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Abstract

Purpose—To quantify APT and NOE contributions to in vivo chemical exchange saturation 
transfer MRI signals in tumors.

Theory and Methods—Two-pool (free water and semi-solid protons) and four-pool (free 
water, semi-solid, amide, and upfield NOE-related protons) tissue models combined with the 
super-Lorentzian lineshape for semi-solid protons were used to fit wide and narrow frequency-
offset magnetization-transfer (MT) data, respectively. Extrapolated semi-solid MT signals at 3.5 
and −3.5 ppm from water were used as reference signals to quantify APT and NOE, respectively. 
Six glioma-bearing rats were scanned at 4.7 T. Quantitative APT and NOE signals were compared 
at three saturation power levels.

Results—The observed APT signals were significantly higher in the tumor (center and rim) than 
in the contralateral normal brain tissue at all saturation powers, and were the major contributor to 
the APT-weighted image contrast (based on MT asymmetry analysis) between the tumor and the 
normal brain tissue. The NOE (a positive confounding factor) enhanced this APT-weighted image 
contrast. The fitted amide pool sizes were significantly larger, while the NOE-related pool sizes 
were significantly smaller in the tumor than in the normal brain tissue.

Conclusion—The EMR provides a relatively accurate approach for quantitatively measuring 
pure APT and NOE signals.
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INTRODUCTION

Chemical exchange saturation transfer (CEST) imaging is an important molecular MRI 
technique that can generate contrast based on the proton exchange between bulk water 
protons and solute labile protons, or water protons bound to the solute (1–5). Using CEST 
MRI, endogenous low-concentration biomolecules with water-exchangeable labile protons 
(6–10); exogenous-specific molecular imaging agents (11–15); as well as tissue physico-
chemical properties, such as pH (16) and temperature (17), can be sensitively detected 
indirectly through the bulk water signal used for clinical imaging. Notably, amide proton 
transfer (APT) imaging, a variant of CEST MRI, is sensitive to the interaction between 
water protons and amide protons (−NH) in the peptide bonds of mobile proteins and 
peptides in tissue (6, 16). The proton transfer ratio for the amide protons (APTR), with 
respect to the water signal intensity, can be quantified by (18):

[1]

where α is the radiofrequency (RF) saturation efficiency, kws and ksw are the proton 
exchange rates (that depend on tissue pH (19)) from the free water proton pool (w) to the 
amide proton pool (s) and vice versa, R1w is the longitudinal relaxation rate of water, square 
brackets ([…]) denote the concentration, and tsat is the length of the saturation time. Thus, 
APT imaging has been exploited to image tissue acidosis due to acute cerebral ischemia in 
animals and humans (20–23). Moreover, APT has been proposed as a means to detect 
malignant gliomas (24–27) and other cancers (28–30), as well as to differentiate radiation 
necrosis from active tumors (31–33). An increased APT signal in tumors may be attributable 
to increased saturation transfer due to the relatively large mobile cellular protein and peptide 
content ([amide protons]) and some other factors (34).

Technically, CEST imaging utilizes selective RF irradiation to saturate water-exchangeable 
solute labile protons. However, the RF irradiation to saturate the labile protons may induce 
direct water saturation (DS) and conventional magnetization transfer (MT) from semi-solid 
macromolecules, thus complicating the CEST measurement. The mixed CEST, DS, and 
conventional MT effects are usually displayed in a Z-spectrum (water saturation, Ssat/S0, as 
a function of transmitter frequency offset relative to water, where Ssat and S0 are the imaging 
signal intensities measured with and without RF saturation, respectively). To remove the 
contamination from the DS and conventional MT effects, magnetization transfer ratio (MTR 

= 1 − Ssat/S0) asymmetry analysis has been introduced. For APT imaging, the APT-weighted 
(APTw) signal is thus obtained by subtracting the MTR at −3.5 ppm upfield, with respect to 
water, from that at +3.5 ppm (16):

[2]

However, the presence of the confounding nuclear Overhauser enhancement (NOE) effect in 
the saturated image acquired at −3.5ppm upfield, namely, Ssat(−3.5ppm), has complicated 
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the interpretation of the APTw signal quantified using MTR asymmetry analysis (Eq. [2]) 
(24). The NOE has been highly useful in NMR spectroscopy and has recently attracted much 
attention in the field of CEST imaging (4, 8, 35–40). Note that the NOE and chemical 
exchange are also two important conventional semi-solid MT pathways (41, 42).

