering algorithm (see the “Methods” section) identified a

statistically significant aggregation of distinct variants (in

cases) in 6 genes—MYH7, MYBPC3, TNNI3, TNNT2,

MYL3 and CSRP3 (Fig. 2, Additional file 1: Table S4). For

each cluster, the prevalence of rare variants in cases and

controls was then used to calculate the EF as described

above. Variants in four of these clusters (MYH7,

MYBPC3, TNNI3, TNNT2) had an EF > 0.95 (Table 2).

The regions highlighted by clustering analysis corres-

pond to key functional and protein-binding domains—

the myosin motor domain of MYH7, troponin C and

actin-binding domains in TNNI3 and the tropomyosin-

binding domain in TNNT2.

FLNC [28] and FHOD3 [21] have recently been proposed

as novel genes for HCM, with both reports demonstrating

an excess of rare variation over controls as well as strong

supporting familial segregation data. However, the relative

frequencies of rare variation between cases and ExAC in

these two genes produce only modest overall EFs (0.44 for

FLNC and 0.48 for FHOD3). Although enrichment of case

variants towards the C-terminus of FLNC has previously

been noted [20, 28], no clusters were detected in this

Table 1 Etiological fractions and odds ratios for established HCM genes

Gene Transcript Number of cases Case frequency
(variants/total)

ExAC frequency
(variants/total)

p value Odds ratio (OR) Etiological fraction (EF)

Non-truncating variants

MYH7 ENST00000355349 6112 13.89% (849/6112) 1.11% (672/60,469) < 0.0001 14.4 (12.9–15.9) 0.930 (0.923–0.938)

MYBPC3 ENST00000545968 6179 9.35% (578/6179) 1.21% (555/45,794) < 0.0001 8.4 (7.5–9.5) 0.881 (0.868–0.895)

TNNT2 ENST00000367318 6103 1.69% (103/6103) 0.15% (86/57,018) < 0.0001 11.4 (8.5–15.2) 0.912 (0.889–0.935)

TNNI3 ENST00000344887 6047 2.10% (127/6047) 0.15% (79/52,607) < 0.0001 14.3 (10.8–18.9) 0.930 (0.912–0.948)

TPM1 ENST00000403994 4447 1.44% (64/4447) 0.07% (42/58,642) < 0.0001 20.4 (13.8–30.1) 0.951 (0.933–0.969)

MYL2 ENST00000228841 4185 1.03% (43/4185) 0.11% (69/60,521) < 0.0001 9.1 (6.2–13.3) 0.890 (0.851–0.930)

MYL3 ENST00000395869 4185 0.84% (35/4185) 0.14% (85/60,605) < 0.0001 6.0 (4.0–8.9) 0.833 (0.772–0.895)

ACTC1 ENST00000290378 4185 0.53% (22/4185) 0.06% (37/60,198) < 0.0001 8.6 (5.1–14.6) 0.884 (0.826–0.941)

PLN ENST00000357525 5440 0.17% (9/5440) 0.02% (15/60,475) < 0.0001 6.7 (2.9–15.3) 0.850 (0.737–0.964)

CSRP3 ENST00000533783 4866 0.62% (30/4866) 0.19% (115/60,647) < 0.0001 3.3 (2.2–4.9) 0.694 (0.579–0.808)

FHL1 ENST00000370690 2061 0.78% (16/2061) 0.09% (53/60,278) < 0.0001 8.9 (5.1–15.6) 0.888 (0.826–0.949)

TNNC1 ENST00000232975 3335 0.24% (8/3335) 0.06% (33/59,192) 0.0013 4.3 (2.0–9.3) 0.768 (0.598–0.938)

FLNC ENST00000325888 448 3.79% (17/448) 2.15% (1225/56,897) 0.0314 1.8 (1.1–2.9) 0.442 (0.172–0.712)

FHOD3 ENST00000590592 3189 2.26% (72/3189) 1.20% (683/57,035) < 0.0001 1.9 (1.5–2.4) 0.475 (0.353–0.597)

Truncating variants

MYBPC3 ENST00000545968 6179 9.16% (566/6179) 0.09% (40/45,794) < 0.0001 115.3 (83.6–159.1) 0.991 (0.988–0.995)

TNNT2 ENST00000367318 6103 0.18% (11/6103) 0.03% (17/57,018) < 0.0001 6.1 (2.8–12.9) 0.835 (0.722–0.948)

TNNI3 ENST00000344887 6047 0.08% (5/6047) 0.01% (5/52,607) 0.0019 8.7 (2.5–30.1) 0.885 (0.757–1.013)

PLN ENST00000357525 5440 0.17% (9/5440) 0.01% (4/60,475) < 0.0001 25.1 (7.7–81.4) 0.960 (0.917–1.003)

