
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 572: 269–274, 2017
https://doi.org/10.3354/meps12149

Published May 31

INTRODUCTION

Although there is a strong consensus for the bene-
fits of long-term ecological monitoring and the cre-
ation of long-term datasets, there are significant fis-
cal and political challenges facing the continuation of
these efforts. Given typical funding horizons and the
inherent costs associated with long-term research
programs (Callahan 1984, Magurran et al. 2010), it is
no surprise that the majority of ecological research
occurs within short time frames (Magnuson 1990).

Ecosystem dynamics, however, may not be deci -
pher able from observations on short timescales. In-
deed, there is a growing view that nonlinear and non-
stationary dynamics are common and may require

longer time series for study (Sugihara & May 1990,
Hsieh et al. 2005, Sugihara et al. 2012, Glaser et al.
2014). While most ecological models can be fit to
short time series, they may subsequently fail when
used to make predictions into the future or to explain
changes that occur over the long term (Pilkey &
Pilkey-Jarvis 2007, Evans et al. 2012). The challenge
of models to predict well has led some to suggest that
scientific efforts, and particularly those in fisheries
science, should be shifted away from forecasting as
an attainable goal (Schindler & Hilborn 2015). This
view contradicts our natural expectation that ecosys-
tems behave in nonrandom ways and that with more
data (i.e. longer time series), models should generally
improve. Although we commonly acknowledge out-
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of-sample prediction to be the ultimate test for under-
standing, many current parametric ecosystem models
fail to pass this test (Magurran et al. 2010). A possible
reason is that these models are not well suited for de-
scribing nonlinear and nonstationary dynamics. Inso-
far as nonlinearity is to be expected in ecosystems, it
is almost guaranteed that improperly formulated
models will fail to achieve successful predictions, no
matter how much additional data are provided.

If one were to use a minimal nonparametric nonlin-
ear framework to model ecosystems, to what extent
would short-term datasets limit predictive capabili-
ties? In other words, what is the value of long-term
ecosystem monitoring for gaining a predictive under-
standing of ecosystem processes? We investigate this
question using a unique dataset and nonparametric
analytical approach. The data are from the continu-
ous plankton recorder (CPR) program at the Sir Alis-
ter Hardy Foundation for Ocean Science (SAHFOS).
The analytical approach is minimal in that it allows
the data to inform ecological dynamics with no as -
sumptions about underlying equations — so-called
empirical dynamic models (EDMs) (Sugihara et al.
2012, DeAngelis & Yurek 2015). Our objectives are
straightforward and 2-fold: (1) to explore the rela-
tionship between time series length and the ability to
detect nonlinearity, and (2) to examine the ability to
predict future population abundances a month ahead
as data availability/length increases.

MATERIALS AND METHODS

Dataset and data completeness

We use time series from the SAHFOS program, the
longest and most spatially extensive planktonic eco-
system dataset currently available for the At lan tic
Ocean. Our data, recorded by the CPR (Hays et al.
2005), comprise monthly average abundances of
phytoplankton and zooplankton taxa in the southern
North Sea (55° to 58° N, 3° to 11° W) from 1958 to
2013, with sampling methods described in depth
in Richardson et al. (2006). Data are available from
the SAHFOS repository at http:// doi. sahfos. ac. uk/
doi-library/ data-for-zooplankton-and-phytoplankton-
from-the-1)-southern-north-sea-and-2)-the-irish-sea.
aspx). Because of the practical limitations of identify-
ing taxa and making counts, the time series within
the SAHFOS repository count organisms at a variety
of taxonomic levels (but typically either species or
genus). We used the data as they are provided; thus,
the time series refer to taxa rather than species.

We use 2 distinct measures to quantify the amount
of data in each time series: time series length and
data availability. Time series length refers to the
number of data points in a time series, whereas data
availability is defined as the number of nonzero val-
ues within a time series. We use the term data avail-
ability because we recognize that zeros could repre-
sent an absence of an organism or a lack of detection,
and we are unable to distinguish between the two.
Our analyses that examine the effect of time series
length use subsampled segments from the time series
with the fewest nonzero values or greatest data avail-
ability ‘Effect of time-series length’.

Effect of data availability

We investigate the degree of nonlinearity and pre-
dictability using 2 methods of time series analysis:
simplex projection (Sugihara & May 1990) and S-
maps (Sugihara 1994). Simplex projection is used to
assess the one-step-ahead predictive skill for each
time series and is measured by the Pearson correla-
tion coefficient (ρ) between predictions and observa-
tions. Following Glaser et al. (2014), to minimize
overfitting, we use leave-one-out cross validation,
where the point being forecast is excluded from the
data used to construct the forecast. Different values
for the embedding dimension (E) were tested (rang-
ing from E = 1 to E = 10), and the optimal embedding
dimension was selected as that which produced the
highest ρ. We note that the optimal E is a property of
the data (how noisy and how long the time series are)
as well as the underlying system (how complex it is in
terms of numbers of variables) and indicates the
number of lags that best resolves one-step-ahead
forecasts. While E can be informative about the com-
plexity of the system or the number of drivers (Liu et
al. 2012, Glaser et al. 2014), we caution against over-
interpretation.