Several alternative image analysis (namely, non-MTR asymmetry analysis (36, 39, 43–46)) 
and acquisition methods (47, 48) have been introduced to measure APT and NOE signal 
contributions. For example, Jin et al. (36) used the average of two boundary images acquired 
at 3 and 4 ppm to estimate the reference image for APT*, and that at −2 and −5 ppm to 
estimate the reference image for NOE* (the three-offset method). Zaiss et al. (43) and 
Desmond et al. (39) used a sum of multiple Lorentzian shapes, each with a specific 
amplitude, width, and frequency offset, to analyze CEST spectra. Although promising, these 
approximate methods are obviously limited to where the CEST and NOE dips can be well 
defined in the Z-spectrum, typically at a high B0 magnetic field (>7 T) or at a low saturation 
power level (<1 μT). Jones et al. (44) also used the fitted Lorentzian lineshape to estimate 
the APT and NOE reference signals in low-power pulsed CEST experiments, with negligible 
conventional MT effects. However, the use of very low RF power (~0.5 μT) may not be 
optimal for APT imaging. Therefore, a new method with which to more accurately measure 
APT and NOE signals in vivo is essential.

In this study, we investigated the mixed effects of conventional MT, APT, and NOE using a 
fitting approach with a multiple-pool proton exchange model, and quantified the APT and 
NOE signals using extrapolated semi-solid MT reference (EMR) signals. We took a rat 
tumor model at 4.7 T as an example. Three sets of Z-spectra with different offset ranges 
were acquired and analyzed. The quantitative APT (APT#) and NOE (NOE#) maps, 
calculated by our new approach, were compared with the commonly used MTRasym and 
several quantitative multi-parametric MRI maps in the tumor-bearing rat brain. The 
dependence of APT# and NOE# on the RF saturation power was also investigated.

THEORY

General Consideration

Many recent CEST studies have clearly showed that the Z-spectra in tissues have multiple 
CEST and NOE peaks (35–40), and the center of the Z-spectra is shifted slightly upfield 
from the water signal (49, 50), causing a negative background signal for asymmetry analysis 
of Z-spectrum (24). Biological tissues may consist of various molecules with multiple 
mobility ranges: semi-solid (T2 ~ 10 μs), mobile (T2 ~ 10 ms), and relatively less mobile (T2 

~ 0.1–1 ms; namely, between semi-solid and mobile). It is important to note that only 
mobile biomolecules can result in a well-defined APT and NOE signals in the Z-spectrum, 
and that these relatively mobile biomolecules are associated with a large direct saturation 
width of up to tens of ppm (51). The observed conventional MT asymmetry around the 
water signal can be understood by two equivalent hypotheses:
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The first one assumes that the conventional semi-solid MT effect is asymmetric, a 
phenomenon that results from the chemical shift center mis-match between bulk water and 
semi-solid macromolecules in tissue (50). This essentially assumes that some relatively less 
mobile biomolecules are included in the “semi-solid” MT pool. The second assumes that the 
conventional semi-solid MT effect is symmetric, due to the fact that true semi-solid protons 
have an extremely large direct RF saturation width. Then, the upfield NOE effects of 
aliphatic and olefinic protons of relatively less mobile biomolecules apparently shift the 
center of the Z-spectrum, leading to the asymmetry of the observed Z-spectrum (51). This 
current study is based on the second assumption, and further adds mobile and relatively less 
mobile biomolecules to be a single NOE-related pool.

Conventional MT Model

The theoretical description of the conventional MT effect in tissue has been well established 
using a two-pool model based on the modified Bloch equations, in which the free bulk water 
proton pool (w) is coupled to the semi-solid macromolecular proton pool (m) through 
magnetization exchange (52, 53). Henkelman et al. (52, 53) have derived a mathematical 

expression for the steady-state longitudinal magnetization of the free pool , which has 

the equilibrium magnetization :

[3]

where R is the fundamental rate constant describing the magnetization exchange between the 
two proton pools; T1w and T2w are the longitudinal and transverse relaxation times of the 
free water proton pool, respectively; T1m and T2m are the longitudinal and transverse 

relaxation times of the semi-solid macromolecular proton pool, respectively; and  is the 
fully-relaxed equilibrium magnetization value associated with the semi-solid 
macromolecular pool. The RF absorption rate, Rrfm, is the loss rate of the longitudinal 
magnetization by the semi-solid pool due to the off-resonance RF irradiation of amplitude 
ω1 and frequency offset Δ. The RF absorption rate is dependent on the absorption lineshape, 

gm(2πΔ), through the relationship . In the MT model description for 
tissue, a super-Lorentzian lineshape for the semi-solid macromolecular protons has been 
shown to be more suitable than a Lorentzian or Gaussian lineshape (54, 55):

[4]