CSRP3 ENST00000533783 4866 0.14% (7/4866) 0.02% (14/60,647) 0.0006 6.2 (2.5–15.5) 0.840 (0.705–0.974)

FHL1 ENST00000370690 2061 0.15% (3/2061) 0.00% (0/60,278) < 0.0001 205.0 (10.6–3969.8) 0.995 (0.981–1.009)

Displayed are the cumulative frequency of rare variants (rare defined by ExAC filtering allele frequency < 4 × 10−5 [22]), Fisher’s exact test p values and estimates

of odds ratio and etiological fraction (with 95% confidence intervals) for non-truncating and truncating variants in HCM genes. The etiological fraction can be

interpreted as an estimate of the probability that a rare variant, found in an individual with HCM, is causative. This suggests that the majority of variants are

pathogenic when detected in cases, and for some genes, the probability that an individual variant is pathogenic is > 0.9, before considering variant-specific

segregation of functional data. Only variant classes with a significant excess of variants in case cohorts over ExAC are displayed
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study, though this may be due to the limited cohort size

available (448 cases [20]). For FHOD3, a cluster between

residues 321 and 849 was detected but still yielded a

relatively modest EF of 0.78 (0.73–0.85) and OR of 4.7

(3.5–6.3) (Additional file 2: Figure S2). The authors of the

FHOD3 study noted a clustering of case variants in the

small coiled-coil domain (residues 622–655) although the

EF for this region only reached 0.82 (OR = 5.6).

The performance of variant clustering and functional pre-

diction scores in distinguishing between pathogenic and

benign variants was then compared. In contrast to the sig-

nificant enrichment of pathogenic variants obtained by ana-

lysis of the regional distribution of variation, functional

prediction consensus scores only marginally increased EFs,

compared to whole-gene estimates (Table 2), highlighting

the limitations of using such generic predictors. For other

HCM genes, no clear clustering of variants in the case

cohorts was observed across the protein sequence

(Additional file 2: Figure S1). Therefore, only consen-

sus functional prediction scores are currently available

for variant prioritisation, but again these provide only

a marginal increase in EF values for these genes

(Additional file 1: Table S5).

Adapting ACMG/AMP guidelines to incorporate EF prior

probabilities

The ACMG/AMP guidelines incorporate the relative fre-

quency of an individual variant in cases and controls as dir-

ect evidence of disease association (PS4). This rule is

applicable only for the minority of individual HCM variants

that are recurrently observed in large case series. For

non-truncating variants, there are currently two further

rules in the ACMG/AMP guidelines that can incorporate

information on the differing aggregate frequencies of

Fig. 2 Distribution of rare variants in HCM and ExAC cohorts for 6 genes with HCM clustering. Clustering analyses identify regions enriched for

disease-associated variation, and therefore within which variants have a high likelihood of pathogenicity. For six HCM genes, the location of rare

missense and single amino acid inframe indel variants found in cases (all variants regardless of clinical classification) and controls are shown

alongside a cartoon of the cDNA structure. Darker grey indicates higher variant density (overlapping variants not plotted separately). Regions in

which variants cluster significantly in cases are shown in red, and regions with clustering in population controls (ExAC) are shown in yellow. The

HCM clusters detected were: MYH7 (residues 167–931), MYBPC3 (485–502, 1248–1266), TNNI3 (141–209), TNNT2 (79–179), MYL3 (143–180) and

CSRP3 (44–71). For MYH7, existing functional annotations (as described in the “Discussion” section) are superimposed: In green, key residues of

the converter kinetic domain and myosin mesa surface area enriched in disease-associated variants (Homburger et al. [37]); in blue, sites of inter-

and intramolecular interaction between pairs of myosin heads (Alamo et al. [38]); and in grey, regions previously identified as constrained

(intolerant of variation as evidenced by depletion of protein-altering variation in population controls), with the darker shades indicating higher

constraint (Samocha et al. [36]). The coordinates describe amino-acid position within the canonical protein sequence
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variants of particular classes between case and control co-

horts and that can be activated by novel variants—PP2

(missense in gene with a low rate of benign missense vari-

ants and pathogenic missense variants are common) and

PM1 (mutational hot spot or well-studied functional do-

main without benign variation). However, activating even

the stronger of these rules (PM1) will not lift any novel or

relatively uncharacterised variant beyond VUS without sub-

stantial segregation or functional characterisation, even if

found in genes or regions that are completely intolerant of

variation. Additionally, the rules are categorical (despite de-

scribing a quantitative class of evidence) and must be speci-

fied for each gene and disease, with no consensus yet on

the circumstances in which these should be applied.