S-maps are used to test for nonlinear state depend-
ence (Sugihara 1994). This involves demonstrating
curvature in the attractor and is quantified by the
improvement in ρ (Δρ) obtained with a nonlinear ver-
sus a linear model. Statistical significance for Δρ was
determined using a randomization test. For each time
series, we generated 100 surrogate time series and
calculated a Δρ for each surrogate using the previ-
ously determined E. This creates a null distribution
that can be compared to the original (nonshuffled)
Δρ. Nonlinearity is indicated when the Δρ statistic for
the original time series is greater than the 0.95 quan-
tile of the null distribution.
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Effect of time-series length

To examine the effect of time series length as a
property independent of taxonomic identity, we fo -
cused on the 23 time series with the greatest data
availability (≥461 nonzero data points) and which
were identified as significantly nonlinear. For each
time series, we investigated the effect of varying
the data length on predictability using randomly
se lected contiguous segments of length: 25, 50,
100, 200, 400. The subsampling was repeated 25
times at each length for each species (so that 575
[23 × 25] subsamples were used to compute fore-
cast performance at each length). Predictions were
made using a form of leave-one-out cross validation
where the predicted point is excluded to minimize
overfitting. We then tested for nonlinear state
dependence using S-maps as described in the pre-
vious subsection.

Significance of nonlinearity as a function of data
completeness

To test whether data availability or time series
length are significant predictors of nonlinearity, we
treated data availability and time series length by
binning them into discrete categories (Fig. 1) and
recorded the detection of nonlinearity as a binary
response. Then, we fit a logistic regression using the
R glm function (binomial family).

RESULTS AND DISCUSSION

The S-map analysis shows that nonlinear dynamics
are more readily identified as data availability in -
creases (Fig. 1a; p < 0.01; logistic regression, df = 207).
For the 90 taxa with the lowest data availability (≤37
nonzero data points out of 672), only 11% (10 taxa)
showed significant nonlinear dynamics. In contrast, of
the 90 taxa with 38 to 460 nonzero values, 57% (51
taxa) showed significant nonlinear dynamics. Finally,
among the 28 taxa with the highest data availability
(≥461 nonzero values), 82% (23 taxa) showed signifi-
cant nonlinear dynamics. In other words, the time se-
ries that are most complete also show stronger evi-
dence for nonlinear dynamics. To test whether this
effect could be driven by the specific taxa that happen
to appear most often in the data, we also analyzed
subsampled time series (artificially shortened from
the 23 nonlinear taxa with the most data availability),
finding a similar pattern (Fig. 1b; p < 0.01; logistic re-
gression, df = 23). It has been recognized that aggre-
gating taxon levels can obscure nonlinear dynamics
detection (Liu et al. 2014); however, we have shown
that nonlinearity de tection increases with time series
length regardless of the taxonomic resolution. The
subsampling procedure here obviates any taxon-spe-
cific effect re lated to aggregation that could reduce
nonlinearity in more aggregated (linearly summed)
groupings (Sugihara et. al. 1999).

A similar advantage with increased data holds for
prediction; in general, greater data availability also

corresponds to higher forecast skill
(Fig. 2a). Using the same subsamples
as in the previous paragraph, Fig. 2b
shows that predictability also
increases with time series length.
Thus, we expect that as more data
are collected, populations will be
more readily identified as nonlinear
and that the longer time series will
enable better predictions. However,
we note that even at the longest
time series lengths (≥600 nonzero
values in Fig. 2a or 400 time points
in Fig. 2b), the level of forecast skill
can vary substantially. These differ-
ences in predictability could partially
reflect differences in the natural
response times (e.g. generation
times), leading to differences in the
density of points on the attractor
(Table 1), with shorter generation
times producing denser attractors;
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Fig. 1. Effect of data availability and time series length on nonlinearity detec-
tion. (a) Proportion of taxa identified as significantly nonlinear as a function of
data availability (number of nonzero values). Numbers above each bar repre-
sent the number of taxa in that bin. (b) Proportion of taxa identified as signifi-
cantly nonlinear as a function of time series length. Each bar corresponds to
575 subsamples of a specified length created by generating 25 subsamples 

from each of the 23 time series with the greatest data availability
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however, they could also reflect exogenous effects,
such as environmental drivers, that are not captured
in the abundance time series and may therefore
need to be included explicitly in forecast models
(see Dixon et al. 1999, Deyle et al. 2013, and Har-
ford et al. 2017 for examples).

Finally, we note that in addition to leave-one-out
cross validation, for the 23 taxa with the highest data
availability, nearly identical out-of-sample prediction
results are obtained with 2-fold cross validation.
Here each half of the data series is used to predict the
other half, and the predictions for the entire series
are combined to calculate performance (Fig. 3). This
demonstrates the robustness of the cross validation
results and shows that the dynamics are stationary or
essentially the same in both halves (Sugihara & May
1990).

