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Summary

� A significant fraction of carbon stored in the Earth’s soil moves through arbuscular mycor-

rhiza (AM) and ectomycorrhiza (EM). The impacts of AM and EM on the soil carbon budget

are poorly understood.
� We propose a method to quantify the mycorrhizal contribution to carbon cycling, explicitly

accounting for the abundance of plant-associated and extraradical mycorrhizal mycelium. We

discuss the need to acquire additional data to use our method, and present our new global

database holding information on plant species-by-site intensity of root colonization by mycor-

rhizas. We demonstrate that the degree of mycorrhizal fungal colonization has globally con-

sistent patterns across plant species. This suggests that the level of plant species-specific root

colonization can be used as a plant trait.
� To exemplify our method, we assessed the differential impacts of AM : EM ratio and EM

shrub encroachment on carbon stocks in sub-arctic tundra. AM and EM affect tundra carbon

stocks at different magnitudes, and via partly distinct dominant pathways: via extraradical

mycelium (both EM and AM) and via mycorrhizal impacts on above- and belowground bio-

mass carbon (mostly AM).
� Our method provides a powerful tool for the quantitative assessment of mycorrhizal impact

on local and global carbon cycling processes, paving the way towards an improved under-

standing of the role of mycorrhizas in the Earth’s carbon cycle.

Introduction

According to recent estimates, soils store 500–3000 Pg carbon
(C) globally, more than the atmosphere and all plants together
(Todd-Brown et al., 2013; Wieder et al., 2013, 2014). Thus, in
order to understand the processes of global C cycling and to
predict the effect of environmental changes, we need to obtain
a thorough understanding of the soil C economy (Chapin et al.,
2009). Despite most C transformations in soils being microbe
driven (Fujita et al., 2014), our understanding of belowground
C transformation processes, and especially of the role of dis-
tinct groups of microorganisms therein, is poor (Fierer et al.,
2009; Treseder et al., 2012; van der Putten et al., 2013). Partic-
ularly important are mycorrhizal fungi (Treseder et al., 2012;
van der Heijden et al., 2015), which live in a mutualistic

relationship with plants. Unraveling the role of mycorrhizal
fungi in soil C transformations is important, given that 94% of
vascular plant species feature mycorrhiza (Brundrett, 2009), and
mycorrhizal fungi create by far the largest pool of soil microbi-
ota and often the main source of belowground C (Godbold
et al., 2006; Talbot et al., 2008; Cairney, 2012; Clemmensen
et al., 2013).

Depending on the fungal taxa involved, mycorrhiza may have
different forms, among which arbuscular mycorrhiza (AM) and
ectomycorrhiza (EM) are the most widespread, taxonomically
(Brundrett, 2009) and geographically (Read, 1991). AM and EM
differ fundamentally in morphology and physiology (Smith &
Read, 2008). Accordingly, it has been suggested that ecosystem C
cycling and storage may be strongly determined by the predomi-
nant mycorrhizal type of the ecosystem (Cornelissen et al., 2001;
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Read & Perez-Moreno, 2003; Averill et al., 2014). Indeed, sev-
eral correlative studies, in which established AM-dominated vege-
tation stands have been compared with EM-dominated ones,
have found that EM association causes C accumulation in
recalcitrant semi-decomposed litter in soil O horizons, whereas
AM promotes more rapid C cycling and the development
of more fertile humus-rich soils and deeper dark organic A
horizons and thinner O horizons (Chuyong et al., 2002; Read &
Perez-Moreno, 2003; McGuire & Treseder, 2010; Phillips et al.,
2013; Averill et al., 2014).

Until recently, the differential impacts of AM and EM in eco-
system C turnover have been mostly linked to the supporting role
of mycorrhiza in plant nutrient uptake. Therefore, the differences
among C cycling processes in ecosystems dominated by AM and
EM vegetation have been traditionally attributed to the following
factors: (1) AM-dominated ecosystems have higher gross and net
plant primary production (GPP and NPP), which ultimately
results in higher litter production (Read, 1991; Read &
Perez-Moreno, 2003; Vargas et al., 2010; Averill et al., 2014); (2)
EM plants allocate more C than AM plants to their fungal part-
ner (Jones et al., 1998; Leake et al., 2004; Gehring et al., 2006;
Orwin et al., 2011); and (3) litter of EM plants decomposes twice
as slowly as that of AM plants (Cornelissen et al., 2001; Langley
& Hungate, 2003; Hobbie et al., 2006; McGuire et al., 2010;
Vesterdal et al., 2012; cf. Dickie et al., 2014). This traditional
concept coincides with the widely accepted view that NPP and
litter quality are the main aspects of vegetation-mediated inputs
to soil C stocks and to atmospheric CO2 (Schimel et al., 1994;
Sitch et al., 2008).

However, a rapidly growing body of recent research has sug-
gested that the presence of AM and/or EM fungi in soil also
directly (i.e. via their presence and activity beyond the supply
of plants with nutrients) affects soil C sequestration processes,
both in terms of sequestration rates and the fate of C added to
the soil, in addition to the above-discussed mycorrhizal effects
via NPP and litter quality (i.e. indirect effects, sensu Rillig
(2004a)).
(1) EM fungi usually acquire more C than AM fungi from their
host plants and, correspondingly, release more C into the soil,
aiding the direct effects of mycorrhiza in addition to the indirect
effect of less C being left for plants. The possible fates of this C
(i.e. its utilization by fungi for enzyme production, biomass or
respiration) are discussed below (points 2–4).
(2) Ectomycorrhizas release oxidative enzymes, facilitating nitro-
gen (N) uptake from litter (Aber et al., 1998; B€odeker et al.,
2014), thereby increasing the recalcitrance of old, partially
decomposed, litter (Gadgil & Gadgil, 1971; Bending, 2003;
Read et al., 2004) and promoting thicker organic surface horizons
and larger humus C : N ratio through time (Clemmensen et al.,
2013).
(3) The external (extramatrical) mycelium of EM fungi has an
order of magnitude higher standing biomass (Miller et al.,
1995; Anderson et al., 2001; Sawyer et al., 2003), and some
studies have indicated that EM external mycelium has a several
times slower turnover rate (Leake et al., 2004; Olsson &
Johnson, 2005; Ekblad et al., 2013), than the external