In order to apply a more quantitative approach to these

rules, we propose an adaptation of the guidelines as shown

in Fig. 3. The EF enables a unified approach and provides

an empirical estimate of the probability of pathogenicity

for a variant in a given gene (or region of a gene) that

allows rules to be applied at different strengths. The

non-quantitative related rules PP2 and PM1 would be

replaced with a single rule (PM1) with three (or more) evi-

dence levels depending on pre-defined EF for the relevant

variant class. For genes where clustering of variants has

been observed, regional EFs, rather than EFs at the gene

level, should be applied. This semi-quantitative approach

is similar to the PP1 rule for segregation data that allows

the rule to be progressed from supporting to moderate to

strong with increasing evidence [29, 30]. As the EF is cal-

culated for rare variants found in cases, PM1 would only

be activated in combination with the PM2 rule defining

rarity, and if the variant has been identified in an individ-

ual suspected to have cardiomyopathy. Since PM1_strong

(in conjunction with PM2) would enable a novel variant

Table 2 Refinement of etiological fractions for 6 HCM genes using variant clustering and functional prediction scores

Gene Case
excess

EF (whole gene) Predictor
method

Prioritised variants Variants not prioritised

Case freq. EF Case freq. EF

MYH7 12.76% 0.930 (0.923–0.938) HCM cluster 10.70% 0.976 (0.972–0.981) 3.17% 0.746 (0.706–0.785)

Consensus 12.55% 0.940 (0.933–0.947) 1.32% 0.783 (0.728–0.839)

MetaSVM 12.53% 0.944 (0.937–0.951) 1.34% 0.739 (0.675–0.804)

MetaLR 13.29% 0.944 (0.938–0.951) 0.58% (p = 0.0155) 0.406 (0.185–0.627)

MYBPC3 7.98% 0.879 (0.865–0.893) HCM cluster 2.80% 0.979 (0.971–0.987) 6.39% 0.830 (0.809–0.850)

Consensus 8.42% 0.904 (0.892–0.916) 0.77% 0.524 (0.379–0.670)

MetaSVM 4.27% 0.945 (0.934–0.957) 4.92% 0.811 (0.786–0.837)

MetaLR 1.78% 0.900 (0.874–0.925) 7.41% 0.871 (0.855–0.887)

TNNT2 1.54% 0.912 (0.889–0.935) HCM cluster 1.23% 0.958 (0.941–0.974) 0.46% 0.787 (0.699–0.874)

Consensus 1.20% 0.909 (0.880–0.937) 0.49% 0.832 (0.730–0.934)

MetaSVM 1.11% 0.894 (0.861–0.927) 0.58% 0.905 (0.848–0.961)

MetaLR 1.11% 0.889 (0.856–0.923) 0.58% 0.921 (0.872–0.971)

TNNI3 1.95% 0.930 (0.912–0.948) HCM cluster 1.92% 0.974 (0.963–0.984) 0.18% (p = 0.0918) 0.457 (0.140–0.774)

Consensus 1.93% 0.957 (0.943–0.970) 0.17% (p = 0.0383) 0.566 (0.280–0.852)

MetaSVM 1.77% 0.939 (0.921–0.957) 0.33% 0.873 (0.803–0.944)

MetaLR 1.87% 0.932 (0.913–0.951) 0.23% 0.903 (0.833–0.973)

MYL3 0.70% 0.833 (0.772–0.895) HCM cluster 0.55% 0.925 (0.886–0.965) 0.29% (p = 0.0021) 0.655 (0.455–0.856)

Consensus 0.79% 0.869 (0.817–0.921) 0.05% (p = 0.6503) 0.310 (0–1)

MetaSVM 0.50% 0.840 (0.763–0.917) 0.34% 0.833 (0.735–0.930)

MetaLR 0.53% 0.809 (0.722–0.897) 0.31% 0.883 (0.809–0.958)

CSRP3 0.41% 0.683 (0.563–0.803) HCM cluster 0.43% 0.882 (0.821–0.943) 0.16% (p = 0.5533) 0.158 (0–0.724)

Consensus 0.58% 0.735 (0.630–0.839) 0.02% (p = 1.0000) –

MetaSVM 0.53% 0.779 (0.687–0.871) 0.07% (p = 1.0000) –

MetaLR 0.55% 0.751 (0.651–0.852) 0.05% (p = 1.0000) –

Comparison of performance of variant clustering and consensus functional prediction scores in enriching for disease-associated non-truncating/missense variants

in 6 HCM genes where the clustering of case variants was detected. For each gene, the EF of all rare variants is shown, followed by the EF of variants prioritised

by the approach, and the EF of the remaining variants that are not prioritised. Clustering analyses identified regions of 4 genes with an EF ≥ 0.95 (bold), and

generally outperformed consensus functional prediction scores. Fisher’s exact p values for comparison of rare variation in cases and ExAC reference samples were

< 0.0001 unless otherwise noted. For MYBPC3 (italics), the FATHMM predictor was not included in the consensus scores due to its poor performance for this gene,

which also affected the MetaSVM and MetaLR consensus scores
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to be classified as likely pathogenic, we suggest an

EF ≥ 0.95 could activate this rule. This is equivalent

to an OR of 20, broadly similar to that adopted in the

Bayesian modelling of the ACMG/AMP guidelines by

Tavtigian et al. [31].