The conventional MT signal expression described by Eq. [3] can be uniquely determined in 

terms of five combined model parameters (52, 53), namely, R, T1m, T2m, , and 
T1w/T2w. The parameter T2m is included in the absorption rate Rrfm, as described above in 
Eq. [4]. These five model parameters can be obtained by fitting the observed MT signal to 
the reduced MT expression, and EMR spectra (ZEMR) can then be obtained with the 
corresponding ω1 and the offset range Δ.
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The relationship between the water longitudinal relaxation times without (T1w) and with 

( , namely, experimentally observed) the effect of the semi-solid pool can be described 
using the following expression (52, 56):

[5]

Therefore, the independent measurement of  from a simple inversion recovery MRI 
experiment allows the longitudinal and transverse relaxation times (T1w and T2w) of the bulk 

water pool, and the fully relaxed equilibrium magnetization ( ) associated with the semi-
solid macromolecular pool, to be uniquely determined. These parameters can be 
incorporated into the four-pool model as prior known information, reducing the over-fitting 
errors.

Four-Pool APT and NOE Model

APT imaging can be described well by the modified Bloch equations with exchange terms 
(18, 37, 45, 57–60). To describe the in vivo proton exchange processes between the free 
water proton pool (w), the semi-solid macromolecular proton pool (m), the amide proton 
pool of mobile proteins and peptides (s1), as well as the upfield NOE-related proton pool 
(s2), a three- or four-pool exchange model is needed (37, 45). Assuming that the amount of 
exchange between three relatively small pools m, s1, and s2, compared with the amount of 

exchange with free water protons, is negligible, the magnetization in each pool ( , i = 
w, s1, s2, m) in the presence of exchange and RF irradiation can be described as follows:

[6]

[7]

[8]

[9]

[10]

[11]

[12]
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[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

where kij represents the proton exchange rate from pool i to pool j; T1i and T2i are the 
longitudinal and transverse relaxation times of pool i, respectively; ω1 is the RF saturation 

amplitude; ω is the RF saturation frequency; ωi is the resonance frequency of pool i; and 
is the equilibrium magnetization of pool i. The lineshape of pool m can be obtained from Eq. 
[9] and Eq. [13] by assuming a steady-state condition and excluding the transverse exchange 
terms of pool:

[26]

Inserting Eq. [26] into Eq. [17], we obtain:
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[27]

Finally, the four-pool model can be built by replacing Eq. [17] with Eq. [27] (using the 
super-Lorentzian lineshape) to model the MT effect of macromolecular protons. The 10-
dimensional coupled linear differential equations can be rewritten in a matrix form as:

[28]

The analytical solution of Eq. [28] is:

[29]

APTw Imaging Signal and Contrast

For APT imaging, under zero-order approximation, one has (16):

[30]

where  is dominated by the upfield intramolecular and intermolecular NOE effects 
of various polypeptides, lipids, and metabolites in tissue, continuously distributed from 
mobile to semi-solid, which can assumingly be quantified by two NOE-based MT ratios 
with different origins (NOER = NOERmobile + NOErelatively mobile). The latter component, 
originated from those relatively mobile biomolecules, was previously thought to be the 
inherent MTRasym of the semi-solid conventional MT effect (24, 50). The MTRasym(3.5ppm) 
images calculated by Eq. [30] are usually called APTw images (24). Further, the APTw 
image contrast between tumor and contralateral brain tissue can be described by (51):

[31]

Based on Eq. [30], the absolute APT-MRI signal intensity quantified by MTRasym(3.5ppm) 
is reduced by the NOE effect. However, if the NOE is smaller in tumor than in contralateral 
brain tissue (an image contrast opposite to that of the APT effect), the APTw image contrast 
between tumor and contralateral brain tissue would increase due to the presence of the NOE. 
Thus, the NOE is actually a positive confounding factor in APTw image contrast in the 
tumor, based on an MTR asymmetry analysis.
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METHODS

MRI Experiments

The MR imaging experiments were conducted on a horizontal bore Bruker 4.7 T Biospec 
animal imager, with a 7 cm inner diameter coil for RF transmission and a 2.5 cm surface coil 
for signal reception, which were actively decoupled. Six human glioblastoma-bearing adult 
Fisher 344 rats were scanned at 45 days post-implantation. First, high-resolution T2-
weighted images in the coronal plane were acquired with a fast spin echo sequence, using 
the following parameters: repetition time (TR) = 3000 ms; echo time (TE) = 64 ms; average 
of excitations (NEX) = 2; matrix size = 192 × 192; FOV = 32 × 32 mm2; slice thickness = 
1.5 mm; and five slices. Then, several quantitative MRI parameters were acquired, including 
T1, T2, isotropic apparent diffusion coefficient (ADC), and cerebral blood flow (CBF). The 

longitudinal relaxation time, , was mapped using an inversion recovery spin-echo echo-
planar imaging (EPI) sequence, with seven inversion recovery times = 0.05, 0.3, 0.6, 1.2, 
1.8, 2.5, and 3.5 s; a pre-delay time = 3 s; TE = 30 ms; matrix size = 64 × 64; and NEX = 4. 

