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INTRODUCTION

Retinopathy involves diverse vascular complexity and other 

changes in the neuroretina associated with the pathogenesis 

of many ocular diseases including diabetic retinopathy,[1] 

hypertension,[2] and age-related macular degeneration.[3] 

Once the degree of retinopathic injury can be detected, it will 

be possible to treat and slow down or stop its progression. 

Therefore, the creation of a system with multi-parameter 

diagnosis of retinal structural changes in their early stages 

is a high priority and helpful to investigate the pathogenesis 

and progression of retinopathy.

Recent studies have reported image procedures on 

retinopathies.[4-8] However, none of these methods consider 

more than one feature to classify the retina as either 

healthy or injured. For example, there are studies using 

computer-assisted procedures to measure the caliber of 

retinal blood vessels as a feature of retinopathy,[9-12] and 

most of these procedures are semi-automatic. In addition, 

many of these studies analyzed fundus images, which 

typically lack high resolution. Figure 1 shows a typical 
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mouse fundus fluorescein angiogram image and a mouse 

retinal vasculature trypsin digest image highlighting the 

differences between the resolution of these images.

High-resolution microscopy images of the retinal trypsin 

digest slides allow for quantifying the clinically relevant 

features of the retinal vasculature, the majority of which 

cannot be studied in low-resolution fundus images. 

Wholemount retinal trypsin digest, which is the gold 

standard method for analyzing the diabetic retinal 

vasculature,[13,14] makes it possible to study various 

structural changes such as capillary degeneration, 

vascular cell apoptosis, and microaneurysms.[15] The 

first two abnormalities are correlated with changes 

in retinal vasculature during early stages of diabetes, 

hypertension,[16] and also are seen in mice with bcl-2 

deficiency. The bcl-2 expression plays an important role in 
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regulating apoptosis and angiogenesis, and its deficiency 

is associated with decreased number of vascular cells and 

vascular density in the retina.[17]

We have developed a multi-parameter image cytometry tool 

to quantify the parameters associated with the early stages 

and progression of retinopathic injury during diabetes. 

Using this tool, two different vascular cell types, endothelial 

cells (ECs) and pericytes (PC) can be segmented and the 

number of each cell type quantified and the ratio of EC to 

PC (EC/PC ratio) calculated. Present tool also determines other 

retinal vascular parameters including the number of acellular 

capillaries, vessel coverage, and fractal dimension, all of 

which correlate with progression of diabetic retinopathy.
[18-20] To the best of our knowledge, this is the first time that 

automatic multi-feature quantification of diabetic retinopathy 

and vascular changes in retinal trypsin digests has been 

presented. Our quantification method measures subtle retinal 

vascular changes, which are markers of early microvascular 

dysfunction during diabetes. Such developments will open 

the door for advanced quantitative assessments, which 

could substantially contribute to a better understanding of 

the pathogenesis and prediction of diabetic retinopathy. 

Moreover, our cytometric tool selects two, three, or all of 

the detected parameters depending on the disease stage, 

and utilizes classification techniques to separate healthy 

and injured retina. This tool allows for automated analysis 

of retinal trypsin digest preparations for high throughput 

assessment of structural retinopathy changes when needed.

MATERIALS AND METHODS

Animal Models

Retinal vascular parameters are compared in diabetic 

mice (6 months and 11 months of age) and bcl-2 deficient 

mice (6 weeks of age) with their corresponding wild 

types (WTs). Retinal trypsin digests from diabetic 

Akita/+	 mice,	 bcl‑2	 deficient	 (bcl‑2−/−)	 mice,	 and	 WT	
mice were prepared and imaged. Akita/+ mice (Jackson 

Laboratory, Bar Harbor, ME, USA) have a mutation in their 

insulin gene, and the heterozygous male (Akita/+) mice 

become diabetic by 4 weeks of age. The retinas from these 

mice show differences in cell distribution and vasculature 

complexity.[21] They also show the growth of acellular 

capillaries, which are vessels that contain no cell nuclei, 

with long-term diabetes. These vessels are very thin and are 

a common hallmark of nonproliferative diabetic retinopathy.