Since each level of evidence in the hierarchical

ACMG/AMP framework represents a doubling in

weight, a Bayesian interpretation of the ACMG/AMP

guidelines [31] requires that the odds should increase

by a power of 2 as you move to a higher evidence tier.

This yields corresponding EF/OR thresholds of 0.776/

4.47 for the PM1_moderate rule and 0.527/2.11 for the

PM1_supporting rule given an EF threshold of 0.95 for

PM1_strong. However, we believe a more conservative

application of these rules may be more appropriate in a real

world setting, and therefore for this study, we have defined

PM1_moderate as an EF between 0.90 and 0.95 (minimum

OR of 10) and PM1_supporting as an EF between 0.80 and

0.90 (minimum OR of 5). Future consensus-derived imple-

mentations of these rules may choose to incorporate the

Bayesian model, although it should be noted that other

recommendations for translating quantitative data into

ACMG/AMP rules also do not account for exponentially

scaled odds of pathogenicity [29, 30].

An EF-calibrated tiered application of PM1 increases the

yield of actionable variants in HCM

To evaluate how the EF-based modified ACMG/AMP

guidelines could improve the yield of genetic testing in

HCM, we determined the proportion of VUS in a diag-

nostic referral cohort that were found in genes or

regions with an EF ≥ 0.95 that might therefore trigger a

PM1_strong rule (i.e. non-truncating variants through-

out TPM1 and in case-enriched clusters of MYH7,

MYBPC3, TNNI3 and TNNT2). In all, variants in 4.0%

of cases could be upgraded to likely pathogenic by acti-

vating this strong evidence rule (Fig. 4a). This repre-

sents an increase in yield of pathogenic and likely

pathogenic variants in the eight sarcomeric genes from

28.8% to at least 32.8% (14% relative increase) in this co-

hort. It should be noted this is a conservative estimate,

focusing only on PM1_strong, whereas variants activat-

ing PM1_moderate and PM1_supporting might also

lead to a change in interpretation when combined with

other lines of existing evidence.

Sarcomeric variants in a prospective cohort of 684

HCM cases [19] were also analysed. 19.1% of cases had ac-

tionable (pathogenic and likely pathogenic) variants with

automatically applied rules (see the “Methods” section for

details), with only 4 additional cases with VUS upgraded

to actionable based on manual assessment of published

evidence from family pedigrees. In contrast, VUS would

be upgraded in 31 cases (of 82 with VUS) using the pro-

posed PM1 modifications (4.5% of the cohort) in addition

to automatically applied rules. In total, this corresponds to

a 20.7% relative increase in actionable variants over

current guidelines (Fig. 4b). See Additional file 1: Table S6

for details of the variants detected in this cohort.

Fig. 3 Proposed adaptation of ACMG/AMP guidelines for rule PM1, relating to the relative frequencies of non-truncating variants in case cohorts

and population controls
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Independent validation of variants upgraded from VUS

under this framework

The distinctive clinical characteristics of genotype-positive

and genotype-negative HCM patients offer an opportunity

to validate variant classifications in the absence of an

independent gold-standard set of variants for benchmark-

ing. If cases with variants that are upgraded from VUS to

P/LP are more phenotypically similar to cases with known

pathogenic variants, this offers further supportive evi-

dence to validate the reclassification. We assessed mean

Fig. 4 Effect of EF-based approach to variant classification in HCM cohorts. a Proportion of cases from the OMGL/LMM HCM cohorts with variants

in 8 sarcomeric genes (only rare variants, ExAC filtering frequency < 4 × 10−5, are shown, excluding non-essential splice site variants). Coloured

shading represents the clinical classification of the original diagnostic laboratory (OMGL and LMM), and, for variants originally classified as VUS,

the proportion that could be reclassified as Likely Pathogenic based on occurrence within a gene or region with EF ≥ 0.95. Eighty-nine variants in