(extraradical) mycelium of AM fungi. Accordingly, residues of
external EM mycelium form a key (50–60%) source of C enter-
ing the belowground C pool, probably exceeding the input via
leaf litter and fine root turnover (Read, 1991; Godbold et al.,
2006; Clemmensen et al., 2013). For comparison, glomalin (a
glycoprotein contained in residues of AM cell walls and in some
other microbes) was estimated to constitute up to 5% of total
soil C only (Rillig et al., 2001; Rillig, 2004b; Treseder &
Turner, 2007).
(4) EM fungi can also have a priming effect (defined as an addi-
tion of new easily available C, causing a release of old, more
recalcitrant C) on saprotrophic fungi (Fontaine et al., 2003,
2011; Subke et al., 2011). This effect has not yet been found for
AM fungi under ambient conditions (Burke et al., 2002; Welc
et al., 2010; Leigh et al., 2011; Nottingham et al., 2013),
although Cheng et al. (2012) reported priming effects of AM
fungi under elevated CO2. Further research is needed to clarify
the priming ability of AM fungi.

The differences between AM and EM, summarized in Fig. 1,
suggest that the extent of mycorrhizal impact on individual pools
and fluxes of C turnover in AM- and EM-dominated ecosystems
differs. However, the impacts of AM and EM on the total soil C
pools have not yet been unraveled. Averill et al. (2014) estimated
that, globally, EM ecosystems store 1.7 times more C per unit of
soil N than do AM ecosystems. However, when comparing AM
and EM estimates within the same biome, Vesterdal et al. (2012)
found no differences in total C stocks between temperate AM
and EM forests. Both Vesterdal et al. (2012) and Phillips et al.
(2013) found slower C cycling in the O-horizon of EM-domi-
nated forests compared with that in AM-dominated ones, but
neither study assessed the individual C fluxes resulting in
retarded C cycling. Thus, further in-depth investigations on the
effects of AM and EM vegetation on total soil C stocks are
essential.

Currently, mycorrhizal research tends to describe the function-
ing of AM and EM without specifying their abundance in a par-
ticular ecosystem. However, even purely AM or purely EM
vegetations may vary considerably in actual biomass of mycorrhi-
zal fungi, depending on soil type, soil fertility, vegetation type,
climate and fungal community composition, making compari-
sons among studies difficult. Furthermore, purely AM or EM
vegetation stands are rare in nature. Most ecosystems host both
AM and EM plants in different proportions. Thus, AM and EM
simultaneously affect biogeochemical cycling in such ecosystems,
but the impacts of AM and EM may differ depending on their
abundances.

Here, we propose that, to obtain a comprehensive understand-
ing of the effects of AM vs EM on soil C cycling (Phillips et al.,
2013), we need to examine and integrate both direct and indirect
effects of mycorrhizal fungi on processes involved in soil C stock
formation in a quantitative manner. In order to do this, we need
a quantitative measure of the involvement of each type of mycor-
rhiza in ecosystem functioning. The aims of this study are there-
fore: to propose a routine to quantitatively assess the differential
involvement of AM and EM in soil C cycling and to demonstrate
its advances utilizing data from a detailed field study; to provide a
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perspective for the quantitative estimation of AM and EM
involvement in C stocks at global scales; and to review the current
data availability for such assessments.

Our concept has an important practical implication: changes
in the abundances of AM and/or EM plants in an ecosystem as a
result of introduction, invasion or expansion of plants featuring
one of the mycorrhizal types (hereafter AM↔ EM vegetation
shifts) could strongly affect biogeochemical transformation pro-
cesses relevant to ecosystem C cycling (Phillips et al., 2013). Our
concept may be applied to assess the impacts of shifts in abun-
dance of AM and EM plants on C pools associated with
funtioning of arbuscular and ectomycorrhizas.

Materials and Methods

A quantitative assessment of the impacts of AM and EM
fungi on soil carbon stocks

Our premise is, that, to assess the effects of mycorrhiza on ecosys-
tem C pools and fluxes, the ‘effect of mycorrhiza’ should be
examined in relation to the actual abundance of AM and/or EM
in an ecosystem: that is, the abundance of each partner (plant
and fungi) and the level of intimacy of the relationship between
them need to be determined. Thus, we need to quantify the total
amount of root-associated AM and EM fungi (i.e. total AM-colo-
nized standing root length per soil mass unit and total number of
root tips colonized by EM fungi per gram of soil) and the bio-
mass of extraradical fungal mycelium (sensu Leake et al. 2004):
that is, extraradical sensu stricto mycelium of AM fungi and ex-
tramatrical mycelium of EM fungi in the ecosystem. Changes in
the abundances of AM and/or EM plants in an ecosystem will
lead to changes in both of these aspects. The idea of taking into
account the abundances of AM and EM fungi whilst examining
the effects of mycorrhiza on C cycling is illustrated in Fig. 2(a).