The germline-targeting of the bcl-2 gene and the generation 

of mutant mice have been previously described.[22] Litters 

produced by mating heterozygote mutant mice are 

genotyped by PCR of genomic DNA extracted from tail 

biopsies.	bcl‑2−/−	mice	exhibit	decreased	retinal	vascular	
density during the development of retinal vasculature prior 

to 6 weeks of age. Decrease in retinal vascular density is 

mainly attributed to decreased numbers of ECs and PC in 

the absence of bcl-2.[17] These studies were conducted in 

accordance with the ARVO statement for the Use of Animals 

in Ophthalmic and Vision Research and approved by the 

Institutional Animal Care and Use Committee of University 

of Wisconsin School of Medicine and Public Health.

Microscope Slide Preparations

A total of 14 mice were sacrificed including three 

6‑week‑old	 bcl2−/−	 and	 their	 WT	 littermates,	 two	
6-month-old diabetic Akita/+ and their WT littermates, two 

11-month-old diabetic Akita/+ and their WT littermates. 

Retinas (n = 28) of these six groups of mice were digested in 

a solution of trypsin, which carefully leaves retinal vascular 

network intact while digesting other tissues. Following 

the digestion, retinal vascular preparations are mounted 

on charged slides, dried, stained with periodic acid-Schiff 

and hematoxylin, and coverslipped for virtualization and 

quantitative assessments, as previously described by us.[23]

Microscopy Imaging

The retinal trypsin digests were imaged using an inverted 

fluorescence microscope (Nikon Ti-E) at a magnification of ×40. 

The images were captured using a CCD camera (QImaging EXi 

Aqua) at a resolution of 1392 × 1040 pixels, leading to a scale 

of approximately 0.16 μm per pixel. Red fluorescence filter set 

with excitation at 540 nm (25 nm bandwidth) and the emission 

at 620 nm (60 nm bandwidth) was used. Images obtained 

under these settings captured the vasculature network of 

the retina [Figure 1, middle image]. Besides fluorescence 

imaging, brightfield imaging was performed to capture cell 

nuclei images [Figure 1, bottom image]. Four fields of view 

were chosen from each group of retina. The fields of view 

were chosen from the mid- and far-periphery areas of the 

retinas, one field of view (FOV) in each quadrant of retina. 

The acquired images were saved as TIFF files and analyzed in 

MATLAB (MathWorks, Inc. Massachusetts 01760 USA).

Cell Detection and Count

The image processing program is based on the retinal cell 

image (bright field) to segment two vascular cell types, EC 

and PC. The contours of the cell nucleus in each image are 

determined using the segmentation algorithms shown in 

Figure 2. The gradient of the cell images was calculated, 

and the magnitude of this gradient was considered as 

the segmentation function [Figure 2b, third stage, top 

image]. To avoid over-segmentation,[24,25] the segmentation 

function was modified based on the foreground and 

background markers [Figure 2b, third stage, bottom image]. 

The location of foreground markers (cells) is detected by 

applying a spatial finite impulse response (FIR) filter[26] to 

enhance the object-background contrast[27,28] and simplify 

the subsequent threshold step.
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For image g (x, y), class c (x, y), and spatial FIR filter k (x, y), 

the contrast enhancement procedure is:
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where * is the convolution operator, f (x, y) is the filtered 

image, C
0
, and C

1
, represent the two classes of the filtered 

images, and T is the threshold. T was initialized using Otsu 

method[29] to minimize the weighted sum of the intensity 

variance within each of the pixel classes (C
0
, and C

1
). Then 

using adaptive thresholding,[30] the threshold level for each 

pixel is optimized based on the intensity statistics of a local 

neighborhood surrounding the pixel. Function C (x, y), is a 

two-category linear classifier implemented as a spatial FIR 

filter. Given an ideal classified image i
c 
(x, y) and the input 
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where error e (x, y) is nonzero only when the filter has 

not acquired the contrast defined by (A, B). Minimization 

of e (x, y) results in a filter k (x, y) that yields the best 

contrast for successive thresholding within (A, B). This 

filter emphasizes the objects by amplifying intensity of the 

Figure 1: Fundus camera and microscopy images of retina. Top: A fluorescein 

angiogram of mouse eye using a fundus camera (scale bar represents 

100 μm). Middle and Bottom: Microscopy vasculature and cell nuclei images 

acquired from wholemount retinal trypsin digest used in this study to detect 

changes in retinal vasculature and vascular cells (scale bar represents 15 μm)

Figure 2: (a) Flowchart of the cell segmentation procedure. (b) Output of the segmentation algorithm in different stages

b

a
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pixels within the object while negating pixels outside of the 

objects to create a high foreground-background contrast in 

the image [Figure 2b, second stage, top image].