123 cases for MYH7, 12 variants in 27 cases for MYBPC3, 18 variants in 34 cases for TNNI3, 15 variants in 18 cases for TNNT2 and 22 variants in 33

cases for TPM1 would be upgraded based on this analysis. b Proportion of cases in a prospective HCM cohort classified as actionable based on

application of fixed and automatable ACMG/AMP rules, alongside the addition of manual curation of published evidence and the proposed

EF-calibrated PM1 rules. Thirty-one extra cases (4.5%) are upgraded with EF-based rules compared to just 4 (0.6%) with manual curation. c

Comparison of indexed LV mass in cases with pathogenic variants, VUS in high EF (≥ 0.95) regions, and VUS in low EF regions (< 0.95) in MYH7/

MYBPC3 as well as genotype-negative cases, from the prospective HCM cohort. The clinical phenotype of individuals with VUS at locations

anticipated to be pathogenic is indistinguishable from known pathogenic/likely pathogenic variants, while individuals with VUS in other regions

have a clinical phenotype more similar to individuals without a sarcomere variant. d Kaplan-Meier survival curve for the overall composite

endpoint (including mortality, ventricular arrhythmia and heart failure composites) of the SHaRe cardiomyopathy registry stratified by genotype

(HCM cases with pathogenic variants, VUS in high EF region (≥ 0.95), VUS in lower EF regions (< 0.95), and genotype-negative cases)
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indexed left ventricular (LV) mass and event-free survival

as clinical variables that are associated with pathogenic

sarcomere variants.

In the prospective HCM cohort, overall LV mass is signifi-

cantly greater in genotype-negative cases (101.0 ± 31.8 g/m2)

compared to genotype-positive cases (88.7 ± 31.1 g/m2), des-

pite the fact that patients with pathogenic sarcomeric vari-

ants tend to have greater maximum LV wall thickness.

Cases with variants upgraded from VUS were similar to

genotype-positive (86.0 ± 28.1 g/m2, p = 0.98), with both

significantly different from genotype-negative and cases with

VUS that are not upgraded (104.3 ± 24.7 g/m2) (Fig. 4c).

Genotype-positive cases have significantly worse outcomes

than genotype-negative cases, as demonstrated most com-

prehensively by data from the SHaRe registry [7]. In this

dataset, cases with VUS display intermediate outcomes,

although more similar to genotype-positive (p = 0.07)

than genotype-negative (p < 0.001). Sub-classifying these by

EF, cases with VUS with an EF ≥ 0.95 had similar outcomes

to genotype-positive cases (p = 0.9) and were significantly

different to genotype-negative cases (p = 0.001) (Fig. 4d). In

contrast, cases with VUS with an EF < 0.95 displayed cumu-

lative outcomes intermediate between genotype-positive

(p = 0.03) and genotype-negative (p = 0.03) cases, consistent

with the expectation that these cases will include a mix of

both pathogenic and rare benign variants.

Applicability of this approach to other genetic diseases

To assess how the approach described here could be

applied to other genetic diseases, we analysed variants in

RYR2 from a recently published referral cohort for cate-

cholaminergic polymorphic ventricular tachycardia (CPVT)

[27]. Rare, non-truncating RYR2 variants detected in 1200

referral cases and 155 well-phenotyped CPVT cases were

used to define three case-enriched clusters in RYR2 (resi-

dues 2138–2538, 3935–4196 and 4721–4959), partially

overlapping with previously identified disease hotspots

(Fig. 5). EF and OR values were calculated by comparison

of the 1200 referral cases to ExAC. Despite the use of a

referral only case cohort (which has been shown to have a

significantly lower yield of RYR2 variants), the EF for

rare variants within the clusters was calculated at 0.982

(OR = 55.5) (Additional file 1: Table S7). Although RYR2

has a relatively high background rate of rare variants, by

setting stringent population frequency thresholds (see the

“Methods” section) and identifying enriched clusters, we

can identify variant classes with a very high probability of

pathogenicity—indeed the EF will be higher still for

definitively diagnosed CPVT cases given the relatively low

diagnostic yield observed in the referral cohort. Our un-

supervised approach to defining variant-enriched clusters

was more discriminatory than an exon-based strategy—

the original 41 exon hotspot region [26] yielded an EF

of 0.966 (OR = 29.2) and the recently refined 21 exon

hotspot region [27] yielded an EF of 0.975 (OR = 39.8)

(Additional file 1: Table S7), though the larger clusters

do encompass more case variants. The limitations of using

exon boundaries to define hotspots are highlighted by

exon 90 (the largest RYR2 exon) in which pathogenic

variants appear to be restricted to the first half of the

exon (Fig. 5).