To demonstrate this concept for ecosystem-level assessments,
we have calculated the AM and EM fungal contributions to C
pools in an AM- and EM-dominated sub-arctic alpine plant
community. In addition, we show how the magnitude of this C
stock and the ratio of fungi to plant C allocation can change on
encroachment of the EM shrub Betula nana L. in a sub-arctic
plant community (e.g. this causes a vegetation shift from AM
towards EM dominance). This issue is highly relevant and
urgent, because expansion of shrubs (which are often EM) is
recognized as a major consequence of climate warming at high
latitudes and altitudes (Myers-Smith et al., 2011; Naito &
Cairns, 2011; Cahoon et al., 2012; Elmendorf et al., 2012b;
Heskel et al., 2013).

We established seven and six 509 50-cm2 plots in AM- and
EM-dominated plant communities, respectively, in the alpine
zone of sub-arctic Sweden (Abisko area, 68°220N, 18°390E).
Both plant communities were situated within 50 m of each other,
at the same elevation (800 m above sea level), on the same gneiss
parent rock material. Both plant communities consisted of herba-
ceous and dwarf shrub vegetation, where EM plants were repre-
sented by the herbaceous dwarf shrubs Salix herbacea L., Salix
polaris Wahlenb. and Betula nana L. Although some Salix species
can feature both AM and EM symbioses (e.g. van der Heijden,
2000), we did not find AM in the examined Salix plants. In these
plant communities, we assessed separately, for each plant species,
the aboveground (for details, see Supporting Information
Tables S1 and S2) and belowground biomass (the latter by sepa-
rating rhizomes, coarse and fine roots), intensity of root mycor-
rhizal colonization, specific root length (root length per unit
mass) and C concentration in above and belowground organs,
and we estimated the amounts of AM and EM extraradical myce-
lium (Tables S1, S2). Based on these data, for both plant com-
munities, we estimated the fraction of the total C pool stored in
plant biomass as attributable to the impacts of mycorrhiza on
plant nutrition and fitness (Fig. 3). In addition, we estimated the
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Fig. 1 Current view on individual pools and fluxes of belowground carbon
(C) dynamics in (a) arbuscular mycorrhiza (AM)- and (b) ectomycorrhiza
(EM)-dominated ecosystems. White blocks, living organisms and fresh
litter; brown blocks, organic soil fractions; green arrows, plant-associated
C fluxes, discussed in the text as indirect effects of mycorrhiza on C
cycling; grey arrows, soil C pathways associated with direct effects of
mycorrhiza on C cycling; white arrows, C losses via respiration of
organisms not involved in mycorrhizal symbiosis. The sizes of the boxes/
arrows reflect the magnitude of the pools/fluxes. The effects of AM and
EM vegetation on the total soil C pool (amount of C stored in O and A soil
horizons together) require further investigation (see the Introduction
section for details).
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individual contributions of mycorrhiza-attributable C stocks in
aboveground and belowground plant biomass, and C stocks in
AM and EM fungal mycelium (Fig. 4). Fig. 2(b) illustrates the
main points and the assumptions of the calculations. Details of cal-
culations and the underlying data are shown in Tables S1 and S2.
Justifications for the equations used, the reasoning underlying data
estimations and literature references are given in Methods S1.

In short, the impacts of AM and EM on plant C pools (i.e. the
amount of C in plant biomass accumulated as a result of the sup-
portive role of mycorrhiza in plant nutrition and fitness) were
estimated based on the results of experimental studies and meta-
analyses of vascular plant biomass responses to mycorrhizal colo-
nization. For AM, we used data from Lekberg & Koide (2005),
Hoeksema et al. (2010) and Treseder (2013), and, for EM, from
Hobbie & Hobbie (2006), Karst et al. (2008) and Simard et al.
(2002). Using their proposed values, we estimated the impact of
AM on the amount of C stored in biomass of each individual
plant species as 50% of C stored in plant biomass multiplied by
the fraction of root length colonized by AM fungi for forbs, and

20% of C stored in plant biomass multiplied by the fraction of
root length colonized by AM fungi for grasses. We estimated the
impact of EM on C stored in biomass of individual plant species
as 50% of C stored in plant biomass, independent of EM coloni-
zation rate (Karst et al., 2008). See Methods S1 for the reasoning
underlying these estimates. The amount of C stored in root-asso-
ciated and extraradical biomass of mycorrhizal fungi was esti-
mated to be proportional to the respective biomasses of AM and
EM fungal mycelium in plant roots or in soil (see Tables S1, S2
and Methods S1 for calculations), using values of 50% C for EM
fungal tissues (Wallander et al., 2011), 41% C for AM extraradi-
cal mycelium (Paul & Clark, 1996) and 1.03 lg C per millimeter
of root colonized by AM fungi for herbaceous plants (Treseder &
Cross, 2006). It should be noted that several of these calculations
and assumptions are based on meta-analyses, averaging results
obtained from many studies. As such the values obtained must be
treated with care and the outcome of further analysis (e.g. for dif-
ferent systems) might vary depending on ecosystem type, plant
species and soil type.
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Fig. 2 Schematic illustration of the proposed method for quantitative assessment of involvement of AM and EM into soil carbon cycling. (a) General
illustration of the proposed idea: assessments of the involvement of AM and EM into any type of soil carbon pools or fluxes should be conducted taking
into consideration the actual abundance of AM and EM in the ecosystem; (b) implementation in the case study; (c) possible extension of the basic principle
taking into account differences among individual species or functional groups of AM and EM fungi. For justification of formulas used in calculations, see
Methods S3. Texts and abbreviations used in the figure: overall, ∑ indicates summation over all vascular plants present in the ecosystem; extraradical AMF/
EMF mycelium, biomass of AM/EM fungal extraradical mycelium present in the soil (total for the ecosystem in (a) and (b), or specific for individual
fungal species or functional guilds in (c)). AMF/EMF root colonization, percentage of standing root length colonized by AM fungi and percentage of root
tips colonized by EM fungi, respectively (ecosystem totals in (a) and (b), or specific for individual fungal species or functional guilds in (c)). CEM in plant
aboveground/belowground biomass, amount of carbon in plant aboveground/belowground biomass attributable to supporting role of EM fungi in plant
nutrition; C plant ag/C plant bg, per plant species amount of carbon in above or belowground biomass. C in EM root tips, amount of carbon is EM fungi in
plant root tips; %EM, percentage root tips colonized by EM fungi; Nrt, number of root tips per plant species, Nrt = 80009 plant belowground biomass;
t, C content in one root tip, t = 0.016mg C per root tip; C in EM fungal extraradical mycelium, amount of carbon in fungal extraradical mycelium; NEM, per
plant species number of EM root tips, NEM =Nrt 9%EM; CAM in aboveground/belowground biomass, amount of carbon in plant aboveground/
belowground biomass attributable to supporting role of AM fungi in plant nutrition; %AM, per plant species percentage root length colonized by AM
fungi; C plant ag/C plant bg, total carbon in plant species aboveground/belowground biomass; f, coefficient expressing plant species mycorrhizal benefit
f = 0.5 for forbs, f = 0.2 for grasses; C in internal AM mycelium, amount of carbon in AMmycelium in plant roots; PlantFRB, plant species fine root biomass;
SRL, Plant species specific root length; b, carbon content per 1 m of AM fungal mycelium in plant roots, b = 1.03 9 10�3 g C per m root colonized by AM
for herbaceous plants; C in extraradical AM mycelium, amount of carbon in extraradical AM mycelium, estimated as total AM mycelium length multiplied
by k = 1.42 9 10�6