With the location of the cells detected by thresholding the 

filtered image, a distance transform is calculated for the 

resulting image, in which each pixel value is transformed 

into the distance to the nearest cell. Background markers 

are then computed by applying watershed[30] detection 

on the resultant distance image from the previous stage 

[Figure 2b, second stage, bottom image]. Using SKIZ 

method,[31] watershed detection finds the “ridges” in an 

image, leads to areas where the distance to the nearest 

cell is maximal. The resulting background markers are the 

lines that separate the image into individual cells while 

maintaining the maximum distance between any line and 

the nearest cell. The segmentation function is then modified 

so that only its regional minima occur in the foreground and 

background markers [Figure 2b, third stage, bottom image]. 

At this stage, the watershed transform[30] of the modified 

segmentation function was computed which results in a 

binary mask containing the borders of the cells [Figure 2b, 

last stage].

Calculation of the Endothelial Cells to Pericytes 
Population Ratio

Nuclear morphology was used to distinguish between PCs 

and ECs. PCs have a round nuclei and protuberant position, 

whereas ECs have a more elliptical shape. Since PC is more 

round, the ellipticity of the cell is used as a parameter to 

determine whether a cell is EC or PC. In short, the diameter 

of the cell was measured for each pixel in the cell border 

by determining the distance between the pixel and a pixel 

exactly half way around the border of the cell. The ratio 

of the largest diameter to the shortest was then stored 

as the ellipticity of the cell. Cells with ellipticity >2 were 

categorized as EC, and all other cells were categorized as 

PC. The threshold value of 2 is found empirically to best 

correlate with the results of expert analysis.

To evaluate the accuracy of the proposed nuclei 

segmentation and cell type determination, sixteen FOVs of 

four retinas from 11-month-old WT mice were considered 

that covered over 1000 nuclei. Since there is no ground 

truth for the segmentation, manual evaluation was used as 

a benchmark, and we compared the automatic approach to 

this manual benchmark for accuracy counts [Table 1].

Acellular Capillary Detection and Count

The number of acellular capillaries is another parameter of 

interest. These are also referred to as ghost vessels that are 

a sign of later nonproliferative complications of diabetes. 

Acellular capillaries are those blood vessels, which have no 

cell nuclei and lack perfusion, and as a result have smaller 

widths than healthy capillaries [Figure 3a, white arrow]. The 

program measures the caliber of the vasculature using binary 

image [Figure 3b] and marks areas which have a width <40% 

of the average width of vessels in the retina [Figure 3d]. 

Using morphological tools, the connection of the pixels 

in the marked areas in a small neighborhood was then 

investigated. Capillaries with a diameter smaller than 20% of 

adjacent capillaries were identified as strands or touching 

vessels and were not counted.

To determine the vessel caliber, defined as the average 

width of vessels, the total area of the vasculature from the 

original binary image was divided by the total length of 

the vessel. The total vessel length was determined using 

the morphologically thinned vasculature. A skeleton-based 

method[32] was applied to achieve the thinned vasculature 

image. In this image, the entire vasculature was reduced to 

a cross-sectional width of 1 pixel [Figure 3c]. Thus, the total 

number of pixels representing the vasculature is equal to 

the total length of all vessels within the retina.

The performance of the acellular capillary detection algorithm 

is dependent on the quality of the binary image containing the 

retina vasculature and acellular capillaries. This binary image 

is implemented by dynamic local thresholding. The threshold 

level was initialized applying mixture models method[33] and 

then fine-tuned locally for each 32 × 32 neighborhood within 

the image to detect very thin acellular capillaries.

Determination of Fractal Dimension

Fractal dimension of the retinal vasculature is another 

parameter quantified using a technique known as the 

box-counting method.[34-37] In this method, the vasculature 

image was first divided into a number of smaller “boxes.” 