Discussion

The accurate and comprehensive interpretation of rare

variants underlying Mendelian disease remains one of

the principal challenges facing genetics and one of the

key obstacles to fulfilling the potential of genomics in

clinical practice. Current guidelines are conservative and

prioritise minimising false-positive results, given the po-

tentially serious adverse consequences of predictive test-

ing based on erroneously classified variants. However,

this comes at the cost of sensitivity and denies many in-

dividuals the benefits of a molecular diagnosis. In HCM,

case-control comparisons have highlighted that the ma-

jority of sarcomeric gene variants reported as VUS in

leading clinical labs are in fact pathogenic variants, par-

ticularly for population groups that have not been exten-

sively studied, highlighting the need for improved

stratification of these variants. While the principal benefit

of a molecular diagnosis in HCM is currently the

Fig. 5 Distribution of rare variants in CPVT and ExAC cohorts for RYR2. All rare RYR2 non-truncating (missense and single amino acid inframe

indel variants) variants in 1355 CPVT cases (well-phenotyped and referral) and ExAC are shown alongside a cartoon of the cDNA structure. Darker

grey indicates higher variant density (overlapping variants not plotted separately). Three regions enriched for disease-associated variation were

identified (shown in red)—residues 2138–2538, 3935–4196 and 4721–4959. Exons used in previously defined hotspot regions (original 41 exons

and refined 21 exons) are highlighted as shown

Walsh et al. Genome Medicine            (2019) 11:5 Page 13 of 18



potential for predictive testing of relatives, for applica-

tions of genetic testing other than diagnosis and predict-

ive testing (such as prognostication and selection of

specific therapies, that are emerging in HCM and estab-

lished in other diseases), a different balance between sensi-

tivity and specificity may be required, and variants may be

actionable with a lower burden of proof of causality. It is

also recognised that VUS, though not clinically actionable,

can create uncertainty and confusion for recipients of

genetic testing, with patients often over-interpreting their

effect [32]. New methods for more comprehensive identifi-

cation of disease-causing variants, while maintaining the

stringency of clinical guidelines, are urgently required.

In this study, we have demonstrated that using large

case and population cohorts, and applying strict popula-

tion frequency thresholds for variants of interest, we can

identify genes and gene regions in which variants of

specific classes have high likelihoods of pathogenicity.

The probability of pathogenicity can also be empirically

estimated, providing a quantitative measure of interpret-

ative confidence. We demonstrate how the ACMG/AMP

framework could be adjusted to incorporate this infor-

mation (where suitable case series exist) and enable a

more quantitative and transparent assessment of this evi-

dence class. Crucially, this new framework allows variants

that are novel or otherwise not yet well-characterised, but

which belong to variant classes with very high prior prob-

abilities of pathogenicity, to be classified as (likely) patho-

genic. Under existing rules, such variants will remain as

VUS unless the family structure permits well-powered

segregation analysis, or there are resources for functional

characterisation.

As variant-specific evidence such as co-segregation data

has typically been required to classify missense or

non-truncating variants as disease-causing, we recognise

that the novel approach to variant classification described

here may require further piloting and replication before

adoption of a clinical setting. However, we believe this

method is consistent with the stringent approach to vari-

ant classification of current guidelines. While the ACMG/

AMP guidelines define likely pathogenic as a “greater than

90% certainty of a variant being disease-causing” [1], a

95% threshold is arguably more in line with standard clin-

ical practice, and therefore, we have proposed an EF

cut-off of 0.95 to define strong evidence for this rule. We

consider a 95% probability of pathogenicity to be a reason-

able level of evidence for a “likely pathogenic” classifica-

tion, and one that provides an effective balance between

sensitivity and specificity in genetic testing. It is also im-

portant to recognise that there is an inherent uncertainty

associated with all variant interpretation, particularly for

those classified as likely pathogenic. The confidence of

both clinicians and patients in the results of genetic test-

ing could be improved by more effective reporting of the

evidence for pathogenicity in genetic reports, including

the EF for relatively uncharacterised variants, and more

transparency about the level of certainty associated with

any classification.

Importantly, the approach to variant classification de-

scribed here is compatible with the existing framework of

the ACMG/AMP guidelines that have been widely adopted

in clinical genetics laboratories. The translation of EF

values into semi-quantitative PM1 rules, with a twofold

increase in ORs required to progress between evidence

classes, is similar to that adopted for another quantitative

data type—co-segregation with disease in affected family

members. Recent studies have sought to translate segrega-

tion data into supporting, moderate or strong PP1 rules

based on the number of meioses of the variant that are in-

formative for co-segregation [29, 30]. The rule adaptations

proposed here also address the discrepancy between the

rules for truncating and non-truncating variants in the

current guidelines. Truncating variants in genes where loss

of function is a known mechanism for the disease in ques-

tion will achieve a classification of at least likely patho-

genic, courtesy of the (very strong) PVS1 rule, assuming a

number of criteria are met [33]. While the weight of this

rule partly derives from the fact that a non-functional pro-

tein is likely to be produced by the truncating variant

(albeit with the caveats described by Richards et al. [1]), it

also reflects the rarity of such variants in the population

and consequently the high odds of a variant detected in a

patient being pathogenic (as seen with MYBPC3 truncating

variants in this study, with an EF > 0.99 and an OR of 115).