Documenting that ecosystems are
capable of ex hibiting predictability
and that their dynamics are nonlinear
is of considerable interest to agencies
involved in data collection and to re -
source managers who must use those
data. The reasonable expectation is
that predictive models will improve
with more data. However, if a model is
a poor description of a system, no
amount of additional data will im prove
predictability (MacNally 2000, DeAn-
gelis & Yurek 2015). For example, fish-
ery stock prediction has been a difficult
challenge despite continual model re-
finements and new data inputs (Ward
et al. 2014, Schindler & Hilborn 2015,
Ye et al. 2015). The limitations of cur-
rent ecosystem models to predict out of

sample may arise in part from observational error in
the data. However, we believe that a more significant
problem is the mismatch between the traditional as-
sumptions of equilibrium and linearity (DeAngelis &
Waterhouse 1987) and the increasing observations
that many ecological systems are not in equilibrium
but are demonstrably nonlinear (Fromentin & Powers
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Taxon                                                                               ρ

Oithona sp.                                                                    0.71
Total copepods                                                              0.70
Para-pseudocalanus sp.                                                0.67
Acartia sp.                                                                      0.58
Chaetognaths                                                                0.54
Chlorophyll index                                                         0.53
Calanus I−IV                                                                 0.48
Calanus finmarchicus                                                   0.44
Fish larvae                                                                     0.34
Calanus helgolandicus                                                 0.34
Temora longicornis                                                       0.31
Total hyperiids                                                              0.29

Table 1. Taxa whose time series have more than 600
nonzero values and the Pearson correlation coefficient (ρ) 

from nonlinear prediction (from Fig. 2a)
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Fig. 2. Effect of data availability and time series length on predictability (ρ) for
(a) each time series (circles) and (b) different lengths of subsampled time series.
Each boxplot corresponds to 575 subsamples as in Fig. 1b. Bold lines: median; 

boxes: interquartile range; whiskers: minimum and maximum values
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Fig. 3. Comparison of the predictive skill (ρ) for the 23 spe-
cies with the highest data availability under 2 different cross
validation schemes: (1) 2-fold cross validation, where each
half of the data series is used to predict the other half, and
the predictions for the entire series are combined to calcu-
late performance; and (2) leave-one-out cross validation.
The 2 schemes produce results that do not differ signifi-
cantly from each other (p < 0.05, paired t-test), showing that
the dynamics are stationary in both halves of the data. Box-
plots show the distribution of predictability values. Bold
lines: median; boxes: interquartile range; whiskers: mini-

mum and maximum values
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2005, Hsieh et al. 2005, Glaser et al. 2014). Although
short time series can be challenging to the identifica-
tion of nonlinear dynamics and construction of empir-
ical models, there have been several recent advances
on this front (Hsieh et al. 2008, Glaser et al. 2011,
Clark et al. 2015, Ye & Sugihara 2016).

Data-driven approaches where causal variables
and functional relationships are determined empiri-
cally may offer a viable alternative to inductive equa-
tion-based approaches. For example, Sugihara et al.
(2012) introduce an EDM method for using time
series to identify the causal drivers of ecosystem dy -
namics, and several others (Dixon et al. 1999, Deyle
et al. 2013, Harford et al. 2017) provide examples of
incorporating these environmental effects into EDMs
to forecast future ecosystem states — including ap -
parently random events such as red tides (McGowan
et al. 2017). These approaches do not rely a priori on
hypothesized equations but instead infer relation-
ships deductively as they appear in the data. With
continued monitoring and longer time series, the
ability of such techniques to describe nonlinear be -
havior will improve our understanding of ecological
mechanisms, where unraveling the interdependence
between environmental factors and endogenous
population dynamics is certain to be critical for man-
aging ecosystems in the context of climate change
(Pershing et al. 2015). Thus, as predictive data-driven
approaches continue to gain traction, investments in
long-term data collection will surely yield long-term
payoffs.

CONCLUSIONS

The CPR at SAHFOS is a premiere example of how
continuous long-term projects help to create new
perspectives in ecology. By providing robust, long-
term datasets, this program captures variability in
species abundance that occurs on temporal scales
ranging from interannual cycles to multidecadal
shifts (Barton et al. 2003). Furthermore, SAHFOS, in
collaboration with partners from around the globe, is
now involved in conducting plankton counts in
nearly every major ocean basin on earth. In addition
to providing a long-term description of population
dynamics, these spatially broad environmental moni -
toring programs can provide regional insights into
global problems. Beyond the common sense value of
collecting these data, our analyses provide a quanti-
tative justification for continued support of these
 programs. These data are critical for predictability
and understanding, which are particularly important

given increasing threats to global ecosystems, such
as human exploitation pressures and climate change
(Halpern et al. 2008).

Data archive. The data supporting the results of this study
are available at http:// 192. 171. 193. 159/ doi-library/ data-
for-zooplankton-and-phytoplankton-from-the-1)-southern-
north-sea-and-2)-the-irish-sea. aspx.
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