Then, the number of boxes which contain part of the 

vasculature was determined. This process was then 

repeated with boxes of different sizes. If the structure is in 

fact fractal, an exponential relation is expected between the 

box size (ε) and the number of boxes required to cover the 

entire structure (N).   Eq. 3 shows this relationship:

N C=
−

ε
Df  (3)

where C is a constant of no consequence in this context 

and D
f
 is the fractal dimension of the structure. The fractal 

dimension is found by solving Eq. 3 to obtain an expression 

Table 1: Accuracy of the cell count and cell type 

determinations for 16 fields of views of images from four 

11‑month‑old wild‑type mice

Approaches EC 
count

PC 
count

Cell 
count

E/P Cell count 
accuracy (%)

E/P 
accuracy (%)

Manual 1161 688 1849 1.69 100 90

Proposed 1071 619 1690 1.73 91.4 87.87

EC: Endothelial cell, PC: Pericyte
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involving a logarithm with base ε. However, while Eq. 3 will 

work for a true fractal dimension, physical structures do not 

exhibit fractal behavior on all scales. Thus, the limit of the 

Eq. 3 must be taken as the box size approaches zero. To do 

this effectively, L’Hopital’s rule can be used to determine 

the limit of the equation based on the equation’s derivative. 

The fractal dimension can then be found by determining the 

slope of the log-log plot of N against ε [Eq. 4]:

D f =− =
∂

∂
→lim log

(log )
ε ε

ε

ε
0

N

N

 (4)

Vessel Coverage

One of the markers of late-stage retinopathy is a denser 

vasculature. Total vessel coverage is determined for 

each FOV by the total number of pixels representing the 

vasculature in the binary image.

Classification of Retinal Images

The quantified parameters of the cell and vasculature images 

of the retinas were used to classify retinas as normal or 

injured. The classification was performed using a nonlinear 

classifier, support vector machine (SVM). SVM classifier 

attempts to maximize the margin of error and allows for 

better generalization of the results.[38] This Kernel-based 

classifier uses radial basis functions and the kernel trick to 

project the data into a high dimensional space for easier 

separation. Gaussian radial basis function was used in the 

current study to map the training data set into kernel space 

where a maximal separating hyperplane was constructed.

The accuracy, sensitivity, and specificity of the classification 

are calculated through the following equations:

Accuracy
+

+ + +

Sensitivity
+

Specificity

=

=

=

TP TN

TP TN FP FN

TP

TP TN

TN

TTN FP+
 (5)

where TP and FN are the number of diabetic retinas classified 

as diabetic or normal, respectively. Similarly, TN and FP are 

the number of normal retina detected as normal or diabetic. 

FN and FP were determined using the leave-one-out 

cross-validation method.[39] In this method, one data point 

is withheld from the system during its training phase, and 

then the point is classified using the newly trained system.

Statistical Analysis

Two-tailed Student’s t-test is used for normally distributed 

data (n = 16 FOVs for each group). P < 0.05 is considered 

significant.

RESULTS

In this study, we have established an image analysis tool 

to assess and quantify the structural changes in the retinal 

vasculature either at the early stage of the disease or as the 

injury progresses. To determine the effect of diabetes and 

germline deletion of bcl-2 on the retinal vasculature, five 

parameters	were	quantified	in	retinas	from	bcl‑2−/−	mice	
and their control littermates at 6 weeks of age, as well as 

retinas from Akita/+ mice and control littermates at 6 and 

11 months of age. The results of this method demonstrated 

a 26.43%, 16.6%, and 25.7% fewer number of cells and 

12.38%, 14.97%, and 17.8% lower vessel coverage in the three 

aforementioned groups of the diseased retina compared to 

the corresponding controls. Both groups of diabetic retinas 

at 6 and 11 months of age showed higher EC/PC ratio 

compared to their controls (38.7% and 33%, respectively) 

and only 11-month-old diabetic retinas showed significantly 

larger number of acellular capillaries (126.3%) and higher 

fractal dimension (1.1%) compared to the control. The 

details of the results for the 11-month-old diabetic retinas, 

developing changes in the five features, are provided.

Injured Retinas have Fewer Number of Cells

The retinas from diabetic mice contained fewer cells 

compared to the WT normal mice of the same age 

[Figure 4a, left panel]. For instance, the 11-month age 

group images from mid- and far-periphery areas of 

retina (16 FOVs) contained a mean number of 78.5 cells in 

diabetic mice and 105.6 in the WT mice (P = 5.1205e-05). 