Non-truncating variant classes that are similarly highly

enriched in case cohorts should also have this evidence

more appropriately weighted when evaluating variants.

Although we have introduced a more quantitative

approach to variant classification in this study, we have

deliberately stayed within the framework of the ACMG/

AMP guidelines. These guidelines have been widely

adopted in clinical genetics laboratories, and therefore,

adaptations like those we have proposed here can be

easily and readily integrated into existing variant analysis

pipelines in these laboratories. In time, more compre-

hensive quantitative models assessing a wider range of

evidence classes, and likely incorporating machine learn-

ing algorithms, may be developed that could offer a fully

quantitative approach to variant interpretation. However,

there will likely be substantial technical and cultural ob-

stacles to be overcome before such novel methodologies

are routinely applied in clinical testing.

Our findings highlight the necessity of applying gene and

disease-specific expertise to both variant classification and

the customisation of ACMG/AMP guidelines [6]. As we

have shown, variant characteristics that are specific to the

genes and disease in question, such as clustering of case

variants in specific protein domains, are more powerful
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discriminators than generic techniques designed to be

applied genome wide, such as the widely used mis-

sense functional prediction algorithms. This has also

been recently demonstrated by an analysis of variation

in the RYR2 gene in catecholaminergic polymorphic

ventricular tachycardia [27]. Interestingly, the esti-

mated 14–20% increased yield of actionable variants

in sarcomeric genes described here is likely to have a

greater impact on HCM genetic testing yield than all

of the efforts over the last 10–20 years to identify

novel, non-sarcomeric genetic causes in this condition

[19] that have explained very few additional cases.

This highlights how efforts and resources to improve

variant interpretation and the yield of genetic testing

can be inefficiently allocated. While discovering valid

novel genes may advance our understanding of disease

and identify new therapeutic targets, an over-emphasis

on discovering “novel” causes of diseases may have

less translational impact than efforts to improve our

understanding of variation in known disease genes.

The publication and sharing of genetic data, as well

as evidence about variant consequences in resources

like ClinVar, is crucial for expanding our ability to

interpret the results of clinical genetic testing of

Mendelian disease [34]. This study also underscores

the importance of clinical laboratories and research

groups publishing and sharing genetic data with allele

frequencies across case cohorts as well as recording

observations in individual patients—a large proportion

of the HCM data in this study was published previ-

ously by the LMM [13] and OMGL [3] clinical labora-

tories. This will be even more critical for extending

this approach to rarer and less well-characterised

genetic diseases than cardiomyopathies. In addition,

further sequencing and publication of genetic data

from non-Caucasian populations is becoming a critical

issue across genetics [35], including Mendelian condi-

tions like cardiomyopathies. Large case cohorts, as

well as population data from resources like gnomAD,

from currently underrepresented population groups

will be needed to validate the methods described here

in non-Caucasians. However, the analysis of the pro-

spective HCM cohort in this study has also exposed

the limitations of relying on variant-specific evidence

such as segregation data for the interpretation of vari-

ants. Published segregation data was mostly restricted

to those variants that are already enriched in HCM

cases (and therefore can be used to increase confi-

dence in the variant classification by upgrading from

likely pathogenic to pathogenic) rather than enabling

rarer variants to be progressed from VUS to likely

pathogenic, highlighting the necessity of novel ap-

proaches to increase the sensitivity of genetic testing,

such as those described in this study.

Comparisons with other methods that assess region

pathogenicity

An alternative approach to identify functionally important

genic regions seeks those that are depleted in (missense)

variation in a reference population[36], in contrast to the

analysis presented here that seeks a regional enrichment

of variation in cases. Here depletion indicates negative

selection of variation, implying that variation is not toler-

ated. Sub-genic regions of constraint were identified in

only four of the HCM genes analysed in this study

(MYH7, FLNC, TNNC1, FHOD3). There is partial overlap

of the regions identified in this study (Fig. 2), e.g. a region

of high constraint in MYH7 from residues 1–916 broadly

corresponds to our HCM cluster (residues 167–931).

Whatever the method for identifying a region of interest,

empirical comparison of cases and controls provides a

direct assessment of the strength of association with a spe-

cific disease, enabling us to directly estimate the likelihood

of pathogenicity for variants in specific regions, as well as

detecting pathogenic clusters in other genes for which no

regional constraint data exists.