The transverse relaxation time, , was mapped using a spin-echo EPI sequence, with 
seven TEs = 30, 40, 50, 60, 70, 80, and 90 ms; TR = 3 s; matrix size = 64 × 64; and NEX = 
4. ADC maps were estimated using the conventional pulsed-gradient spin-echo diffusion 
sequence, with b-values = 0, 166.7, 333.3, 500, 666.7, 833.3, and 1000 s/mm2; TR = 3 s; TE 
= 80 ms; matrix size = 64 × 64; and NEX = 8. CBF maps were collected using the arterial 
spin labeling technique (21), with TR = 6 s; TE = 30 ms; matrix size = 64 × 64; and NEX = 
16. The label images were acquired at a distance of 20 mm away from the imaging slice.

CEST image data were obtained using a fat-suppressed spin-echo pulse sequence (consisting 
of a Gaussian-shaped, slice-selective excitation pulse of 1 ms and a Gaussian-shaped, 
chemical shift-selective refocusing pulse of 4 ms, together with gradient dephasing, as used 
in our previous studies (61)), with a long continuous-wave RF saturation pulse and a single-
shot EPI readout (TR = 10 s; TE = 30 ms; matrix size = 64 × 64 mm2; FOV = 32 × 32 mm2; 
slice thickness = 1.5 mm; and RF saturation time = 4 s). Three sets of Z-spectra with 26 
frequency offsets were acquired to quantify conventional MT, NOE, and APT effects, using 
three RF saturation powers (0.5, 1.3, and 2.1 μT) and NEX = 1: (1) Z21~−21ppm: off (S0 

image for control), 21 to −21 ppm at intervals of 1.75 ppm for MT modeling with the super-
Lorentzian lineshape; (2) Z6~−6ppm: off, 6 to −6 ppm at intervals of 0.5 ppm for the 
quantification of NOE and APT effects; and (3) Z1.2~−1.2ppm: off, 1.2 to −1.2 ppm at 
intervals of 0.1 ppm for water saturation shift referencing (WASSR)-based B0 

inhomogeneity corrections (62). In addition, high signal-to-noise ratio APT, using two 
frequency offsets (±3.5 ppm), and MTR(10ppm) images were acquired (NEX = 16), after 
the slab shimming (thickness 6 mm) and scanner transmitter frequency adjustment. The total 
scan time was about 90 min for each animal. Animal care throughout the experimental 
procedures in the study was in accordance with institutional guidelines.

Data Processing and Fitting Procedure

All data processing was performed using Interactive Data Language (IDL, Version7; Exelis 
Visual Information Solutions, Inc., Boulder, CO) or MATLAB (The MathWorks, Inc., 
Natick, MA). Figure 1 shows the flow chart of the data processing procedures. First, the 
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WASSR method with Z1.2~−1.2ppm at 0.5 μT was used to correct for B0 field inhomogeneity 
effects (62). All other Z-spectra (Z21~−21ppm and Z6~−6ppm) at three power levels were 
interpolated and aligned correspondingly on a pixel-by-pixel basis along the direction of the 
offset axis. Then, the wide-offset data were fitted to Henkelman’s two-pool MT model with 
the super-Lorentzian lineshape. Data points of small frequency offsets between 7 and −7 
ppm in B0-corrected Z21~−21ppm were excluded (Z′21~−21ppm) to avoid APT and most NOE 
contributions prior to conventional MT modeling. The four independent MT model 

parameters (R, T2m, , T1w/T2w) were obtained by fitting all modified Z′21~−21ppm 

data acquired from three different power ω1 values simultaneously to the two-pool MT 
model described in Eq. [3], based on the nonlinear least-squares fitting approach, which 

implemented the Levenberg-Marquardt algorithm. In this procedure,  was 
conventionally normalized to 1. T1m was set as a constant value of 1 s because it could not 
well determined from fits (52, 56). The super-Lorentzian function, characterized by one 
parameter T2m, was evaluated by the numerical integration. The quality of the estimated MT 
model parameters was evaluated by the root of the sum of the squared differences between 
the fitted and experimental data, and the χ2 goodness-of-fit metric. Finally, ZEMR in an 
offset range from 6 ~ −6 ppm was obtained, and APT# and NOE# were calculated.