The first two bars in Figure 4b represent the mean and 

standard errors of the cell counts scaled by 10−1 within 

each group. The higher mean values in the WT groups 

showed that diabetes caused vascular cell death in the 

retina. Please note that cell segmentation algorithm 

resulted in an accuracy of 91.4% compared to manual cell 

count [Table 1].

Diabetic Eyes have a Higher Endothelial 
Cell/Pericyte Ratio

One of the hallmarks of early diabetic retinopathy is loss 

of PC. With progression of the disease, retinal vessels 

lose PC, leading to vascular dysfunction such as increased 

permeability and loss of EC. Thus, loss of PC results 

in a higher EC/PC ratio in diabetic retinas compared 

with retinas from WT mice. The images showed a mean 

EC/PC ratio of 2.4053 for diabetic 11-month-old mice and 

1.8084 for the WT mice (P = 5.1772e-04). As expected, the 

mean values were lower in WT groups than those in the 

diabetic groups. Figure 4b shows the mean and standard 

errors of the EC/PC ratios within each 11-month-old group. 

PC determination algorithm resulted in 87.87% accuracy in 

the EC/PC ratio on average compared to manual evaluation 

[Table 1].
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Diabetic Retinas have a Larger Number of 
Acellular Capillaries

Acellular capillaries in the retina arise from chronic 

exposure to hyperglycemia, have no cell nuclei and exhibit 

a very small width. The results from the vasculature images 

(from mid- and far-periphery areas of retina) showed a 

significant difference between the number of acellular 

capillaries in the WT and Akita/+ 11-month-old mice 

[Figure 4a, right panel]. The mean acellular capillary number 

were 2.375 and 5.375 for WT and Akita/+ mice, respectively 

(P = 7.0414e-04). Figure 4b displays the mean value and 

standard errors of the number of acellular capillaries.

Injured Retinas have Lower Vessel Coverage

Our results indicated that the total area of the vasculature 

in the retinas from diseased mice was smaller compared to 

WT mice [Figure 4a, right panel]. The mean values of the 

number of pixels representing the vasculature were 672,050 

and 817,790 for diabetic and WT nondiabetic 11-month-old 

mice, respectively (P = 1.4214e-05). Figure 4b shows the 

mean and standard error of the vasculature area scaled by 

10−5 for each group.

Diabetic Retinas Exhibit Greater Fractal 
Dimension

Our studies reveal a difference between the fractal 

dimensions measured in the retinal images of diabetic and 

nondiabetic 11-month-old mice. The mean values of the 

fractal dimension were 1.8733 and 1.8499 for diabetic and 

nondiabetic mice, respectively (P = 1.9167e-08). Figure 4b 

shows the mean and standard error of these samples, 

illustrating a significant difference between the two groups. 

These results suggest that greater retinal fractal dimension, 

representing increased geometric complexity of the retinal 

vasculature as a sign of chronic diabetic retinopathy.

Classification of Retinal Images Resulted in 85% 
Accuracy

Table 2 provides classification results with different feature 

combinations. Features were selected based on the type 

and duration of the disease. Left panel in Figure 5 shows the 

distribution of two features (cell count and vessel coverage) 

as an example of the classification using SVM classifiers. 

Crosses correspond to bcl-2 deficient retinas and stars 

are related to normal retinas (control). The hyperplane on 

the top right corner is one of the classifiers that indicate 

the decision boundary between the two groups. This 

classification resulted in 85.4% accuracy, 94.8% sensitivity, 

and 77.5% specificity. The right panel in Figure 5 represents 

the SVM classifier using three features including cell count, 

vessel coverage, and EC/PC ratio. The surface between 

yellow (diabetic) and blue (normal) regions is one of the 

classifiers, which makes the decision boundary between 

the two groups. Using these three features yielded in the 

classification with 85.3% accuracy, 88.8% sensitivity, and 

81.7% specificity.

DISCUSSION

We have developed a novel multi-parameter quantification 

method to evaluate the health of retinal vasculature. 