The EF (and OR) can of course be applied to calibrate

an appropriate PM1 rule strength irrespective of the

method by which the region is initially highlighted as

potentially important. For example, two recent studies

explored structure-function models in β-cardiac myosin

(MYH7) to identify residues that are key to protein func-

tion (and therefore intolerant of variation), with variants

affecting these residues enriched in case over population

reference cohorts. Homburger et al. modelled β-cardiac

myosin before and after the myosin power stroke and

identified the converter kinetic domain and myosin mesa

surface area as regions enriched in disease-associated

variants using a spatial scan statistic [37]. Alamo et al.

defined sites of inter- and intramolecular interaction be-

tween pairs of myosin heads (the interacting-heads

motif—IHM), noting that variants in HCM cases dispro-

portionately alter IHM residues [38]. The MYH7 resi-

dues identified by these studies largely overlap with the

HCM cluster we have identified by one-dimensional clus-

tering (Fig. 2). Particular groups of residues detected by

these analyses are highly enriched in disease-associated

variants (yielding higher EFs than our cluster), with 7

IHM groups yielding an EF > 0.99 and accounting for 44%

of variants found in HCM cases [38]. EF-based variant

analysis thus requires a balance between specificity and

sensitivity, or a tiered approach with different confidence

levels for pathogenicity.

Issues and limitations of this approach to variant

classification

The calculation of EFs for particular variant classes is

dependent on a number of factors. As we have previously

shown, it is critical to adopt stringent, disease-specific
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frequency thresholds when assessing putative pathogenic

variants [22]. Additionally, the choice of case and control/

population cohorts will influence how EFs are generated.

For cases, the use of clinical referral cohorts (the diagnos-

tic case series from different centres in Europe and North

America that we have employed in this study should be

reasonably representative of real-world referral patterns)

will produce more conservative EF values than highly

selected case series, but we believe these more cautious,

referral EFs are relevant to a clinical genetic setting. None-

theless, these may change as referral patterns change (e.g.

with increasing test availability). Although the use of

population reference data without well-defined pheno-

types has limitations, and is not optimally matched

technically (e.g. differences in sequencing coverage, as pre-

viously discussed [3]), we believe the advantages (popula-

tion size and ethnic diversity allowing more accurate

calculation of rare variant frequencies) outweigh the dis-

advantages. It is also crucially important to note that the

evidence described here should only be applied to asses-

sing variants from patients with the disease in question,

and not from incidental or secondary findings in healthy

individuals or those being sequenced in the context of

other conditions, as EFs correspond to the probability of

pathogenicity given that the variant is identified in an

individual with disease.

Although we have identified highly pathogenic variant

classes in a number of HCM genes, for others it is more

challenging to effectively differentiate between benign and

pathogenic variation. In particular, although we detected

some small case-enriched clusters of non-truncating vari-

ants in MYBPC3, these will correspond to only a small

proportion of such variants that are responsible for HCM

in up to 8% of cases. For such genes, further research and

larger datasets are needed to identify the protein regions

and specific residues at which variation is most likely to

cause disease. This could include analysis of protein struc-

ture, as demonstrated in the MYH7 studies described

above, or the development of computational prediction

techniques that are specific to (and validated in) key

disease genes, given the limitations of the generic and

consensus scores that we have observed in this study.

Genes like MYBPC3, i.e. those with a high diagnostic yield

but poor signal-noise ratio that impedes the statistical

prediction of pathogenicity, could also be prioritised for

high-throughput functional classification studies [39].

Conclusion

In conclusion, we have demonstrated that by combining

large case and control datasets, stringent population fre-

quency thresholds, and the detection of pathogenic clus-

ters in key disease genes, we can empirically estimate

the likelihood that rare variants in specific genes or

regions are pathogenic and can identify variant classes

with a high prior probability of pathogenicity. Using this

evidence to calibrate the appropriate weighting for rules

within the ACMG/AMP framework, we believe the yield

of genetic testing in diseases like HCM can be signifi-

cantly increased, with less dependence on the prior char-

acterisation of variants to define pathogenicity, while

retaining a robust statistical framework. This may help

to reduce the substantial false-negative rate associated

with the use of the current stringent variant interpret-

ation guidelines and increase the accuracy and sensitivity

of genetic testing. It may also help to address the ethni-

city bias associated with obtaining a positive result, en-

abling a more equitable application of genetic testing.

This study also reinforces the concept that disease and

gene-specific approaches are critical for accurate and

comprehensive variant analysis. Finally, this quantitative

approach moves us towards more transparent probabil-

istic variant classification for both Mendelian disease

genetics and precision medicine.
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