In addition, a four-pool APT and NOE exchange model was also analytically solved with the 
a priori fitted two-pool MT information (obtained in combination with an independent MRI 

measurement of ), and the parameter fitting was performed using the minimum norm 
estimate. Our model fitting approach substantially reduced the risk of over-fitting and the 
uncertainties of direct four-pool model parameter estimates. In this study, this fitting 
procedure was based on regions of interest (ROIs).

 was fitted using .  was fitted using . The average 
ADC of water, ADCav = Trace(D)/3, was fitted by I = I0e−b·ADCav. The CBF map was 
reconstructed from images with and without labeling (21). These quantitative MR 

parameters were fitted ( , and ADC) or processed (CBF) on a pixel-by-pixel basis. 
To compare the MT, APT, and NOE parameters in the tumor, three ROIs enclosing the 
normal tissue, the tumor center, and the tumor rim were analyzed. These ROIs were 
carefully drawn on the ADC map. Tumor volumes were manually measured as the sum of 
all tumor voxels in all slices on the high-resolution T2-weighted images. Data in graphs and 
tables are presented as mean ± SE. Statistical analysis was performed using a one-way 
ANOVA, followed by Tukey’s post-hoc test. Statistical significance was considered at p < 

0.05.

RESULTS

Figure 2 shows the average two-pool MT fitted results from normal tissue, tissue in the 
tumor center, and tissue in the tumor rim (n = 6), with three RF saturation power levels. The 
super-Lorentzian lineshape was used to fit the semi-solid MT pool. The results show that the 
two-pool MT model accurately predicts the behavior of the semi-solid MT system for wide 
frequency offsets, yielding a close fit for the modified Z′21~−21ppm data, excluding 7 to −7 

ppm. Table 1 summarizes the fitted (R, T2m, , and T1w/T2w) and derived (T1w, T2w, 
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and ) MT model parameters. In addition, Supporting Table S1 compares the difference 
between these parameters fitted from Z21~−21ppm and Z′21~−21ppm data. Basically, these 
model parameters (except T2m) were significantly different between the normal tissue and 

the tissue in the tumor center or rim (p < 0.05). Particularly,  of the normal brain tissue 
was significantly higher than those of the tumor center and tumor rim (p < 0.05).

Figure 3 compares the measured Z6~−6ppm data, average four-pool fitted results using the 
Z6~−6ppm data, and EMR curves (namely, ZEMR) fitted with the Z′21~−21ppm data from the 
contralateral normal brain, the tumor center, and the tumor rim for three RF saturation 
power levels. Supporting Fig. S1 further shows the simulated Z-spectra of the contralateral 
normal brain tissue, the tumor center, and the tumor rim with the two-pool semi-solid MT, 
three-pool, and four-pool models. The results show that the four-pool APT and NOE 
exchange model fitted the Z6~−6ppm behavior very well. Notably, the average ZEMR curves 
in three ROIs for all RF power levels overall showed higher signal intensities than the 
experimentally measured Z-spectra and the four-pool fitted curves for all frequency offsets 
close to water. The difference between the experimental Z-spectra and ZEMR curves clearly 
indicated the presence of the APT effects peaked at roughly 3.5 ppm downfield from water 
and the presence of the NOE effects primarily appeared at roughly −2.5 to −5 ppm upfield 
from water. The magnitude of these downfield APT and upfield NOE signals were 
dependent on RF saturation power and brain tissue type. Table 2 summarizes all four-pool 
fitted parameters for three ROIs. No significant differences were observed in both exchange 
rates and T2 relaxation times of the APT- and NOE-related proton pools between the normal 
tissue, the tumor center, and the tumor rim. As expected, the APT-related pool sizes of the 
tumor center and the tumor rim were significantly larger than that of the normal tissue, while 
the NOE-related pool sizes of the tumor center and the tumor rim were significantly smaller 
than that of the normal tissue.

Figure 4a–c shows the quantitatively measured APT# and NOE# signal features as a function 
of frequency offsets obtained from the contralateral normal tissue, the tumor center, and the 
tumor rim at three RF saturation powers. Several important results can be observed. (i) The 
downfield APT# signals of the tumor center and the tumor rim were both significantly 
higher than those of the normal tissue across all power levels (p < 0.05). (ii) The upfield 
NOE# signals were generally lower in the tumor center and rim than in the normal tissue, 
which reached statistical significance (p < 0.05) in the tumor center at 1.3 μT. However, the 
NOE# signals seemed higher in the tumor center than in the normal tissue at 0.5 μT, even 
though the difference was not statistically significant. (iii) The RF power dependencies of 
APT# and NOE# signals can be seen clearly. The APT# signals were significantly smaller 
than the NOE# signals at the lower RF power level in all ROIs (0.5 μT; p < 0.05), but 
became significantly larger than the NOE# signals at the larger RF power levels for the 
tumor center and the tumor rim (≥1.3 μT; p < 0.05; except the normal tissue). The different 
power dependence of the APT# and NOE# peaks may be due to that fact that the amide 
proton exchange rate is faster than the NOE-related proton exchange rate (Table 2), resulting 
in a relatively higher optimal saturation power level for APT# than for NOE# (36). Figure 
4d–f shows the corresponding simulated APT# and NOE# signal features obtained from the 
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contralateral normal tissue, the tumor center, and the tumor rim at three RF saturation 
powers, which were very similar to the results from the experimental data.