This method employs image processing algorithms to 

detect the retinal parameters of interest including vessel 

coverage, acellular capillary count, fractal dimension, and 

vascular cell count and cell type. To validate the use of 

the proposed method, we compared the accuracy of the 

nuclei segmentation and cell type determinations with 

manual evaluations. Accuracy counts were divided into 

two categories: EC counts and PC counts. Based on these 

two counts, the total cell count and EC/PC ratios were 

evaluated and shown in Table 1. The total number of nuclei 

identified by each method was not the same. Overall, 

nuclei segmentation algorithm resulted in an accuracy of 

91.4% compared to manual cell counting. The main source 

of error in the cell count was under-segmentation problem 

occurred due to overlapping cell nuclei. Segmentation of 

images containing touching and overlapping cell nuclei is a 

challenge in cell segmentation,[40,41] and further investigation 

is needed to further reduce this error. New segmentation 

methods, including region-based active contour[42,43] (single 

phase and multiphase), and graph cut-based active 

contour[44] were also examined. None of these methods 

were able to improve the segmentation accuracy for our 

application. Therefore, marker-based segmentation method 

was chosen for high throughput applicability.

It should also be noted that EC counts and PC counts 

assessed by each method were not the same. For 

computer-based approach, the most common error is the 

under-segmentation, while for manual segmentation, the 

discrepancy on whether to identify certain nuclei as EC or PC 

play a much larger role in accuracy rate. The inconsistency 

between the manual evaluations of cell type provides an 

idea of how well one could expect to do in comparison to 

the chosen standard. If two experienced biologists can only 

Table 2: Performance of the support vector machine 

classifier for different groups under study

Disease Age Features Accuracy Sensitivity Specificity

Bcl‑2 

deficiency

6 weeks Cell count, 

vessel coverage

85.4 94.8 77.5

Diabetes, 

Akita/+

6 months Cell count, vessel 

coverage, EC/PC

85.3 88.8 81.7

11 months Cell count, 

vessel coverage, 

EC/PC, acellular 

capillary count, 

fractal dimension

75 71.7 81.7

EC: Endothelial cell, PC: Pericyte



Ghanian et al.: Multi‑parameter image analysis of retinopathy

Journal of Medical Signals & Sensors

Vol 6 | Issue 2 | Apr‑Jun 2016 77

agree on 90% of the cell type results, then it is likely that 

any claim of above 90% for automatic cell type detection 

is just accidental. Our results suggest that performance 

of the proposed method for determining the cell type is 

comparable to manual evaluation. Considering the manual 

segmentation accuracy of around 90%, which is only 2.13% 

better than automatic segmentation method; our results 

reflect the overall difficulty of the problem and indicate 

good performance for the automatic method.

The presented multi-parameter quantification method 

can analyze and monitor vasculature complexity in rodent 

models of diabetic retinopathy and bcl-2 deficiency. Cell 

apoptosis,[45-49] loss of PC,[50-54] and lower vessel coverage 

are used to assess early signs of nonproliferative diabetic 

retinopathy. However, increased number of acellular 

capillaries[20,52] and higher fractal dimension[55-58] were later 

Figure 4: (a) Left: cell images represent that 11‑month‑old diabetic retina 

has a fewer number of cell compared to the normal retina at the same 

age. Right: vasculature images demonstrate lower vessel coverage and 

larger number of acellular capillaries (shown by arrows) in diabetic retina 

as compared to control (scale bars represent 20 μm). (b) Bar graph plot 

comparing five unique features in diabetic retina versus normal retina 

from 11‑month‑old mice. Bar graphs show the mean values and standard 

errors of each feature detected in retinas. Diabetic retinopathy resulted 

in significant decrease statistically in the total number of vascular cells, and 

vessel coverage while increase significantly the EC/PC ratio, number of 

acellular capillaries and fractal dimension. Please note that the total number 

of cells and vessel coverage were scaled by 10−1 and 10−5, respectively. For 

showing the difference between the fractal dimensions of the two groups, 

this parameter was presented with different y‑axis on the right. The number 

of the fields of view in each group of retina is 16

b

a

Figure 3: Acellular capillary detection: (a) vasculature image (b) binary 

image of vasculature (c) morphological thinning of vasculature used to 

determine vessel caliber (d) marked connected areas with a width <40% of 

the average vessel’s caliber

dc

ba

Figure 5: Results of the classification using support vector machine method in retinas from (a) 6 weeks bcl‑2−/− deficient and WT mice considering two 
features: Cell count and vessel coverage (b) 6 months diabetic Akita/+ and WT mice with three features: Cell count, vessel coverage, and EC/PC ratio; Red 
crosses correspond to injured retinas and green stars are related to control. The boundary between yellow (injured) and blue (normal) regions is one of the 