lg C per m AMF mycelium.
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We found that, in AM-dominated plant communities, the
mycorrhiza-associated C pool in living plant and fungal biomass
was similar to that in EM-dominated plant communities (Fig. 3).
However, the C pool stored in mycorrhizal mycelium in EM-
dominated plots was twice as large as the total C pool stored in
above- and belowground plant biomass, whereas, in AM-domi-
nated plots, the C pool stored in mycorrhizal mycelium was
smaller than that of plant biomass (Figs 2, 3). This is reflected in
the large differences between AM- and EM-dominated plots in
the composition of the mycorrhiza-associated C pools (Fig. 4): in
EM-dominated plots, 70% of the mycorrhiza-associated C pool
was stored in EM mycelium, whereas, in AM-dominated plots,
the AM-associated C stock in plant biomass was nearly equal to
that in AM fungal mycelium.

Concurring with these differences, the top (0–5 cm) soil prop-
erties of AM- and EM-dominated ecosystems differ (Table 1; see
Methods S2 for soil analysis; we also sampled soils at 5–10 cm
depth, but found relatively little plant root mass there and no sig-
nificant differences in soil characteristics; therefore, the data for

the deeper soil layer are not discussed hereafter). Soils of EM-
dominated plots showed syndromes of slower C cycling: a higher
C : N ratio (P = 0.04), higher concentration of extractable
organic C (P = 0.03) and lower soil respiration (P < 0.001). The
mean total amount of soil C also appeared lower for EM-domi-
nated plots, although this difference was insignificant as a result
of large variations. In order to examine to what extent the differ-
ences in environmental conditions could underpin the differences
in soil characteristics of AM- and EM-dominated plots, we con-
ducted a 1-yr decomposition experiment in both types of plots,
examining the decomposition of a standard plant material (tea;
Keuskamp et al., 2013; for details and justification, see Meth-
ods S2), and did not detect differences in the decomposition rate
in the organic horizon (Table 1). Taking into consideration that
the pH of the organic horizon in the two types of plant commu-
nity also did not differ (Table 1), we suggest that the differences
in C cycling syndromes between the soils of these plant commu-
nities are predominantly a result of the different composition of
plant and microbial communities. However, further research
needs to quantify the causal relationships between the size of
mycorrhiza-associated C pools and soil C cycling processes, also
accounting for differences in the turnover rate of the different
pools. The turnover rate of EM mycelium is an order of magni-
tude higher than that of plant biomass (the dominant sink in
AM-dominated ecosystems) (Leake et al., 2004; Olsson &
Johnson, 2005; Ekblad et al., 2013). This might partly explain
the smaller difference in total soil C pool between AM- and EM-
dominated ecosystems than one would expect on the basis of the
differential distribution of C in living biomass stocks.

Using the same calculation routine, we estimated how
encroachment of an EM dwarf shrub Betula nana L. would affect
mycorrhiza-associated C pools in both types of plant community.
In this imaginary example, we simulated the situation in which
B. nana would replace 5% of the biomass constituted by AM

Fig. 3 Mycorrhiza-related carbon (C) pools, C pool in living plant above-
and belowground biomass, and total soil C pool in the top 0–5-cm organic
soil layer in arbuscular mycorrhiza (AM)- and ectomycorrhiza (EM)-
dominated communities in subarctic–alpine Sweden. Mean values� SE are
shown. n = 7, for AM; n = 6 for EM. Note that the light blue bar represents
plant biomass, whereas the dotted section shows the fraction of the total
plant biomass C gained as a result of the supporting role of mycorrhiza in
plant nutrition.

Fig. 4 Composition of mycorrhiza-related carbon (C) pools and simulated
impacts of encroachment of the ectomycorrhizal plant Betula nana in
arbuscular mycorrhiza (AM)- and ectomycorrhiza (EM)-dominated plots in
subarctic–alpine Sweden.
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plants in each community (substituting in each community the
AM plant Viola biflora L.; Tables S3, S4). This example is simpli-
fied because, in a real ecosystem, invasion of a new plant would
probably lead to complementary resource use (i.e. 5% increase in
biomass of B. nana might lead to a smaller than 5% decrease in
AM plants). However, even for this simplified example, Fig. 4
shows that, even such relatively small AM?EM vegetation shifts
(compared with predictions made using climate manipulation
experiments; Elmendorf et al., 2012a) would alter the composi-
tion of mycorrhiza-associated C in living biomass pools of the
AM-dominated plant community, decreasing the amount of
plant-allocated C by 5% and increasing the amount of fungi-
allocated C by 20%.