Figure 5 shows a comparison of the average Z-spectra and MTRasym spectra of the normal 
tissue, the tumor center, and the tumor rim at three RF saturation powers. As observed 
before (51), the MTRasym(3.5ppm) values for all ROIs were negative at most frequency 
offsets due to larger upfield NOE effects at the lower RF power (0.5 μT). At the relatively 
higher RF saturation powers (≥1.3 μT), however, the downfield APT effects became more 
pronounced, and the MTRasym(3.5ppm) increased and became positive for the tumor center 
and rim.

Figure 6 shows the image contrasts of APT#, NOE#, and MTRasym(3.5ppm) between the 
tumor center or the rim and the contralateral normal brain tissue. It was found that (i) the 
downfield APT# image contrasts between the tumor center or the rim and the contralateral 
normal tissue were all positive at the three RF saturation power levels (p < 0.05). (ii) 
Interestingly, the upfield NOE# image contrasts between the tumor center or the rim and the 
contralateral normal tissue were negative at the three RF saturation power levels, except that 
between the tumor center and the contralateral normal tissue at 0.5 μT (which was positive). 
(iii) The absolute APT# image contrasts between the tumor center or the rim and the 
contralateral normal tissue were consistently larger than corresponding absolute NOE# 

contrasts at the three RF saturation powers (p < 0.05). (iv) The MTRasym(3.5ppm) image 
contrasts between the tumor center or the rim and the contralateral normal tissue were all 
positive at the three RF saturation power levels (p < 0.05). Based on Eq. [31], these 
MTRasym(3.5ppm) image contrasts were all dominated by the APT# image contrasts. The 
calculated MTRasym(3.5ppm) images are called APTw images (24).

Figure 7 shows quantitative multi-parametric MRI maps of a representative tumor-bearing 
rat. Tumor volumes for all six rats were roughly estimated to be 111.4 ± 48.4 mm3. It can be 
seen that the tumor was hyperintense on T1, T2, and ADC maps and hypointense on blood 
flow and MTR(10ppm) maps, compared to the contralateral normal brain tissue. Notably, 
the tumor was hyperintense on MTRasym(3.5ppm) images and APT# maps, but seemingly 
hypointense on NOE# maps. Consistent with Fig. 4, the APT# signals in all regions were 
lowest at the RF saturation power of 0.5 μT and seemingly peaked at 1.3 μT, while the 
NOE# signals were lowest at 2.1 μT. Consistent with Fig. 5, the MTRasym(3.5ppm) signals 
in all ROIs were highest at the 2.1 μT.

DISCUSSION

In this study, we have introduced a novel EMR approach based on Henkelman’s two-pool 
MT model with a super-Lorentzian lineshape to quantify APT and NOE signals (APT# and 
NOE#). It is well known that the two-pool system, combined with the super-Lorentzian RF 
absorption lineshape for semi-solid protons, can describe the behavior of the conventional 
MT signal as a function of RF saturation frequency and amplitude with a good quality of fit. 

We fitted the model parameters (R, T2m, , T1w/T2w) with the wide-offset 
experimental data, namely, Z′21~−21ppm, excluding the data points of small frequency offsets 
between 7 and −7 ppm. Thus, APT and most NOE contributions should be minimized in our 
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MT modeling, and the obtained ZEMR curves in an offset range (6 ~ −6 ppm) should include 
only DS and semi-solid MT effects. Thus, the EMR approach has the potential to be an 
important and accurate CEST-MRI quantitative technique. Based on Fig. 3, on the contrary, 
when the average of two boundary images acquired at 3 and 4 ppm was used as the 
reference image for APT*, and the average acquired at −2 and −5 ppm was used as the 
reference image for NOE* (the three-offset method (36)), the obtained APT* and NOE* 

would be underestimated in all cases.