classifiers

ba
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complications and become more numerous with progression 

of diabetes. Diabetic retinopathy is a progressive disease 

and goes through all of these changes in a timely 

manner. Loss of PC is an early event, which is followed 

by vascular dysfunction, loss of EC, formation of acellular 

capillaries and microaneurysms, ischemia, and ultimately 

neovascularization that is the latest stage of the disease 

and is normally not seen in rodents. Our multi-parameter 

method selects these features based on the duration of 

diabetes as a significantly dominant marker for detection 

of diabetic retinopathy. The duration of diabetes has a 

significant impact on the parameters indicated above. Thus, 

for animals with the longest duration of diabetes, all these 

changes are significant marker of diabetic retinopathy. 

Therefore, with longer duration of diabetes in 11-month-old 

groups all the features can be used to quantify the retinal 

changes and train the classifier. Figure 4 demonstrates that 

11-month-old diabetic retinas have a lower cell density and 

vessel coverage but a greater EC/PC ratio, higher number of 

acellular capillaries, and larger fractal dimension.

The fractal dimension, which is a useful measure of the 

complexity present in the retinal vasculature, determines 

the self-similarity of the vessel structure. As retinopathy 

progresses, new and smaller blood vessels begin to grow 

out of the existing larger vessels, with similar characteristics 

to the larger vessels, showing that the vessel structure is in 

fact fractal. Our measured fractal dimension is close to the 

reported fractal dimension of a diffusion-limited aggregation 

process (~1.7).[55-58] In addition, there is a correlation 

between retinal complexity and fractal dimension. This 

correlation occurs because of the properties of fractal 

dimensions, which increases as the new vessels grow in 

with the same properties as the existing larger vessels. 

Our studies showed that greater retinal fractal dimension 

represents increased geometric complexity of the retinal 

vasculature associated with diabetic retinopathy. Since 

significant increases in acellular capillary formation and 

fractal dimension are usually observed after 6 months of 

diabetes,[46,52,59] these parameters are not appropriate to 

quantify injury in the 6 month-old diabetic groups. Thus, 

only cell count, vessel coverage, and EC/PC ratios were used 

for classification [Figure 5b].

In addition to diabetic retinopathy, another type of 

retinopathy induced by bcl-2 deficiency was studied. 

Vascular cell count and retinal vascular density were 

selected as the markers for the early diagnosis of this type 

of retinopathy.[17] The cell count is an important indicator 

of retinopathy, as it is directly related to the early loss 

and later growth of new blood vessels. Thus, we expect 

the concentration of vascular cells in the retina and also 

vascular density to be two precursors of retinopathic 

injury	at	the	early	stages.	At	6	weeks	of	age,	bcl‑2−/−	and	
healthy retinas were classified [Figure 5a] with 85% accuracy 

showing that these two features are significantly effective, 

and our multi-parameter method is sensitive to quantify the 

early structural changes of retina with bcl-2 deficiency.

CONCLUSION

We have studied morphological details of retina including 

cell count, vessel coverage, and the EC/PC ratios which 

were associated with loss of the PC as the earliest sign of 

diabetic retinopathy.[53] Other quantifiable morphological 

features such as acellular capillaries and fractal dimension 

correlated with progression of diabetic retinopathy,[56] were 

also investigated. The current multi-feature method has the 

capability to detect and quantify the structural changes in 

the vasculature of retina at the early stages of the disease 

and provides an opportunity to get a comprehensive 

view of retinal vasculature at the cellular level. Therefore, 

with new advancements in new imaging modalities with 

cellular resolution, it will be possible to utilize the method 

developed here for quantitative evaluation of retinal 

vasculature with significant accuracy. This knowledge will 

be instrumental in development of new treatment modality 

to stop the development and progression of the disease and 

save vision. With the addition of more features, we hope to 

create a system capable of detecting and classifying even 

small changes in the retinal vasculature, allowing for the 

earliest detection of the injury. Our system can also be used 

to assess the impact of various gene mutations, deletions, 

and overexpression on retinal vascular development and 

function in a high-throughput and reproducible manner.
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