Such quantitative links between the changes in AM/EM abun-
dance within an ecosystem and changes in one of the important
ecosystem C pools can be used directly to model the role of AM/
EM fungi in the soil C budget in a changing environment. We
propose that further experimental assessments of connections
between mycorrhiza and ecosystem soil C pools and fluxes could
be performed in a similar manner, that is accounting for the
quantitative abundance of mycorrhizas acting in the ecosystem.
However, the calculations exemplified here use a number of
assumptions and simplifications in cases in which the connections
between the abundance of mycorrhizal fungi and ecosystem C
pools are poorly understood. Methods S3 discusses the limita-
tions of the exemplary data and the robustness of the case study
analysis. For instance, in our study case, the abundance of extra-
radical mycelium was estimated based on current literature and
the assumption that the extraradical mycelium abundance gener-
ally scales up with an increase in plant root colonization. This
was performed purely for illustrative purposes. When using the
method proposed here, the abundances of extraradical mycelium
should be assessed in the field.

Results

Regional and global assessments of the role of AM and EM
in carbon cycling using the proposed method

After the first phase of correlative comparisons of C cycling in
AM- and EM-dominated biomes (Read & Perez-Moreno, 2003;

Averill et al., 2014), our new method to explicitly determine the
contributions of AM and EM to C pools may pave the way to a
fully quantitative assessment of the effects of distinct mycorrhizas
on regional or global C budgets, by including their individual
direct effects in models of C turnover, for example (Liski et al.,
2005; Orwin et al., 2011; Goll et al., 2012). However, to achieve
this, we need regional (or global) data on the components of AM
and EM fungal abundance in soil (root-associated mycelium and
extraradical mycelium) and knowledge about how alterations in
these components affect soil C fluxes and pools. The latter issue
requires experimental or observational data on the effects of
mycorrhiza on C cycling to be related to the actual quantitative
alterations in the abundance of AM or EM fungi (as exemplified
above). For the first issue, we need to know the plant species-
specific fraction of fine roots available for fungal colonization (a
product of plant abundance and plant species-specific fine root
length (AM plants) or number of root tips (EM plants)), in situ
plant species-specific root colonization levels by mycorrhizal
fungi, and abundance of extraradical mycelium of AM and EM
fungi in soil. The data on the amounts of AM and EM fungal
mycelium should be at the ecosystem level, whereas the data on
fine root length and intensity of root colonization by AM and
EM fungi could be presented as ecosystem-level means or, prefer-
ably, as weighted means derived from each of the plant species
constituting the majority of ecosystem biomass. Ecosystem-scale
root colonization is possible via the analysis of fungal biomarkers
(specific fatty acids (Olsson et al., 1998, 2003; Olsson &
Wilhelmsson, 2000). However, the EM fungi for this analysis
should be sampled using in-growth bags (Wallander et al., 2011),
because there is no fatty acid biomarker available that distin-
guishes between EM and saprotrophic fungi, or by quantitative
PCR specifically targeting AM and EM fungi. Such analyses
would be useful for comparisons between the roles of AM and
EM in C cycling processes.

The use of per-plant species data of AM and EM fungal colo-
nization would also allow the estimation of the impacts of partic-
ular vegetation shifts caused by invasions or introductions of new
AM or EM plants in ecosystems dominated by EM or AM vege-
tation, respectively. Per-species data would also facilitate data
coupling to other plant C economy traits available in large data-
bases, such as TRY (Kattge et al., 2011), and to species-by-site

Table 1 Properties of organic soil horizon (0–5 cm) of arbuscular mycorrhiza (AM)- and ectomycorrhiza (EM)-dominated plant communities in subarctic–
alpine Sweden

AM-dominated community EM-dominated community

P (t-test)Mean SE n Mean SE n

Total soil carbon (C) : nitrogen (N) ratio 11.75 0.34 7 14.80 1.05 6 0.04
Extractable organic C mg kg�1 537 22 6 854 157 5 0.03
Potential soil respiration (mg C-CO2 g

�1C d�1) 0.68 0.004 10 0.59 0.004 10 <0.001
Total soil C content (kg Cm�2 soil) 1.15 0.18 6 2.01 0.46 5 0.14
Decomposition rate of standard material (tea bags), %
mass loss during 1 yr of incubation

40 1 5 41 1 5 0.4

pH 4.99 0.18 7 5.04 0.15 5 0.8

For the details of the decomposition test using standard material, see Keuskamp et al. (2013).
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aboveground plant abundance data, including publically available
Internet resources (GIVD, http://www.givd.info; GBIF, http://
www.gbif.org; BIEN, http://www.iplantcollaborative.org).

Regional and global data on fine root biomass, root coloniza-
tion by mycorrhizal fungi and abundance of extraradical myce-
lium of mycorrhizal fungi are available (Jackson et al., 1997;
Treseder & Cross, 2006; Finer et al., 2011a,b; Kattge et al.,
2011; Akhmetzhanova et al., 2012; Hempel et al., 2013), as well
as data on the global distributions of mycorrhizal fungal species
(Tedersoo et al., 2014). However, the data availability for each of
these components varies considerably, as discussed below.