According to Eq. [30] and Fig. 5d–f, the APTw image signal quantified by 
MTRasym(3.5ppm) was reduced by the NOE effect, and even became negative. However, 
because the NOE effect had an image contrast opposite to the APT effect in the whole tumor 
(center and rim), the APTw image contrast between the tumor center and rim and 
contralateral brain tissue increased due to the presence of the NOE (Eq. [31], Fig. 6). Thus, 
the NOE was actually a positive confounding factor in APTw image contrast in the tumor, 
based on an MTR asymmetry analysis. This study has clearly shown that MTRasym(3.5ppm) 
is a useful and reliable metric for APT-MRI. Indeed, several recent human studies have 
shown that the APTw imaging signal quantified by MTRasym(3.5ppm) is a powerful clinical 
indicator of cancers (24–29) and strokes (22, 23).

Consistent with our two-pool MT fitted results (Table 1), Quesson et al. previously observed 

that the fitted value significantly increased, and the , T1w/T2w, and  values 
significantly decreased in C6 tumor, compared to normal tissue (63). Our fitted parameters 
had relatively low values, presumably due to differences in the sequence parameters and the 
tumor model. Further, the fitted amide proton exchange rates by the four-pool APT and 
NOE model (Table 2) were consistent with the previous MRS study (16), and, as expected, 
showed no significant difference between the tumor and normal tissue. Notably, as expected, 
the semi-solid MT pool sizes of the tumor center and rim were significantly smaller than that 
of the normal tissue (Table 1), while the mobile APT pool sizes of the tumor center and rim 
were significantly larger than that of the normal tissue (Table 2), consistent with the 
MTR(10ppm) and APT# measurements (Fig. 7). It was reported recently (64) that, after 
corrections for spillover, MT, and T1w effects, the corrected APT signal in 9L tumor was not 
significantly different from that in normal brain tissue (AREXtumor ≈ AREXnormal), 
consistent with the biochemical measurements. However, the total protein (mobile and semi-
solid) contents measured by the Bradford and bicinchoninic acid assay (BCA) methods 
should not be used to elucidate APT contrast mechanisms in biological tissues which, in 
principle, result from mobile proteins and peptides only. Indeed, the water content is usually 
higher, and T1w is enhanced in tumor. However, it is extremely important to understand that 
these two changes are mostly compensated for in many diseases in the APT measurements 
(16). Therefore, assessing the influence of the water longitudinal relaxation in vivo on APT 
(and also NOE) imaging should be performed cautiously, and simply multiplying by R1w 

would lead to an erroneous result (64).

Finally, we would like to point out several potential issues in this study. (i) Since the 
conventional semi-solid MT effect is assumed symmetric around the water resonance, and 
both mobile and asymmetric, relatively less mobile biomolecules are combined into a single 
NOE-related pool, the obtained NOE# signals would be larger. (ii) Many previous studies 
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have demonstrated that side-chain amine protons of mobile proteins and peptides (~2 ppm) 
(6, 65, 66), amine protons in glutamate (~3 ppm) (9), and other NOE-related protons (about 
−1.6 ppm) (67) may make contributions to downfield CEST and upfield NOE signals. Thus, 
our measured results for the APT# and NOE# would be overestimated. Future studies are 
needed to fully isolate these sources by modeling systems with even more pools. (iii) A 
four-pool model consisting of semi-solid protons, amide protons (3.5 ppm downfield from 
water), and NOE-related protons (−3.5 ppm upfield from water) was used to quantify APT 
and NOE effects in this study. In Supporting Fig. S2, we compared seven pools [water, 
semi-solid, amide, amine, hydroxyl, NOE-related at −3.5 ppm (including mobile protons and 
asymmetric, relatively less mobile protons), and NOE-related at −1.6 ppm] and four pools 
[water, semi-solid, amide, NOE-related at −3.5 ppm (including mobile protons and 
asymmetric, relatively less mobile protons)]. Our result shows that there are only small 
differences in simulated APT and NOE signals between seven-pool and four-pool fitting. 
Therefore, the four-pool fitting (with the benefits of much fewer free parameters) could still 
give very good APT and NOE results, even though even more pools may definitely be 
useful for the quantification of other CEST signals.