Plant fine root biomass Currently, comprehensive data on fine
root biomass exist per biome, largely focusing on forests (Jackson
et al., 1997; Finer et al., 2011a,b). To quantitatively predict
impacts on C cycling and to account for, for example, changes in
plant species composition, per-species estimations for plant fine
root length would be preferable. Much information on species-
specific standing root biomass or length exists, both in a direct
form (e.g. Pregitzer et al., 2002; Comas & Eissenstat, 2004,
2009; Wang et al., 2006; Yuan & Chen, 2010; Birouste et al.,
2012; McCormack et al., 2012; Beyer et al., 2013; Tobner et al.,
2013; Gu et al., 2014) and from root trait data stored in databas-
es such as TRY (Kattge et al., 2011). In addition, relationships
between root biomass or length and their plastic responses to
nutrient-rich environments have been established (Chapman
et al., 2012; Chen et al., 2013; Valverde-Barrantes et al., 2013),
which may be used to refine database-derived estimates. How-
ever, to our knowledge, species root data have not yet been
assembled into a single database accessible to a broad scientific
community. Moreover, such data should distinguish between fine
root and total root biomass or length, because mycorrhizal fungal
colonization takes place primarily in fine roots (Guo et al., 2008).
Thus, the assembly of the existing data into a database, thorough
data checks, quantitative assessment of root plasticity, and the
identification of data gaps are the next necessary steps.

Intensity of root colonization by mycorrhizal fungi Recent
published research has provided considerable detail on the type
of mycorrhiza associated with each plant species (Wang & Qiu,
2006; Akhmetzhanova et al., 2012; Hempel et al., 2013). How-
ever, plant species-by-site data on mycorrhizal root colonization
levels have, until now, been spread over a large number of scien-
tific publications. Furthermore, the question of whether the
intensity of plant root mycorrhizal infection can be used as a
plant species-specific trait (sensu Lavorel & Garnier, 2002) in eco-
logical analyses has, to our knowledge, never been properly exam-
ined. The intensity of plant root mycorrhizal infection is known
to vary with plant age (Onipchenko, 2004), environmental con-
ditions (Erland & Soderstrom, 1990; Nilsen et al., 1998; Tuomi
et al., 2001; Treseder, 2004) and between seasons (Ruotsalainen
et al., 2002; Garcia & Mendoza, 2007; Mandyam & Jumppo-
nen, 2008). These issues are typically seen as an inherent obstacle
for the use of data on plant root colonization intensity by mycor-
rhizal fungi as a plant species-specific trait. However, similar
problems are also recognized for other plant traits, and are solved

by the use of data collected following standardized protocols
(Cornelissen et al., 2003), and by the use of plant species trait
mean values calculated over large sets of data, where the trait in
question has been measured multiple times at distinct sites (Koele
et al., 2012; Reich, 2014). Evidence that the intensity of plant
root mycorrhizal infection is plant species specific would allow
the inclusion of these data into analyses aimed at the prediction
of how vegetation influences global C cycling via the mycorrhizal
pathway.

We assembled a global geographically referenced database of
vascular plant root colonization intensities by mycorrhizal fungi,
using published site-referenced surveys available via the ISI Web
of Science up to 2013. The dataset holds information on the
intensity of AM fungal root colonization of 4887 vascular plant
species on 228 sites, and on EM fungal root colonization of 125
vascular plant species on 92 sites (Fig. 5; Tables S5, S6; Soudzi-
lovskaia et al., 2015). Using the largest study contained in the
database (presented in Akhmetzhanova et al. (2012), which
reports 7445 records on mycorrhizal infection type and intensity
of 2970 plant species from 155 families in 154 sites, all assessed
following the same protocol), we tested how much of the varia-
tion in the intensity of plant root colonization by AM and EM
fungi could be explained by plant species identity, compared with
intraspecific variation in AM and EM root colonization as indi-
cated by site identity (see Methods S4 for details). Plant species
identity was a much stronger predictor (P < 0.001, 53% of

(a)

(b)

Fig. 5 Sites in which the plant root colonization data by (a) arbuscular
mycorrhizal (AM) and (b) ectomycorrhizal (EM) fungi were collected. Bar
graphs in the left corner of each map show the number of species-by-site
data points per continent, for AM fungi ranging between 157 and 3790,
and for EM fungi between 16 and 68. The smaller number of plant species
examined for EM fungi corresponds with the overall lower number of EM
plant species relative to AM plant species (2% vs 73% of all Earth plant
species; Brundrett, 2009). Adapted from Soudzilovskaia et al. (2015).
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variance explained) of the intensity of AM fungal root coloniza-
tion relative to site identity (P < 0.001, 26% of variance
explained), and we found no significant interactions between site
and plant species as explanatory variables. The lower availability
of EM fungal colonization data (see Fig. 5) did not allow us to
conduct the same analysis for root colonization by EM fungi.
Thus, we opted for testing only the significance of plant species
identity as a predictor of plant root colonization intensity by EM
fungi, and this factor was indeed highly significant (P = 0.001,
74% of variance explained). The proportion of variance in root
colonization explained by plant species identity is similar to that
of other plant traits commonly used in C cycling analyses, such
as specific leaf area, leaf C and N content, photosynthesis rate per
leaf dry mass and leaf litter decomposability (Wright et al., 2004;
Cornwell et al., 2008; Kattge et al., 2011), which are in the range
of 40–80%. Such strong impacts of plant species identity on the
intensity of root colonization by mycorrhizal fungi and the large
differences in the mean values of intensity of root colonization of
plant species by AM and EM fungi (Figs S1, S2) indicate that the
intensity of mycorrhizal fungal root colonization can be used as a
plant species-specific trait (sensu Lavorel & Garnier, 2002) in eco-
logical analyses.

Biomass of extraradical mycelium of mycorrhizal fungi Our
knowledge of the amount of mycorrhizal extraradical mycelium
in distinct biomes is limited. Currently assembled global datasets
( €Opik et al., 2013, 2014; Tedersoo et al., 2014) hold information
on the genetic diversity of mycorrhizal fungi, but not on their
biomass. Field studies of extraradical mycelium of EM fungi
require the use of in-growth bags to distinguish between EM and
saprotrophic fungi (Wallander et al., 2011, 2013). Concerning
AM fungi, it is possible to measure extraradical mycelium of AM
fungi using various biochemical markers (see detailed discussion
on this in the review of Leake et al. (2004)) or by visual discrimi-
nation on gridded membranes. However, currently, it is not clear
how the amounts of extraradical mycelium and root colonization
levels by mycorrhizal fungi are related at the ecosystem level. To
date, only a few studies have investigated this problem for indi-
vidual plant–fungi pairs, with contradicting results (Hart &
Reader, 2002; Heinemeyer et al., 2006; Powell et al., 2009; Mu-
riithi-Muchane, 2013). Furthermore, these studies covered only a
handful of model plant species in laboratory set-ups, where one
plant individual was inoculated by one fungus species, comparing
the amounts of extraradical and root-associated mycelium. Such
set-ups ignore the fact that, in the field, several fungal species are
interconnected with many individuals of different plant species
(Leake et al., 2004), making the results from these studies of lim-
ited value for the question addressed here. Although we expect
the amounts of root-associated and extraradical AM/EM fungal
mycelium to be correlated at the community level (based on a
comparison of the data of root-associated and extraradical myce-
lium presented in individual studies conducted in contrasting bi-
omes; Staddon et al., 2003; Gryndler et al., 2006; Piotrowski
et al., 2008; Duan et al., 2011), the extent to which these correla-
tions vary among ecosystems and environmental settings needs
further research.

Discussion

An understanding of the mechanisms and magnitudes of the dif-
ferential involvement of AM and EM in soil C cycling processes
requires the quantitative assessment of the involvement of AM
and EM in ecosystem C cycling. We have shown the promise of
such assessment in a data-rich case study and have set out an
agenda for performing and improving such analyses at regional
and global scales.

Recently, Phillips et al. (2013) and Moora (2014) proposed the
use of the weighted aboveground abundance of plant species of
each mycorrhizal type, possibly corrected for the ability of a plant
species to grow with or without mycorrhiza (Moora, 2014), as a
measure of the involvement of each type of mycorrhiza in ecosys-
tem functioning. Such an approach is perfectly suitable for under-
standing the role of mycorrhizal symbiosis for vegetation pattern
dynamics (Moora, 2014) and the associated C and nutrient cycling
processes related to NPP and litter production (Phillips et al.,
2013), which are the indirect effects of mycorrhizal fungi. How-
ever, quantitative estimations of the involvement of AM and EM
fungi in the broader spectrum of soil C sequestration processes, as
proposed in this article, require more detailed measurements of
the abundance of AM/EM fungi than simply the aboveground
abundance of AM/EM plant species, for three reasons.
(1) The estimations of the involvement of AM/EM in C cycling
based on data of aboveground plant biomass composition do not
consider the amounts of extraradical mycelium of AM and EM
fungi and differences in their decomposition.
(2) The estimation of AM and EM abundance based on the
aboveground abundance of AM- or EM-associated plant species
only presumes that, for a given plant species, the species-associ-
ated fraction in the total community-level aboveground plant
biomass is a good predictor for the species-associated fraction in
the total root biomass colonized by mycorrhizal fungi. This
would be an acceptable assumption if mycorrhizal fungi colo-
nized the entire belowground plant biomass. However, mycorrhi-
zal fungal colonization takes place primarily, if not exclusively, in
fine roots (Guo et al., 2008), meaning that not the total root bio-
mass but the fine root fraction needs to be examined in mycorrhi-
zal studies. Unfortunately, plant species aboveground abundance
is a poor predictor for the fraction of fine root biomass associated
with the plant species (Finer et al., 2011a), and for the associated
microbial processes (Mariotte, 2014).
(3) There is growing evidence that there are interspecific differ-
ences among mycorrhizal fungi, especially EM fungi, in the
chemical composition of cell walls triggering mycelium decom-
position (Malik & Haider, 1982; Dahlberg et al., 1997; Koide
et al., 2014) and enzymatic capabilities (B€odeker et al., 2014).
These traits are important for processes such as organic matter
decomposition (B€odeker et al., 2014; Koide et al., 2014) as well
as plant nutrition (Thonar et al., 2011). Therefore, fluxes of C
through the fungal biomass and the way in which C is utilized
depend on the fungal community composition. Although our
method is currently based on total root-associated and
extraradical biomasses of AM and EM fungi, it principally allows
for differentiation among distinct fungal species or functional
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types within the groups of AM and EM fungi, as soon as we have
reliable techniques to assess the abundance of each functional
type. Figure 2(c) illustrates how the method proposed here could
be extended to take into consideration fungal interspecific
differences.