CONCLUSIONS

To quantitatively assess APT and NOE effects in vivo, a new and straightforward fitting 
approach (EMR) has been introduced, which is based on the extrapolated semi-solid MT 
model reference signals. In the initial application, we quantitatively investigated MT, APT, 
and NOE signal features in a rat brain tumor model at 4.7 T. The quantitative results showed 
that the APT# signals were significantly higher in the tumor center or in the rim than in the 
normal tissue at all saturation powers, and were the major contributor to the APTw (namely, 
MTRasym(3.5ppm)) image contrast in the tumor compared to the normal brain tissue. The 
NOE effect is a positive confounding factor for the APTw image contrast, and the NOE 
contrast would be added to APTw. The EMR-based four-pool fitting showed that there were 
no significant differences between the exchange rates of the APT- and NOE-related proton 
pools in the normal tissue, the tumor center, and the tumor rim. The amide proton pool sizes 
of the tumor center and rim were significantly larger than that of the normal tissue, while the 
NOE-related pool sizes of the tumor center and rim were significantly smaller than that of 
the normal tissue. The EMR approach is straightforward and more accurate for 
quantitatively measuring pure APT, NOE, and other CEST signals. The quantitative results 
would provide some insight into the mechanisms of APT and NOE effects in tissue, help to 
establish a ratio-metric for pH measurements (for example, using the CEST signals at 3.5 
and 2 ppm), as well as help to optimize CEST imaging parameters and protocols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Flow chart of data processing procedures for APT# and NOE#. After B0 corrections with 
WASSR, the wide-offset Z′21~−21ppm was fitted to the two-pool MT model with a super-

Lorentzian lineshape, and R, T2m, , and T1w/T2w were determined from the MT 

fitting routine. The fitting could be either ROI-based or pixel-based. Based on 
measured from an independent inversion recovery experiment, T1w could be calculated. This 
information allowed for the calculation of all physical parameters of the two-pool MT 
model. By subtracting experimental data (Z6~−6ppm) or simulated four-pool data from ZEMR 

from the two-pool MT model, APT# and NOE# signals could be obtained. A four-pool APT 
and NOE exchange model can be analytically solved with the fitted MT information.
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Figure 2. 

Average two-pool MT fitted results (solid line) and experimental data (black asterisk) 
obtained from the contralateral normal tissue, the tumor center, and the tumor rim at three 
RF saturation powers (n = 6). The two-pool conventional MT model consisted of bulk water 
protons and semi-solid macromolecular protons. For the accurate semi-solid MT fit, 
Z21~−21ppm data for frequency offsets between 7 and −7 ppm were excluded to remove 

CEST and most NOE effects close to the water resonance. a: Example of ROIs. b–d: Results 
for the contralateral normal brain tissue, the tumor center, and the tumor rim, respectively.
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Figure 3. 

Average ROI-based four-pool fitted results (solid line), experimental data (black asterisk), 
and extrapolated two-pool MT fitted curves (ZEMR, dashed line) from the contralateral 

normal tissue (a), the tumor center (b), and the tumor rim (c) at three RF saturation powers 
(n = 6). The four-pool APT and NOE model consisted of bulk water protons, semi-solid 
macromolecular protons, amide protons, and NOE-related protons. These experimental and 
simulated Z-spectrum features clearly indicated the APT effects peaked at roughly 3.5 ppm 
from water, and the NOE effects primarily appeared at roughly −2.5 to −5 ppm from water.
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Figure 4. 

Experimental (a–c) and simulated (d–f) downfield APT# and upfield NOE# signal features 
obtained from the contralateral normal tissue (black), the tumor center (blue), and the tumor 
rim (red) at three RF saturation power levels of 0.5, 1.3, and 2.1 μT. Experimental results 
(a–c) were obtained by subtracting the experimental measured Z-spectra (asterisks as shown 
in Fig 3) from the ZEMR data (dashed lines as shown in Fig 3). Error bars depict standard 
errors. The APT effects peaked at roughly 3.5 ppm downfield from water, and the NOE 
effects primarily appeared at roughly −2.5 to −5 ppm upfield from water. Simulated results 
(d–f) were obtained by subtracting the four-pool simulated Z-spectra (solid lines as shown in 
Fig 3) from the ZEMR data (dashed lines as shown in Fig 3).
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Figure 5. 

Average Z-spectra (a–c) and MTRasym spectra (d–f) of the normal tissue (black), the tumor 
center (blue), and the tumor rim (red) from six rats at three RF saturation powers. Large 
upfield NOE signals caused large negative MTRasym(3.5ppm) values in all ROIs at the 
lower RF power (0.5 μT) and in the normal brain tissue at the larger RF power levels (≥1.3 
μT).
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Figure 6. 

Average APT#, NOE#, and MTRasym(3.5ppm) image contrasts between the normal tissue 
and the tumor center or the rim (values at the tumor center or the rim – values at normal 
tissue). Error bars depict standard errors. All values are statistically significant (p < 0.05) 
unless otherwise indicated. NS indicates not statistically significant. As described by Eq. 
[31], MTRasym(3.5ppm) image contrasts are mostly attributable to the APT# contribution.
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Figure 7. 

Quantitative MR multi-parametric maps overlaid on a corresponding T2-weighted image for 
a representative tumor-bearing rat (45 days post-tumor implantation).
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