Global upscaling of our routine requires considerably more
data than are currently available. Moreover, we do not know
whether all functionalities of mycorrhiza scale with the abun-
dance of mycorrhizal fungi. Following the logic of the biomass
ratio hypothesis (Grime, 1998), we consider that the abundance
of mycorrhizas in roots and soil is probably related to mycorrhi-
zal functions, but some relationships may be non-linear, or the
essence of ‘mycorrhizal functions’ may be more complex than
we currently know. Several factors need to be taken into account
to implement a model that incorporates all mycorrhizal fungal
effects on C cycling. First, we lack data on the effects of specific
plant–fungal combinations on NPP. Second, we still need to
determine whether and how plant litter quality is related to the
activity and abundance of mycorrhizal fungi colonizing the
litter-producing plant species (Dickie et al., 2014). Third, we
need to better understand how extraradical mycorrhizal fungal
mycelium affects soil C turnover. Biomass of AM fungi in soil
is known to be a proxy for soil aggregation rate (Rillig & Mum-
mey, 2006; Leifheit et al., 2014), with positive knock-on effects
on soil C and nutrient turnover (Wilson et al., 2009). EM fungi
also affect soil aggregation (Zheng et al., 2014), but their
impacts have never been compared with those of AM fungi. In
addition, although the biomass of extraradical EM fungal myce-
lium appears to be a good predictor for the direct effects of EM
on soil C cycling (Leake et al., 2004; Cairney, 2012; Ekblad
et al., 2013; Wallander et al., 2013), we still need to further
improve our understanding of the impacts of extraradical myce-
lium on C cycling via particular pathways, such as organic mat-
ter decomposition, competition with and priming of
saprotrophic organisms, and the decomposability of the extra-
radical mycelium itself. There is growing evidence that distinct
species of mycorrhizal fungi differ in both the ability to acquire
nutrients from distinct organic sources (with knock-on effects
on the rates of decomposition of soil organic matter) and the
decomposability of extraradical mycelium. These interspecific
differences seem to be especially strong among EM fungi
(Hobbie & Agerer, 2010; Hobbie et al., 2013; B€odeker et al.,
2014; Koide et al., 2014). EM fungi differ in their capacity to
degrade distinct types of organic matter as well as to utilize the
released C. For example, Laccaria bicolor lacks carbohydrate-
active enzymes involved in the degradation of plant cell walls,
although it possesses enzymes able to degrade non-plant cell wall
polysaccharides (Martin et al., 2008); Cortinarius glaucopus can
produce a large number of peroxidases, comparable with white-
rot saprotrophic wood-decomposing fungi (B€odeker et al.,
2014); and Paxillus involutus produces a set of enzymes similar
to those involved in the oxidative degradation of wood by sapro-
trophic brown-rot fungi, but lacks mechanisms for metabolizing
the released C (Rineau et al., 2012). A potentially large source
of variation in EM impact on soil C turnover may be related to
differences among EM fungi in mycelium biomass turnover.

There are two main potential drivers of interspecific differences
in mycelium biomass turnover among EM fungi (Koide et al.,
2014): the ability to produce rhizomorphs, that is long thread-
like aggregations of hyphae, and melanization levels of cell walls.
Rhizomorph-producing species, mostly found among
Basidiomycota, grow more rapidly and create larger biomass than
the EM fungi producing short-distance exploration types of
hyphae (Hobbie, 2006; Weigt et al., 2012) with a longer life
span (Treseder et al., 2005), but many of such species also show
more rapidly decomposing litter (Clemmensen et al., 2015),
probably as a result of their ability to produce enzymes able to
recycle their own necromass (Boddy, 1999; Falconer et al.,
2007, but see Treseder et al., 2005; Koide & Malcolm, 2009).
The concentration and type of melanin (a group of complex
compounds composed of phenolic and indolic monomers) in
the cell walls are other important determinants of resistance of
EM fungi litter to decomposition (Malik & Haider, 1982;
Robinson, 2001; Koide et al., 2014). In particular, the litter of
highly melanized Cenococcum geophillum is known to contain
high concentrations of C, causing the litter of C. geophillum to
be recalcitrant and to contribute significantly to stabilization of
the soil C pool (Fogel & Hunt, 1983; Dahlberg et al., 1997;
Watanabe et al., 2007; Koide et al., 2014).

The decomposition of AM and EM abundance measures into
individual components will allow the direct inclusion of existing
data into global C cycling models. At the current state of our
knowledge, the method proposed here might be more useful for
AM than for EM systems, because of the larger (in comparison
with AM) uncertainty about the relationship between the root
colonization levels by EM fungi and the EM impacts on plant
biomass, and significant interspecific differences between EM
fungi. However, the key feature of the routine proposed here is
that it allows easy extensions to account for differences between
species of mycorrhizal fungi, or to account for a presence/absence
effect of a specific component of mycorrhiza on a C turnover
process (as carried out here to account for the effects of EM root
colonization intensity on plant biomass, see Methods S1).

Conclusions

As a result of fundamental differences in morphology and physi-
ology, AM and EM fungi are differently involved in principal
aspects of belowground C cycling. Therefore, increased abun-
dance of AM plants in EM-dominated ecosystems and vice versa
may lead to profound changes in soil C budgets. We suggest that
these potential impacts must be assessed quantitatively and differ-
ences in the effects of AM and EM fungi on global C cycling
should be compared with other vegetation-mediated effects on C
turnover. To conduct such assessments, we need a quantitative
measure for the amounts of distinct types of mycorrhizal fungi
present within and outside plant roots in an ecosystem. We pro-
pose a routine to obtain such a quantitative measure and, for the
first time, provide a quantitative assessment of AM and EM
impacts on an important ecosystem C pool. Our data-rich case
study suggests that AM fungi mostly affect the C pool in living
plant biomass, whereas EM fungi mostly directly affect the soil C
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stock. For this analysis, and for the first time, we consider the
intensity of plant root colonization by mycorrhizal fungi as a
plant functional trait, and we demonstrate that this is a valid
approach, that is, at the global level, the interspecific variability
in root colonization by mycorrhizal fungi exceeds the intraspe-
cific (i.e. site-driven) variation. Our study shows that a compre-
hensive understanding of the various components of mycorrhizal
abundance and their direct and indirect impacts on C turnover is
essential for the full quantification of the role of mycorrhiza in
biogeochemical cycling.
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